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Abstract—Triple Modular Redundancy (TMR) technique is
one of the most well-known techniques for error masking and
Single Event Effects (SEE) protection for the FPGA designs.
These FPGA designs are mostly expressed in hardware descrip-
tion languages, such as Verilog and VHDL. The TMR technique
involves triplication of the design module and adding the majority
voter circuit for each output port. Building this triplication
scheme is a non-trivial task and requires a lot of time and effort
to alter the code of the design. In this paper, the RASP-TMR
tool is developed and presented that has functionalities to take
a synthesizable Verilog design file as an input, parse the design
and triplicate it. The tool also generates a top-level module in
which all three modules are instantiated and finally adds the
proposed majority voter circuit. This tool, with its graphical user
interface, is implemented in MATLAB. The tool is simple, fast
and user-friendly. The tool generates the synthesizable design
that facilitates the user to evaluate and verify the TMR design
for FPGA-based systems. A simulation scenario is created using
Xilinx ISE tools and ISim simulator. Different fault models are
examined during simulations such as bit-flip and stuck at 1/0.
The results using various benchmark designs demonstrate that
the tool produces synthesizable code and the proposed majority
voter logic perfectly masks the error/failure.

Keywords—Fault injection; fault tolerance; reliability; single
event effects; triple modular redundancy; Verilog HDL

I. INTRODUCTION

The Field Programmable Gate Array (FPGA) has been a
widely accepted solution in developing the embedded system
during the last few decades. Owing to its remarkable features
such as parallelism, reconfiguration, separation of functions,
self-healing capabilities, and overall availability [1], the FPGA
has become the core of many embedded applications. The ma-
jor applications include aerospace, biomedical instrumentation,
safety-critical systems, spacecraft, Internet of Things (IoT),
and many others [2], [3]. However, FPGA-based devices are
susceptible to Single Event Effects (SEE) caused by various
sources such as, α-particles, cosmic rays, atmospheric neu-
trons, and heavy-ion radiations. Since the capacity of FPGA
chip has been growing by reducing the size of components
integrated on the chip. This makes the device more prone to
SEEs which provoke Single Event Upsets (SEU) in memory
elements and Single Event Transients (SET) in combinational
logic elements [4], [5].

Several SEE mitigation techniques have been proposed in
the literature to avoid the effects of such errors in FPGA-
based designs [6]. The reliability of the FPGA systems is im-

proved by various error mitigation schemes such as multiple-
redundancy with voting, Triple Modular Redundancy (TMR),
hardened memory cell level, and Error Detection And Correc-
tion (EDAC) coding. Among all SEU mitigation techniques,
TMR has become the most common practice because of
its straightforward implementation and achieved the reliable
results [6], [7], [8], [9]. The TMR mitigation scheme uses
three identical logic circuits for performing the same task in
parallel with corresponding outputs obtained through majority
voters. This technique is the simplest redundant technique
conceptually and it was invented by Von Neumann [10] in
the year 1956. There are certain merits and demerits of TMR
technique:

• Merits:
◦ Simple and straight forward approach.
◦ Improves fault tolerance and reliability.

• Demerits:
◦ Large area overhead, nearly 200%.
◦ More power consumption.
◦ More cost or uneconomical.

FPGA designs are written in Hardware Description Lan-
guages (HDL) which describes the designs in various abstrac-
tion style, for example, gate, data-flow and behavioural levels.
For small designs, gate abstraction style is employed and
testing & verification processes are directly and easily applied
to the designs. At this level, designs look more similar to
the actual hardware representation. Data-flow and behavioural
abstraction styles are used to implement the large designs.

Building a triplication scheme into digital designs is not a
simple task. It takes a lot of time to build and debug the system.
It has been also a laborious and error-prone task. Xilinx
Inc. with the help of Sandia lab developed Triple Modular
Redundancy (XTMR) tool for the design triplication. XTMR
works with HDL and synthesis tool to automatically built TMR
methodology. It is designed for the SEU and SET immunity for
the FPGA devices, which includes Virtex family of reconfig-
urable FPGAs [11]. It requires two files, with extensions *.ngc
(generated by synthesis process) and *.ngo (generated after the
NGDBuild process) files, as an input and generates the TMR
logic for the design. This tool is vendor specific and only used
for Virtex family of FPGA devices. The TMRG (Triple Module
Redundancy Generator) tool is developed in Python at CERN
research institute, which automates the process of triplication
of digital circuits at implementation stage. It is used to mitigate
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the SEEs. TMRG works on Verilog code and adds the classical
majority voter circuit in TMR approach [12]. Brigham Young
University (BYU) developed BL-Tmr tool [13], which works
on EDIF-format design. It parses input EDIF file(s) into a net-
list data structure and uses the classification information to
select circuit structures for triplication. This tool works for
partial TMR approach. Another tool, named TLegUp, which
automatically generates Triple Modular Redundant designs for
FPGAs from C programs using high-level synthesis technology
[14]. Recently, some commercial tools such as Synopsys
Synplify Premier, and Mentor Precision HiRel are available
in the market to implement TMR during the synthesis process
[15]. Using commercial tools, the cost of the project increases
unnecessarily.

In this work, a tool named RASP-TMR Code Genera-
tor (RechnerArchitektur und SystemProgrammierung - Triple
Modular Redundancy) is presented, of which the first part is
the German name of our department. It takes Verilog HDL
design file as an input and generates the synthesizable Verilog
code for TMR technique. A new and simple majority voter cir-
cuit is also proposed. To validate the operation of the proposed
tool, a simulation set-up is created with the help of Xilinx ISE
tools and ISim simulator. The TMR operation is validated by
injecting bit-flip and stuck at 1/0 faults in the design during
the simulation, and it has been observed that the proposed
majority voter circuit perfectly masks the errors/failures. This
tool, along with its graphical user interface, is developed in
MATLAB and it requires the users to provide only Verilog
module file and then it automatically generates all the designs
necessary to perform TMR. Hence, the RASP-TMR tool is
simple, fast and user-friendly. To validate these claims, various
benchmark designs are evaluated.

The structure of the paper is as follows: Section II explains
the structure of the proposed RASP-TMR in detail, along
with the proposed majority voter circuit. Section III presents
the results of the RASP-TMR tool for combinational and
sequential designs from ISCAS’85, ISCAS’89, and EPFL
benchmark designs. Finally, Section IV concludes the paper.

II. PROPOSED RASP-TMR CODE GENERATOR

The RASP-TMR code generator tool, with its graphical
user interface, is developed in MATLAB. It is a tabbed based
tool and Fig. 1 shows these tabs. The first tab depicts the
information about the tool, whereas, the second tab consists of
the RASP-TMR tool. The tool consists of 9 functions and 254
lines of code in MATLAB. To provide ease of use, a standalone
app is created using MATLAB command deploytool. This
app is installed by the user on any host machine, having a
Windows operating system. This tool not only triplicates the
design and generates Verilog top file but also instantiates the
designs in the top file. The proposed majority voter circuit is
added for each output port of the design.

Fig. 2 depicts the flowchart of the RASP-TMR tool,
which includes the series of operations performed by RASP-
TMR code generator tool. The RASP-TMR tool accepts a
Verilog design file as an input, parses it, obtains tokens (input
arguments, output arguments) and makes three copies of it.
Module name and the output argument must be changed in
order to differentiate from each other and brought them under

(a) Introductory tab of RASP-TMR tool.

(b) RASP-TMR code generator tab.

Fig. 1. GUI of the proposed RASP-TMR code generator.

the top-level file. RASP-TMR also generates the top-level
module file which includes input arguments, output arguments,
instantiation of all three TMR modules and proposed majority
voter circuit for each output port.

A. Top File Structure

The top file consists of different components such as
triplication of the module, their instantiations, and a proposed
majority voter circuit. Fig. 3 shows the general block diagram
of the top file generated by the RASP-TMR. These components
are described in the sequel.

1) Triplication of Module: The triple modular redundancy
requires the triplication of a module. All three modules operate
in parallel. If any of a module fails to perform the intended task
or results in an error, it is masked by the majority voter circuit.
Therefore, when a module is input to the RASP-TMR code
generator tool by the user, it parses the design and triplicates
it. It should be noted that the module name changes from c17
to c17 1, which denotes the first module of TMR designs.
The other two modules are renamed to c17 2 and c17 3
respectively. The output ports are changed as shown in Fig.
4. It shows the original Verilog design as an example which
is input to the RASP-TMR tool (above) and the output of the
tool (below).

2) Instantiation Generator: Xilinx ISE design tools pro-
vide the built-in instantiation generator for modules available
in the design to instantiate one module within another thus
creating hierarchy. RASP-TMR has the ability to instantiate the
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Fig. 2. Flow chart of the RASP-TMR tool.

Fig. 3. Structure of top file generated by RASP-TMR tool.

TMR modules in the top file. The function InstanceGen()
is developed under RASP-TMR tool which generates the in-
stantiations. Instantiation requires the module name, produces
instance name and adds the information about the input/output
ports. Fig. 5 shows the instantiation for the TMR module 1.

3) Proposed Majority Voter Circuit: The TMR scheme in-
volves two-times duplication of the simplex system hardware,
with majority voter ensuring correctness provided at least two
out of three copies of the system remains operational. Various
majority voter designs have been proposed for the last couple

/ / c17
/ / O r i g i n a l d e s i g n
module c17 ( N1 , N2 , N3 , N6 , N7 , N22 , N23 ) ;
input N1 , N2 , N3 , N6 , N7 ;
output N22 , N23 ;
wire N10 , N11 , N16 , N19 ;
nand NAND2 1 ( N10 , N1 , N3 ) ;
nand NAND2 2 ( N11 , N3 , N6 ) ;
nand NAND2 3 ( N16 , N2 , N11 ) ;
nand NAND2 4 ( N19 , N11 , N7 ) ;
nand NAND2 5 ( N22 , N10 , N16 ) ;
nand NAND2 6 ( N23 , N16 , N19 ) ;
endmodule

/ / c17
/ / TMR Module 1
module c17 1 ( N1 , N2 , N3 , N6 , N7 , N22 tmr1 ,

N23 tmr1 ) ;
input N1 , N2 , N3 , N6 , N7 ;
output N22 tmr1 , N23 tmr1 ;
wire N10 , N11 , N16 , N19 ;
nand NAND2 1 ( N10 , N1 , N3 ) ;
nand NAND2 2 ( N11 , N3 , N6 ) ;
nand NAND2 3 ( N16 , N2 , N11 ) ;
nand NAND2 4 ( N19 , N11 , N7 ) ;
nand NAND2 5 ( N22 tmr1 , N10 , N16 ) ;
nand NAND2 6 ( N23 tmr1 , N16 , N19 ) ;
endmodule

Fig. 4. Code snippet (original design and modified design).

// Instantiate the module
c17 1 inst tmr1 (
.select1(select1),
.N1(N1),
.N2(N2),
.N3(N3),
.N6(N6),
.N7(N7),
.N22 tmr1(N22 tmr1),
.N23 tmr1(N23 tmr1)
);

Fig. 5. Code snippet (instantiation).

of years. Fig. 6 shows the schematic diagram of majority voter
circuits. Fig. 6 (a) shows the classical voter design. Some other
majority voter logics are proposed by Kshirsagar and Patrikar
voter circuit [16], Ban and Naviner majority voter [17], and
Balasubramanian and Prasad majority voter circuit [7]. Fig.
6 (b-d) show the schematic of other proposed majority voter
circuits, respectively.

In this work, authors proposed another simple way to
represent majority voter logic and added to the RASP-TMR
tool as shown in Fig. 7. In this figure, T1,T2 and T3 are the
inputs of the majority voter circuit. Proposed MVC consists
of an AND, OR gates and a multiplexer (2:1). Table
I shows the functional verification and correctness of the
proposed voter logic.
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(a) Classical Majority Voter Circuit (MVC). (b) Kshirsagar and Patrikar MVC [16].

(c) Ban and Naviner MVC [17]. (d) Balasubramanian and Prasad MVC [7].

Fig. 6. Various majority voter designs in the literature.

Fig. 7. Proposed majority voter schematic diagram.

TABLE I. TRUTH TABLE VERIFICATION OF PROPOSED MAJORITY
VOTER LOGIC FOR TMR

T3 T2 T1 N1 N2 V

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1

III. RESULT AND DISCUSSION

The primary purpose of using a TMR design methodology
is to remove all single point of failure from the design. If
two redundant modules are simultaneously upset, then the
output can not be guaranteed to be correct. In order to develop
a TMR logic for a target system at a code level, the code

needs to be modified for each module and also majority voter
circuit is included in the design. This is a non-trivial and time-
consuming task.

A. Synthesizable Designs

Keeping these points in mind, the RASP-TMR code gen-
erator tool is developed for Verilog HDL designs. This tool
not only triplicates the target systems but also generates the
top file (named TMR TopFile). The components of this file
are already described in Section II in detail. At the graphical
user interface, the user needs to provide only a synthesizable
Verilog HDL design as an input (This verifies our claim about
the tool’s simplicity and easy to use). A simple benchmark
circuit (c17.v) from ISCAS’85 is considered as an example
for illustration of the whole process. A project is developed
using Xilinx project navigator. The synthesis of the design is
performed and generated the RTL schematic of the example
shown in Fig. 8. This proves that the designs generated by
RASP-TMR tool are synthesizable.

B. Timing Analysis

This tool is fast and automatically generate the TMR
designs. To prove this point, authors have generated TMR
designs for various benchmark designs, written in Verilog.
In this work, ISCAS85, ISCAS89, and EPFL combinational
and sequential benchmark designs are considered for their
generation of TMR technique and measured the time. Tables
II to V show the size of the designs in terms of a number of
logic gates. Last columns of these tables show the time taken
by this tool in Seconds. It is noted that the TMR approach for
the designs, consisting of thousands of gates, are generated in
a fraction of the second by the RASP-TMR tool. The design
“hypotenuse” is the largest design among them, which consists
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Fig. 8. RTL schematic of c17 circuit with TMR and proposed MVC.

TABLE II. TIME REQUIRED FOR ISCAS’85 COMBINATIONAL
BENCHMARK DESIGNS

S.
No.

Benchmark
circuits

No. of logic
gates

Time
(Seconds)

1 c17 6 0.096
2 c432 160 0.1048
3 c499 202 0.2124
4 c880 383 0.1109
5 c1355 546 0.7257
6 c1908 880 0.4743
7 c2670 1269 0.6975
8 c3540 1669 0.3416
9 c5315 2307 0.4948

10 c6288 2416 0.3434
11 c7552 3513 0.5694

of 214335 logic gates and RASP-TMR took approximately 390
seconds.

C. Functional Verification of Proposed Majority Voter Circuit

In this tool, authors also proposed a new majority voter
logic. In [7], authors describe the procedure to calculate the
Fault Mask Ratio (FMR) for various majority voter circuits.
According to them, FMR is the ratio of a total number of
correct voter output states divided by the total number of likely
internal and/or external faults corresponding to the applied
primary inputs.

For classical majority voter circuit, the value of FMR is
42.86%. Similarly, for other majority voter circuits Fig. 6 (b-d),
the values of FMR are 70.83, 50, 75% respectively. In our case,

TABLE III. TIME REQUIRED FOR ISCAS’89 SEQUENTIAL
BENCHMARK DESIGNS

S.
No.

Benchmark
circuits

No. of logic
gates/FFs

Time
(Seconds)

1 s1238 508/18 0.0643
2 s1423 657/74 0.0700
3 s1488 653/6 0.0779
4 s1494 647/6 0.0784
5 s5378 2779/179 0.3016
6 s9234 5597/211 0.5925
7 s13207 7951/638 1.0365
8 s15850 9772/534 1.2942
9 s35932 16065/1728 3.7814
10 s38417 22179/1636 4.0921
11 s38584 19253/1426 5.0263

TABLE IV. TIME REQUIRED FOR EPFL (ARITHMETIC) BENCHMARK
DESIGNS

S.
No.

Benchmark
circuits

No. of logic
gates

Time
(Seconds)

1 Adder 1020 0.1985
2 B-shifter 3336 0.4048
3 Divisor 44762 25.265
4 Hypotenuse 214335 390.79
5 Log2 32060 6.8845
6 Max 2865 0.5062
7 Multiplier 27062 5.9782
8 Sine 5412 0.5089
9 Square 24618 5.6014
10 Square-root 18484 3.3004

TABLE V. TIME REQUIRED FOR EPFL (RANDOM/CONTROL)
BENCHMARK DESIGNS

S.
No.

Benchmark
circuits

No. of logic
gates

Time
(Seconds)

1 Arbieter 11839 1.4639
2 ALU 174 0.0533
3 Coding 693 0.0862
4 Decoder 304 0.1889
5 I2C 1342 0.1995
6 Int-to-float 260 0.0484
7 Memory 46836 32.9611
8 Encoder 978 0.1091
9 Router 257 0.0754
10 Voter 13758 2.1622

the calculated FMR for the proposed majority voter circuit
is 50% which is better than the classical approach. Authors
simulated the proposed majority voter circuit with all possible
combinations of inputs. It can be seen from Fig. 9 that the
voter signal has a value logic ‘0’ if the majority of inputs are
at logic ‘0’ and vice versa. Hence, this simulation verifies the
operation of proposed majority voter logic. It is noted that the
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Fig. 9. Simulation results for the validation of proposed majority voter circuit.

shaded area of signals T1, T2, T3, and Voter represent the
logic ‘1’ value.

D. Simulation Verification using Fault Injection Technique

Fault injection is a useful technique to test the integrity of
the TMR system. In order to test and verify the fault tolerance
capability of the target design developed under the RASP-TMR
tool, simulation of the design is carried-out with the help of
Xilinx ISE Design Suite 13.4 tools and ISim simulator. Xilinx
ISE is used to develop the project and writing a test bench,
while the simulation is performed by ISim tool. A simulation
environmental set-up is created and Fig. 10 shows the block
diagram of the set-up. It consists of TMR design and a golden
(fault-free) module of the design. Faults are injected in the
TMR design in each module. When the faults are activated one
by one in each module and different combinations of input are
applied and then responses are compared. If the comparator
output is logic ‘0’, that means both the golden and TMR
outputs are the same and the TMR approach masks the faulty
module perfectly. In order to validate the approach, a simple
benchmark design from ISCAS’85 combinational circuits has
chosen. Authors have injected a total of 12 faults in the c17
benchmark circuit in different locations of the design, 4 faults
in each TMR module. The way of injecting faults in the Verilog
design code is described in our previous work [3], [18], [19].

In the first instance, the ‘fault 0’ to ‘fault 3’ are activated
in module 1 of the TMR design using the 2-bit vector
faultIn1. The input patterns are applied and denoted by
input ports (N1, N2, N3, N6, N7). The ‘cmp1’ signal

Fig. 10. Simulation environment for the verification of proposed tool.

compares the responses of the golden module with the re-
sponses of the TMR approach. Fig. 11 shows that the signal
‘cmp1’ is continuously at logic ‘0’, which means both the
responses are the same. Similarly, the same approach is re-
peated for the second and third module of the TMR approach
and simulation results are shown in Fig. 12 and 13. Hence, it
verifies the operations of the TMR approach developed by the
RASP-TMR tool and the proposed majority voter circuit.

IV. CONCLUSION

In this work, authors developed a RASP-TMR tool which
triplicates any combinational and sequential digital designs.
The RASP-TMR tool is simple, fast and user-friendly. The
user needs to provide a synthesizable Verilog file as an
input, and then the tool creates TMR design along with the
proposed majority voter logic circuit. TMR design for various
combinational and sequential benchmark circuits is generated
and evaluated. The results show that the RASP-TMR tool takes
less time to generate the synthesizable Verilog code with TMR
technique. Benchmark designs are simulated using Xilinx tools
to evaluate the features of our proposed tool.

The future work will add more features to the tool such
as TMR with Multiple Voters, Duplication With Comparison
(DWC) and N-modularity redundancy for the evaluation of the
fault-tolerant capability of FPGA-based designs conveniently.
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