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Abstract—Elasticity and viscosity of tissues are two important
parameters that can be used to investigate the structure of tissues,
especially detecting tumors. By using a force excitation, the
shear wave speed is acquired to extract its amplitude and phase.
This information is then used directly or indirectly to compute
the Complex Shear Modulus (CSM consists of elasticity and
viscosity). Among these methods, Algebraic Helmholtz Inversion
(AHI) algorithm can be combined with the Finite Difference Time
Domain (FDTD) model to estimate CSM effectively. However, this
algorithm is strongly affected by measured noise while acquiring
the particle velocity. Thus, we proposed a LMS/AHI algorithm
which can estimate correctly CSM. A simulation scenario is built
to confirm the performance of the proposed LMS/AHI algorithm
with average error of 3.14%.

Keywords—Shear wave; elasticity; viscosity; CSM estimation;
least mean square; Algebraic Helmholtz Inversion

I. INTRODUCTION

Elasticity and viscosity of tissues are two important factors
that can be exploited to detect tumors [1]. Many research work
focused on elasticity [2]–[7] where ultrasonic Shear Wave
Elasticity Imaging (SWEI) offers significant advantages over
the other techniques in terms of reproducibility, quantifica-
tion, elasticity contrast, and automatic shear wave generation.
However, for deeply understanding about the tissue, various
work have been developed to estimate both the elasticity and
viscosity, which are briefly surveyed next. Breast needle biopsy
is well-known in ultrasonic. In order to generate the shear
wave, previous work applied force whose frequencies are low
as 0.1 Hz and high as 10 kHz. Recently, they have used the
excitation in the range of 50−250 Hz for simplification of the
measurement. In this paper, only single frequency of 150 Hz
is needed for the excitation. By applying the force at different
spatial locations, the structure of the tissue can be investigated.

The relationship between the speed and absorption of shear
wave to the corresponding CSM can be modeled by simple
equations in [8]. If transient forces [9] are considered, the
reflections are minimized. However, the affection of noise
is worse than using harmonic forces [10]. If the harmonic
needle vibration is used, compared with other force excitation
techniques, larger amplitudes of shear wave can be obtained.
Thus, a harmonic needle vibration is considered for excitation
in this work. In 2004, Chen et al. exploited the relationship
between the propagation speed and the vibrating frequency to
build the shear wave speed dispersion, and then estimate the
CSM [11]. In 2007, Zheng et al. used a linear Kalman filter for

CSM estimation over a frequency bandwidth [10]. The noise
is reduced by this filter. Recently, some extended methods
have been introduced in [10]–[13] where the authors needed
to use multiple datasets of different vibration frequencies. In
this paper, only a single-frequency excitation is needed, but
still, the acquisition time is improved.

In order to detect tumor (if any) in the tissue, Tran et
al. [14] used the maximum likelihood ensemble filter for
1D heterogeneous tissue. However, the propagation model
using wave equation in [12], [14], [15] is very simple, and
it can not represent the actual propagation in heterogeneous
tissue. In 2015, Qiuang et al. [16] proposed a method which
uses Finite Element Method (FEM) to model the shear wave
propagation in transversely isotropic, viscoelastic and incom-
pressible media. However, the complexity of FEM is high.
FDTD is more effective method with lower complexity than
FEM. In [17], Orescanin et al. exploited FDTD model then
used AHI algorithm to estimate CSM. However, there is a
lack of deep investigation of noise in this work because AHI
is strongly affected by noise.

In this paper, we introduce an integration of AHI and Least
Mean Square (LMS) algorithms to estimate CSM. A shear
wave generator at a single frequency of 100 Hz is excited at the
origin (0,0) by the vibrating needle. A linear array transducer
is used to measure the particle velocity of shear wave at
120 spatial locations. At each point, the CSM from the noisy
particle velocity of shear wave is then estimated by applying a
specific LMS/AHI. Using the LMS/AHI can drastically reduce
the complexity as compared to previous techniques. Finally, a
scenario with a tumor and noise environment is studied to
evaluate quality of the estimated CSM.

II. METHOD

A. Shear Wave Propagation

Generation of shear waves and measurements of the par-
ticle velocity are shown in Fig. 1. In this system, a needle
is vibrated at a single frequency along the Z-axis, the share
wave is then propagated in X-Y plane. After that, the particle
velocity is acquired by using a Doppler ultrasound device [12].

In some previous work ( [12], [14], [15]), the wave (1)
is used to compute the particle velocity v(r, t) at a spatial

www.ijacsa.thesai.org 584 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Soft tissue

Tumor

Vibration needle
Doppler 

ultrasound system

shear wave

Actuator

Fig. 1. Generation and measurement of shear wave.

location r and time t.

v(r, t) =
1√
r − r0

Ae−α(r−r0) cos[ωt− ks(r − r0)− φ], (1)

where A is the vibration’s amplitude of the needle, r0

is the needle’s spatial location, φ is the initial phase, α and
ks are attenuation coefficient and wave number at spatial
location r respectively.

The formula (1) has the advantage of simplification. How-
ever, it cannot reflect the propagation of the shear wave in the
real tissue, especially in a heterogeneous one. Thus, FDTD
method is used, together with the assumption of cylindrical
shear wave propagation along the radial axis and ignoring
absorption of medium. Consequently, the particle velocity
vector vz on a direction of the wave propagation x in Cartesian
coordinate relates to the stress tensor σzx, which can be
described by the following (2) and (3) (from [17]):

ρ∂tvz = ∂xσzx, (2)

∂tσzx = (µ+ η∂t) ∂xvz, (3)

where ∂t represents a partial derivative operator ∂/∂t
applied to values to the right of the symbol, ∂x represents a
partial derivative operator ∂/∂x applied to values to the right of
the symbol, ρ is density of the tissue, µ and η are the elasticity
and viscosity of the tissue respectively.

Kelvin–Voigt model is applied to represent the CSM
G (x, ω), which depends on the angle frequency of the vi-
bration ω as follows

G (x, ω) = µ (x)− iωη (x) . (4)

where µ is the elasticity and η is the viscosity that need to
be estimated. To discretize (2) and (3), the following notations
will be used:

vz (x, t) = vz (i∆x, n∆t) = vnz |i , (5)

σzx (x, t) = σzx (i∆x, n∆t) = σnzx |i , (6)
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Fig. 2. Illustration of the stress tensor σ and the particle velocity vector vz
nodes in time and space.

where ∆x is the distance between continuous spatial lo-
cations, ∆t is the sampling period, the index i is the spatial
step, and the index n is the temporal step, as shown in Fig. 2.

By using FDTD method, (2) and (3) are described as
follows:

vn+1
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(8)

B. Signal Enhancement using Least Mean Square Algorithm

Adaptive filters attracts a great attention due to its prop-
erty of self adjusting their coefficients [18]. For the signal
enhancement, the output signal is obtained from a noisy input
signal and an adaptation process. The filter coefficients are
adjusted in order to minimize a desired cost function. There
are a lot of filter structures and adaptive algorithms that have
been developed in recent decades [19]. In this paper, we design
a transversal adaptive filter to reduce the noise from the noisy
particle velocity which is acquired from the Doppler ultrasound
system, as shown in Fig. 3.

In Fig. 3, a particle velocity signal, represented as d(n),
is transmitted into the tissue which is affected by noises,
represented as v(n). Together, they form a noisy signal vz(n)
which is described by

vz (n) = d (n) + v (n) . (9)

This noisy signal vz(n) is applied as an input to the
adaptive filter to extract the estimate of the desired signal
with minimum error using various adaptive methods such as
LMS, Normalised Least Mean Square (NLMS), Root Mean
Square (RMS) algorithms, etc. When the estimate of noise
equals or approximates the v[n] (y(n) = v(n)), the error
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Fig. 3. Using LMS filter to enhance the particle velocity.

signal is approximately the filtered speech signal d(n) because
e(n) = d(n)+v(n)−v(n) = d(n). The output of the adaptive
filter or filtered signal v̂z(n) = e(n).

The input signal is sampled and it forms a vector containing
N samples.

vz (n) = [vz (0) vz (1) .. vz (N − 1)] , (10)

The corresponding estimated value of the desired signal is
v̂z(n). The coefficients of the filter are represented as

w (n) = [w (0) w (1) .. w (L)] . (11)

where L represents the order of the filter. The filter
coefficients, alternatively called as weights w(n), are adjusted
every time in such a way that the Mean Square Error (MSE)
is minimized. There are many well-known adaptive algorithms
that can accomplish this weight adjustment. Among them, the
LMS algorithm has a simple filter weight update mechanism,
which has a fast rate of convergence if an optimal step size is
used.

The LMS algorithm can be summarized in Algorithm 1
below:

Algorithm 1: LMS Algorithm for Shear Wave Acqui-
sition

Step 1: Initialize the step size µ, filter order L, and noise
variance.
Step 2: Initialize the filter coefficients w(n) = 0.
Step 3: For n = 0, 1, 2, .
3.1. Compute the filter output
y(n) = w(n) ∗ x(n)
3.2. Compute the error in estimation
e(n) = vz(n) - y(n)
3.3. Compute the updated tap-weight
w(n+ 1) = w(n) + µe(n)x(n)
3.4. Compute the denoised signal by assigning
v̂z(n) = e(n)
3.5. Iterate till end of the signal

end

C. Direct Inversion using Least Mean Square/Algebraic
Helmholtz Inversion Algorithm to Estimate the CSM

After reducing the noise from acquired particle velocity,
the AHI algorithm [20] is used to compute the CSM. For a
small volume, it is assumed that the viscoelastic property of

the tissue is isotropic. Thus, there is negligible compression
applied to the tissue by the needle, as a result, the particle
velocity vector vz can be described by the Navier wave
equation in a homogeneous solid. We combine (2) and (3)
to obtain

ρ
∂2vz
∂t2

= G′ (x, t)∇2vz, (12)

where G′ (x, t) is the CSM in time domain and ∇2vz is
Laplace operator of vz which is defined as ∇2vz = ∂2vz/∂x

2.

AHI algorithm is applied to solve (12), which then becomes
the Helmholtz equation(

G (x, ω)

ρ
∇2 + ω2

)
Vz (x, ω) |ω=ω0

= 0, (13)

where G (x, ω) is the CSM in frequency domain and
defined in (4), Vz (x, ω) is the temporal Fourier transform of
the particle velocity vz (x, t), Vz (x, ω) = Ft {vz (x, t)}, and
ω0 is the angular frequency ω0 = 2πf0. From (13), it can be
seen that the CSM can be estimated directly as

µ (x) = <
{
−ρω2

0Vz(x,ω0)
∇2Vz(x,ω0)

}
,

η (x) = =
{
−ρω0Vz(x,ω0)
∇2Vz(x,ω0)

}
,

(14)

where Vz(x, ω0) is computed by using Fourier transform at
the specific angular frequency ω0; ∇2Vz(x, ω0) is computed
by using the function Discrete Laplacian (The MathWorks)
del2(Vz(x, ω0)) which returns a discrete approximation of
Laplaces differential operator applied to Vz(x, ω0).

The proposed LMS/AHI for CSM estimation is summa-
rized in Algorithm 2.

Algorithm 2: LMS/AHI Algorithm for CSM Estima-
tion

Step 1: Set up the simulation scenario.
Step 2: Select the excitation frequency f0=150Hz.
Step 3: Generate shear waves by vibrating the needle.
Step 4: Acquire the noisy particle velocity at 120 spatial
locations.
Step 5: Estimate the noise variance from the noisy signal
corrupted by the additive white noise.
Step 6: Reduce the noise from noisy particle velocity using LMS
filter as shown in Algorithm 1.
Step 7: Discard the transient parts of the filtered signal and keep
the steady-state of the filtered particle velocity.
Step 8: Compute the temporal Fourier transform of the filtered
signal.
Step 9: Estimate each CSM in spatial locations using (14).
Step 10: Evaluate the estimation performance.

end

III. RESULTS AND DISCUSSIONS

In order to verify the proposed method LMS/AHI, a
simulation scenario is built where 1D heterogeneous tissue is
12 mm in length and the distance between two continuous
spatial locations is 0.1 mm. At each spatial location, we
consider 20000 samples. The vibrating frequency is chosen as
150 Hz; the amplitude of the vibration is 2 mm. The elasticity
and viscosity of the tissue are shown in Table I.
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TABLE I. SIMULATION SCENARIO

Spatial locations Elasticity [Pa] Viscosity [Pa.s]
1–29 650 0.1
30–50 900 0.35

51–120 650 0.1

It can be seen that there is an inclusion (from the 30th to
50th spatial locations) in this tissue.

Fig. 4 and 5 present the particle velocities in term of time
at the 15th and 60th points, respectively. They are sinusoidal
functions of time in two cases: noisy and filtered signals. The
filtered signal can be divided into two parts: transient part
which is still affected by noise and the steady-state part where
the noise was filtered out completely. It is obviously that the
amplitude at the 15th spatial location is larger than that of
the 60th one. However, the power of the additive noise is the
same for all L = 120 spatial locations. It is noted that the
noise would strongly affect the CSM estimation due to the
limitation of AHI methodology.

Fig. 6 shows the particle velocity vs. spatial locations
where the undeniable role of measured noise is also illustrated.
Furthermore, as shown in this figure, the power of the additive
noise is the same for every spatial location.
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Fig. 4. The particle velocity in time at the 15th point.
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Fig. 5. The particle velocity in time at the 60th point.

Without noise filtering, CSM can not be estimated. Thus,
the following three cases, which are shown in Fig 7 and 8,
are concerned: ideal estimation, LMS/AHI without removing
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Fig. 6. The particle velocity vs. spatial locations.

the transient parts of the filtered signal, and the proposed
LMS/AHI (i.e removing the transient part and keep the steady-
state of the filter signal). Without removing the transient part,
the estimation can not trace well the ideal ones. The reason
is that the noise is still existed in this part and it affects
both calculations of vz(x, ω0) and ∇2vz(x, ω0). By cutting
the transient parts of the filtered signal and keep the steady-
state of the filtered particle velocity, the calculations of both
vz(x, ω0) and ∇2vz(x, ω0) are improved. Hence, the elasticity
and viscosity can trace well the ideal ones.
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Fig. 7. The estimated elasticity.
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To quantify the efficiency of the proposed LMS/AHI algo-
rithm, the error between the ideal CSM (µ, η) and the estimated
CSM (µ̂, η̂) on different ranges of the tissue is computed. The
normalized error can be defined as:

εµ = 1
L

∑L
i=1

|µi−µ̂i|
µi

εη = 1
L

∑L
i=1

|ηi−η̂i|
ηi

(15)

The results are shown in Table II. It can be seen that the
quality of estimation is significantly improved by cutting the
transient part of the filtered particle velocity. The transient part,
which is still affected by noise, would affect the CSM estima-
tion. The efficiency of the proposed LMS/AHI algorithm is
confirmed by this error performance. As indicated in Table II,
with LMS/AHI algorithm after cutting the transient part, we
can achieve the average error of both elasticity and viscosity
as 3.14%.

TABLE II. ERROR OF THE CSM ESTIMATION

Spatial locations Error
for elasticity [%]

Error
for viscosity [%]

LMS/AHI without cutting the transient 1.27 10.39
LMS/AHI with cutting the transient 0.64 5.64

The results in this study are compared with some previ-
ous results. In [14], [15] and [12], authors used the MLEF
(Maximum Likelihood Ensemble Filter) to estimate CSM. The
error of estimation in [14], [15] is less than 10% for both
elasticity and viscosity while in [12], the error of elasticity
estimation is less than 2% and the error of viscosity estimation
is within 5%. However, in the studies [14], [15] and [12],
the particle velocity of shear wave is modelled following the
basic wave propagation equation which is only suitable for a
homogeneous medium. In this paper, we have applied FDTD
method to model the particle velocity of shear wave and this is
correct with a heterogeneous medium (i.e. tissues). In addition,
an adaptive filter (LMS) has been added for denoising the
measured particle velocity of shear wave before estimating
CSM using AHI algorithm. This is an advantage of this paper
comparing with [17] which applied only AHI algorithm to
estimate CSM.

IV. CONCLUSION

A method for 1D estimation of CSM in tissues have been
proposed successfully in this paper. The proposed method has
used LMS/AHI to estimate CSM at each point in the medium
with good estimation error of 3.14%. In the experiment, only
a single vibration frequency (150 Hz) is used. The propagation
of shear wave is modeled using FDTD method with good
accuracy and low complexity compared to FEM. The noise
in the particle velocity is filtered using a specific LMS filter.
CSM is then estimated directly using AHI after removing the
transient part of filtered signal. In the future work, we will
improve the accuracy of the CSM estimation, especially for
the viscosity of tissues. The target will be able to distinguish
between objects and the medium when the CSM of the objects
are not much greater than that of the medium (i.e. early tumor
detection).

ACKNOWLEDGMENT

This work was supported by the Asia Research Center
(ARC), Vietnam National University, code CA.17.6A.

REFERENCES

[1] J. Bercoff, A. Criton, C. Bacrie, J. Souquet, M. Tanter, J. Gennisson,
T. Deffieux, M. Fink, V. Juhan, A. Colavolpe et al., “ShearWave
Elastography A new real time imaging mode for assessing quantitatively
soft tissue viscoelasticity,” in Ultrasonics Symposium, 2008. IEEE,
2008, pp. 321–324.

[2] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y.
Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology
of medical diagnostics,” Ultrasound in medicine & biology, vol. 24,
no. 9, pp. 1419–1435, 1998.

[3] J.-L. Gennisson, T. Deffieux, M. Fink, and M. Tanter, “Ultrasound
elastography: principles and techniques,” Diagnostic and interventional
imaging, vol. 94, no. 5, pp. 487–495, 2013.

[4] G. Ferraioli, P. Parekh, A. B. Levitov, and C. Filice, “Shear wave
elastography for evaluation of liver fibrosis,” Journal of Ultrasound in
Medicine, vol. 33, no. 2, pp. 197–203, 2014.

[5] Y. Kobayashi, M. Tsukune, T. Miyashita, and M. G. Fujie, “Simple
empirical model for identifying rheological properties of soft biological
tissues,” Physical Review, vol. 95, no. 2, 2017.

[6] S. Woo, S. Y. Kim, M. S. Lee, J. Y. Cho, and S. H. Kim, “Shear wave
elastography assessment in the prostate: an intraobserver reproducibility
study,” Clinical imaging, vol. 39, no. 3, pp. 484–487, 2015.

[7] W. Zhang and S. Holm, “Estimation of shear modulus in media with
power law characteristics,” Ultrasonics, vol. 64, pp. 170–176, 2016.

[8] J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for
imaging elastic properties of biological tissues,” Annual review of
biomedical engineering, vol. 5, no. 1, pp. 57–78, 2003.

[9] L. Sandrin, B. Fourquet, J.-M. Hasquenoph, S. Yon, C. Fournier,
F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi et al., “Transient
elastography: a new noninvasive method for assessment of hepatic
fibrosis,” Ultrasound in Medicine and Biology, vol. 29, no. 12, pp.
1705–1713, 2003.

[10] Y. Zheng, S. Chen, W. Tan, R. Kinnick, and J. Greenleaf, “Detection
of tissue harmonic motion induced by ultrasonic radiation force using
pulse-echo ultrasound and kalman filter,” IEEE Transactions on Ul-
trasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp.
290–300, 2007.

[11] S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and
viscosity from measurement of shear wave speed dispersion,” The
Journal of the Acoustical Society of America, vol. 115, no. 6, pp. 2781–
2785, 2004.

[12] M. Orescanin and M. F. Insana, “Model-based complex shear modu-
lus reconstruction: A Bayesian approach,” in Ultrasonics Symposium.
IEEE, 2010, pp. 61–64.

[13] Y. Wang and M. F. Insana, “Viscoelastic properties of rodent mam-
mary tumors using ultrasonic shear-wave imaging,” Ultrasonic imaging,
vol. 35, no. 2, pp. 126–145, 2013.

[14] T. Tran-Duc, Y. Wang, N. Linh-Trung, M. N. Do, and M. F. Insana,
“Complex Shear Modulus Estimation Using Maximum Likelihood
Ensemble Filters,” in 4th International Conference on Biomedical
Engineering in Vietnam. Springer Berlin Heidelberg, 2013, pp. 313–
316.

[15] N. T. Hao, T. Thuy-Nga, V. Dinh-Long, T. Duc-Tan, and N. Linh-
Trung, “2D Shear Wave Imaging Using Maximum Likelihood Ensemble
Filter,” in International Conference on Green and Human Information
Technology (ICGHIT), 2013, pp. 88–94.

[16] B. Qiang, J. Brigham, S. Aristizabal, J. Greenleaf, X. Zhang, and
M. Urban, “Modeling transversely isotropic, viscoelastic, incompress-
ible tissue-like materials with application in ultrasound shear wave
elastography,” Physics in medicine and biology, vol. 3, no. 60, pp. 1289–
1306, 2015.

www.ijacsa.thesai.org 588 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

[17] M. Orescanin, Y. Wang, and M. F. Insana, “3d fdtd simulation of shear
waves for evaluation of complex modulus imaging,” IEEE transactions
on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 2, pp.
389–398, 2011.

[18] S. Haykin, “Adaptive filter theory,” 2008.

[19] M. H. Hayes, Statistical digital signal processing and modeling. John
Wiley & Sons, 2009.

[20] S. Papazoglou, U. Hamhaber, J. Braun, and I. Sack, “Algebraic
helmholtz inversion in planar magnetic resonance elastography,” Physics
in medicine and biology, vol. 53, no. 12, p. 3147, 2008.

www.ijacsa.thesai.org 589 | P a g e


