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Abstract—The research works contained in this paper are 

focused on the generation of a stable walking pattern of a biped 

robot and the study of its dynamic equilibrium while controlling 

the two following criteria; the centre of gravity COG and the 

zero-moment point ZMP. The stability was controlled where the 

biped have to avoid collision with obstacle. The kinematic 

constraints were also taken into consideration during the walking 

of the biped robot. In fact, the generation of the walking patterns 

is composed of several stages. First, we used the Kajita method 

for the generation of the COG trajectory, based on the linear 

inverted pendulum LIPM during the simple support phase SSP 

and linear pendulum model LPM during double support phase 

DSP. After that, we used two 4thspline function to generate the 

swing foot trajectory during the SSP and we used exact 

formulate for the foot trajectory during DSP. Finally, Newton's 

algorithm was performed (at the level of the inverse geometric 

model), in order to calculate the different joints according to the 

desired trajectories of the hip and the feet. Ground reaction 

forces were also determined from the dynamic model to satisfy 

the kinematic constraints on both feet of the biped. The 

generation of walking is done for two different speeds. To study 

the biped balance, ZMP generation algorithm was performed 

during the different walking phases and the results obtained for 

the two cases were compared. 

Keywords—Biped robot; COG; ZMP; stability; LIPM; LPM; 

walking gait 

I. INTRODUCTION 

Research in the field of humanoid robotics has generally 
focused on how to reproduce the stable human walking as 
faithfully as possible ([1], [2]). Walking a biped robot at a 
certain speed and under certain constraints (roughness and 
inclination of the ground, carried additional weight, avoid 
collision with obstacle and performing some tasks) while 
keeping the stability of the biped is a challenge for 
researchers. On the work of [3] a novel method of Zero-
Moment-Point (ZMP) compensation is proposed to improve 
the stability of locomotion of a biped, which is subjected to 
disturbances(carried an additional weight while walking and it 
walked up a 10◦ slope and walked down a 3◦ slope).The 
effectiveness of the method is verified on a humanoid robot, 
MANUS-I. 

On the work of [4], a motion pattern generator of 
humanoid robots that walks on a flat plane, steps and a rough 
terrain was proposed. If the biped robot walks on a terrain 
other than a flat plane and/or if it exist a contact between the 
hand of the robot and its environment, some approximations 
should be introduced to judge the contact stability in 
association with the ZMP. In this paper, other conditions have 
been added to guarantee the stability of the robot. 

Compared to other types of walking robots, bipedal 
walking is a much less stable activity than say four-legged 
walking, as multilegged robots have more footholds for 
support. Bipedal walking allows instead greater 
maneuverability, especially in smaller areas [3]. 

During the displacement of the biped robot, there are two 
types of stability characterizing the way of walking the biped; 
static stability and dynamic stability. The static stability is 
characterized by the fact that the walking robot always keeps 
its COG projected vertically inside the support polygon. 
Unlike, at the dynamic stability, the robot's COG leaves the 
support polygon for some periods of time and the robot is in 
imbalance during the step, when raising one of its legs [5]. 
The problem of imbalance of the biped is posed generally at 
the level of the SSP. However, such imbalance periods of time 
must be short and the ZMP constraint must be controlled in 
order to avoid a possible fall of the robot. Previous research 
works has found a relationship between COG and ZMP to 
study the stability of walking robots. Several references have 
worked on the generation of stable walking of a two-legged 
walking robot based on the generation of the trajectory of the 
COG and controlling the dynamic constraints ZMP ([6], [7]). 

The generation of the walking cycle for walking robots can 
be classified according to three main approaches: Model-
based gait, Biological mechanisms-based gait and Natural 
dynamics-based gait [8].Our work is interested in the first 
method and more precisely on the approach of Centre of 
gravity based gait. 

The structure of the paper is as follows: Section 2 describe 
the biped gait cycle. Section 3 represents static and dynamic 
constraints. Section 4 includes the different steps of generating 
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the robot's walking cycle. Section 5 describes the inverse 
dynamic modelling. Simulation results of stability control 
have been shown in Section 6.The conclusion is given in 
Section 7. 

II. BIPED ROBOT GAIT CYCLE 

The reproduction of a walking cycle for a walking robot is 
based on the generation of a step sequence. Each step is 
composed of two main successive phases SSP and DSP and an 
intermediate phase of impact. A race cycle, meanwhile, is a 
succession of SSP, flight, and impact phase. Depending on the 
duration of a step, SSP occupies the longest duration of time 
relative to the DSP (about 80% for the SSP versus 20% for the 
DSP). 

Thanks to the complexity of the reproduction of a human 
walking cycle, most researchers simplify the gait cycle and 
studies have shown four essential configurations to generate a 
complete walking cycle: the first pattern contains one SSP and 
one DSP, the second one contain a consecutive phase of SSP, 
the third one contain one SSP and two sub-phases of DSP and 
the last pattern composed of two sub-phases of SSP and two 
sub-phases of DSP. Previous research has shown the 
importance of integrating a dual support phase into the biped 
cycle. The work of [9] compared the results obtained on the 
speed of the center of gravity and the trajectory of the ZMP 
for a walk with DSP and without it. He showed that for a cycle 
that contains only SSP, the discontinuity in COG velocity 
when the biped switches their feet and it becomes more 
unstable when it faces impulsive forces. The presence of the 
DSP ensures the continuity of the COG speed and improves 
the stability of the biped during the switching phase of two 
feet. 

III. STATIC AND DYNAMIC CONSTRAINT 

A. Unilateral Contact Constraint 

During walking, the robot must maintain contact with the 
ground through the support points (one foot in single support 
phase and two feet in double support phase). Indeed, these 
points can neither penetrate on the ground nor leave it, and 
this can be expressed in the form of holonomic constraints as 
follows: 

      (x) = 0              (1) 

With     (x) represent the vector of the position constraints 
on the support foot and, 

    (x) = (
   

   
  

)              (2) 

With     and     represent the direct geometric model 
MGD of the support foot ankle and    represent the support 
foot joint angle. 

   =   +   *      +  *                 (3) 

   =    -   *      -   *                (4) 

With    represent the position of the hip,    and    
represent the two joint angles of the support leg and    and     
represent respectively the length of the thigh and the tibia. 

The first derivation of equation (1) allows us to determine 
the speed constraint represented by the following equation: 

  (x)* ̇=0              (5) 

With J(x) represent the Jacobian matrix and  ̇  represent 
the first derivation of the state vector. 

 ̇     ̇  ̇  ̇  ̇  ̇  ̇  ̇  ̇  ̇              (6) 

  = (
                 

                 

   

     
     
     

     
     
     

)         (7) 

The same calculation procedures were applied to 
determine the kinematic constraint on the swing foot during 
the DSP. The expression of the Jacobian matrix is the 
following: 

   

(
                         (     )         

                         (     )        
)(8) 

Where    represent the swing foot joint angle,    and    
represent the two joint angle of the swing leg,    and     

represent respectively the high and the length of each foot. 

Note: the two capital letters C and S respectively denote 
the two operators cosinus and sinus. We used these 
designations to reduce the size of the matrix. 

B. The Non Slip Constraint 

If we consider the robot's leg and the ground as being two 
solid bodies in contact then according to the principle of 
Amontons-Coulomb, There is no slip between these two 
bodies if the modulus of the tangential component is increased 
by a term proportional to the modulus of the normal 
component. This can be expressed by: 

|  |≤  |  |              (9) 

With    and   denote the Lagrange multipliers ([10], 
[11]) for ground contact forces (normal and tangential, 
respectively).    is called friction coefficient of adhesion. It 
depends essentially on the nature of the materials in contact. 

C. ZMP Constraint 

The ZMP is defined as a point on the ground where the 
resultant ground reaction produces a zero moment along the x 
(front-back) and z (transverse) axes [12]. 

The ZMP is a dynamic balance criterion of bipedal robots 
and has been widely used in controlling the balance of biped 
robots: the main task of the control is to maintain the ZMP 
inside the support polygon to prevent the foot to switch. It is a 
defined criterion for checking the assumptions of contact with 
the ground, and thus managing the balance. It has many 
advantages: easy to understand and implement in a real robot, 
and taking into account the dynamics [13]. 

The main objective of our work is to generate a balanced 
walking of the biped robot following a well-defined trajectory 
under the constraint of avoiding an obstacle. It is for this 
reason that the trajectory of the ZMP must not leave the 
polygon of sustenance to guarantee the stability of our robot. 
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According to the dimensions of the feet and the length of 
the step realized by the biped, during the running cycle, the 
imposed conditions on the trajectory of the ZMP are the 
following: 

-  ≤       P        for SSP1 

0 ≤       P        for DSP 

  ≤       P         for SSP2           (10) 

With:   is the length of the foot, P is the length of the step 

and      is the real position of the ZMP. 

    = 
∑    ( ̈    )     ∑     ̈       ∑     ̈ 

 
   

 
   

 
   

∑    ( ̈    ) 
   

   (11) 

With k is the articulation number of the biped,    is the 

weight of each segment,    ,    ,  ̈   and  ̈  , designed 

respectively the position and the acceleration of the COG of 
each segment accordingly of the x and z axes,    is the moment 

inertia of each segment, and  ̈  is the acceleration of each 

joint. 

The calculation of the ZMP is considered only according 
to the sagittal plane [14]. 

IV. GENERATION OF THE WALKING TRAJECTORY 

A. Trajectory Planning using LIPM and LPM 

We are chosen to work with the walking pattern that 
contain one SSP and one DSP and the generation of the COG 
using the two methods LIPM and LPM consecutively during 
the SSP and DSP to generate the COG trajectory. For stable 
and smooth walking, double support phase is important. 
According to the biped locomotive, both legs are considered 
as an inverted pendulum during the SSP phase and a 
pendulum during the DSP phase. Several references have 
worked with this method to generate the trajectory of COG 
([15], [16], [9]). Figure 1 shows a walking pattern that 
contains a DSP. 

To simplify the computing of the COG trajectory, the 
height of the COG      is assumed fixed throughout the 
walking trajectory and the position of the COG coincides with 
the position of the hip. 

The two following equations represent the trajectory and 
the speeds of the COG during the SSP phase: 

      =    *     +    *                 (12) 

 ̇     =       *      -       *                (13) 

Where:    and     are two constants that have been 
determined from the initial and boundary conditions of the 
position and velocity of the COG and    represent the 

characteristic frequency defined as follow: 

   = √
 

    
             (14) 

The two following equations represent the trajectory and 
the speeds of the COG during the DSP: 

      =    *         +    *                  (15) 

 ̇     =   *   *         -  *    *               (16) 

   = √
   

 

  
   

    
               (17) 

We simulate the motion of the COG through the walking 
pattern using SIMULINK/MATLAB. The figure 2 shows the 
evolution of the cog trajectory and its speed as a function of 
time. The simulation is done for two SSPs and one DSP. As 
the figure shows, the integration of the DSP into the trajectory 
gait ensures the continuity of the COG velocity between the 
two phases. The velocity curve alternately follows 
deceleration during the SSP against acceleration during the 
DSP. Indeed, the robot speed decreases and the swing foot 
strike the ground smoothly which avoids the increase of the 
impulsive forces resulting from the shock between the robot's 
foot and the ground. The presence of the DSP improves the 
stability of the robot and the switching of two feet will be 
smoother. 

 
Fig. 1. Walking Cycle that Contains DSP [9]. 

 
Fig. 2. The Position and the Velocity of COG. 
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B. The Motion of the Feet 

1) Swing foot trajectory during SSP: The phase of the SSP 

is defined by a single contact between the support foot and the 

ground. At the beginning of this phase the swing foot is in 

contact with the ground on the tip of the toe making an angle 

with the horizontal axis. During SSP, the oscillating foot 

moves forward while advancing one step. The support foot is 

in full contact with the ground and it does not leave it. So what 

interests us during this phase is the movement of the swing 

foot oscillating in the air while avoiding an obstacle. We used 

two piecewise 4
th

spline functions to model this movement. 

The first function used to reproduce the displacement along 

the x-axis and the other along the z-axis. 

   = ∑          
  

                   t             (18) 

   = ∑    
 
         

                  t              (19) 

Where F represents the function that model the x or z 

coordinates of the heel, ankle, or toe of the oscillating foot, 
0t

, 
1t  and 

sst represent respectively the initial time of SSP, the 

time at which the biped have to avoid obstacle and the end 
time of SSP.    and     are constants determined by initial 

and boundary conditions. 

The front foot is always flat to the ground during the SSP, 
so it is simple to determine coordinates of the heel, ankle and 
toe. 

Figure 3 shows the motion of the swing foot during two 
successive SSP with switching of the two feet. 

The three colors represent the positions of the heel, ankle 
and toe of the swing foot during the SSP and along the x-axis 
and the z-axis. 

 
Fig. 3. The Trajectory of the Ankle, toe and heel of the Swing Foot during 2 

Successive SSP Long the x-axis and z-axis. 

The displacement of the swing foot along the x-axis shows 
the switching of two feet between the two phases. In fact at 
the end of the first step, the support foot is placed behind the 
swing foot. This is why the support foot coordinates at the 
beginning of the second step are lower than the one at the end 
of the first step (at the following step the support and the 
swing foot switch their positions) then it follows the same 
trajectory and it advances along the x-axis. The positions 
values of each point increase in function of time. The 
coordinates of the foot along the z-axis follows the same 
trajectory for the two steps. It modeling the motion of the 
swing foot during the SSP. The biped raises the swing foot 
and balances it forward to advance one step. The three curves 
increase as a function of time at the beginning of the SSP then 
it decrease and the value of the toe height becomes zeros at the 
end of the SSP (blue curve). At this moment the swing foot 
strikes the ground with the toe point and the DSP starts. 

2) Feet trajectory during DSP: The phase of DSP is the 

defined by the contact of the both feet with the ground.  At the 

beginning of this phase the swing foot is in contact with the 

ground on the tip of the heel making an angle with the 

horizontal axis. The front foot is flat to the ground. During this 

phase the biped raise the heel of the front foot without leave 

the ground until it make an angle with the horizontal axis. The 

swing foot descends until it becomes flat to the ground. We 

determined the trajectory of two feet during the DSP phase 

using exact equations. 

3) Feet orientation: The orientations of the two feet are 

obtained from the simple polynomials of second degree which 

serves to generate the values of two angles    and    as a 

function of time. 

Figure 4 shows the values of the two angles as a function 
of time during the two steps (two SSPs and two DSPs).    
represents the angle of the swing foot and    represents the 
angle of the support foot. the figure 5 shows that during SSP, 
the angle of the support foot q5 is zero (returns to the fact that 
the support foot is in full contact during SSP), and at the end 
of the double support phase the two angles are zero because 
the swing foot becomes in full contact with the ground and the 
supporting foot makes a rotation on the toe stop and starts to 
leave the ground. The two legs switch their positions and the 
second step starts. 

 

Fig. 4. The Swing Foot Angle as a Function of Time. 
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Fig. 5. The Support Foot Angle as a Function of Time. 

C. Inverse Geometric Model using Newton’s Algorithm 

The resolution of the inverse geometric model MGI is used 
to find the joint coordinates of the two legs from the Cartesian 
coordinates of the hip and two feet. The position of the hip 
and the positions of each point of the foot (heel, ankle and toe) 
were determined in the preceding paragraphs. 

We used Newton's algorithm to numerically solve the 
inverse geometric model. Newton's algorithm is an efficient 
algorithm used to find numerically a precise approximation of 
a zero (or root) of a real function of a real variable and used to 
solve non-linear systems, it consists in the specification of a 
calculation schema, in the form of a series of elementary 
operations obeying a determined sequence. For our case, to 
solve the MGI, Newton's algorithm can be presented briefly as 
follows: During the gait cycle and at each iteration, it receives 
at the input the positions of the hip and the ankle, then it 
calculates the length of the virtual leg L and it solves the 
system of non linear equations to find the right values of the 
two joint positions    and   for the front leg and   and    for 
the swing leg. The values of the joint coordinates are 
initialized at the beginning of the algorithm and the 
convergence of the algorithm is conditioned by a margin of 
error and by avoiding the positions of singularity. 

Newton's algorithm is simulated on MATLAB and the 
simulation results give the following curves. 

Figure 6 shows the evolution of the four angles of the two 
legs as a function of the time during the two steps. The values 
of the four angles were calculated by the Newton’s Algorithm 
and it corresponds to the biped configurations (positions of the 
hip and the feet calculated previously). 

The speeds of the four joints angles were calculated from 
the derivation of direct geometric model and they were 
subsequently used later for calculating the ZMPs throughout 
the biped walking cycle. The four curves are represented by 
figure 7. 

Figure 8 shows the stick diagram of the walking pattern 
that contains one SSP and one DSP with the rotation of the 
swing foot at the toe stop. We have used direct geometric 
model to simulate the motion of the biped robot. The biped 
walks two steps with a speed of 0.23m/s. 

 
Fig. 6. The four Angles of the Left and Right Legs Calculated by the IGM. 

 

Fig. 7. The Speed of the Four Angles. 

 
Fig. 8. The Displacement of the Biped Robot for Two Steps. 

V. DYNAMIC MODELLING 

There are several formalisms for calculating the inverse 
dynamic model of a robot whose Euler-Lagrange formalism, 
the principle of virtual works and the Newton-Euler method. 
The choice of the Euler-Lagrange formalism simplifies the 
number of the inverse dynamic model computing in symbolic. 

When the effort on the terminal organ is zero, Lagrange's 
equations are as follows: 
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  ̇ 
 - 

  

   
               (20) 

Where L = E – U is the Lagrangian of the system, E 
represent the total kinetic energy of the system and U is the 
total potential energy of the system. 

The resolution of the inverse dynamic model allows to 
determine the torques and forces (tangential and normal force) 
applied on both feet of the biped during the walking cycle 
according to positions, speeds and articular accelerations 
(    ̇ and  ̈). 

With the method adopted and the Lagrange equation, the 
dynamic model can be written in the following form: 

     ̈    (   ̇)                     (21) 

Where M(X)       is the inertia matrix, is defined as a 

positive symmetric matrix,  (   ̇)represents the vector of 

the centrifugal and Coriolis effects of dimension (9X1), 
    is the vector of the effects of gravity of dimension (9X1). 

If we consider that both feet in full contact with the 
ground, we must consider the forces generated on both feet of 
the biped by the ground, the complete dynamic model 
becomes: 

     ̈    (   ̇)       A (q,  ̇,  ̈)+   
   +   

     (22) 

Where A represents the actuation matrix of dimension 
(9X6),    and    represent the two Jacobian of contact on both 
feet,    and    are the ground interaction forces on each foot 
of the robot. 

A. Resolution of the Inverse Dynamic Model in Simple 

Support 

The SSP is defined by one foot in contact with the ground 
and the other foot in motion therefore free. The fixed foot 
arrives in flat impact and the swing foot takes off instantly, 
while swing foot in motion, the robot is in SSP. 

During the SSP, the force on the swing foot is zero. The 
equation of the simplified dynamic model becomes. 

     ̈    (   ̇)       A (q,  ̇,  ̈)+   
                 (23) 

The knowledge of the trajectory of the hip and q(t) makes 

it possible to determine entirely the vectors ̇ and  ̈. 

For the case of the SSP, the number of equations being 
equal to the number of unknowns, the resolution is directly 
possible and is put in the following form: 

[
     ̇  ̈ 

  
]= [    

 ]
  

[     ̈    (   ̇)      ]         (24) 

B. Resolution of the Inverse Dynamic Model in Double  

Support 

During the DSP the two feet of the robots are in flat 
contact with the ground. The dynamic modelling of the robot 
must therefore take into account the efforts of the ground on 
both feet. The dynamic model is described by the equation 22. 

In the DSP, the robot is in an over-actuated configuration. 
Indeed, 9 coordinates are needed to describe the configuration 

of the robot in a general case and the robot has 6 actuators. 
However, in the DSP, the conditions of contact of the two feet 
on the ground add 4 constraints. The degree of over-actuation 
is therefore 1. 

There are two solutions to solve the dynamic model during 
the dual support phase: 

1) Parameterization of the forces exerted on the swing 

foot by mathematical functions [17].   

2) The internal resolution of these forces by an optimal 

control resolution[18]. 

We adopted the first method to solve the dynamic model, 
the forces exerted on one of the feet requires expressing in an 
explicit form of time. We have chosen to fix the expression of 
the forces exerted on the foot 1 by a polynomial of order 2, 
  =        

 . 

   = ∑      
  

                (25) 

   = ∑      
  

                (26) 

Subsequently, the resolution of the system is expressed by 
this equation: 

[
     ̇  ̈ 

  
]=      [     ̈    (   ̇)          

   ] (27) 

Where: 

        
               (28) 

B is an invertible square matrix of size (9X9). 

C. Resolution of the Impact Model 

The impact between two rigid bodies can be translated as a 
collision, which is modeled by an algebraic equation at the 
moment of impact. In the case of biped walking the impact 
phenomenon takes place at the end of the single support 
phase. It is characterized, under the assumption of rigid 
bodies, by a collision between the swing foot and the walking 
surface. 

The joint velocities undergo sudden and instantaneous 
changes against the generalized coordinates after impact are 
the same as those before the impact. 

After the consideration of certain hypotheses, the equation 
linking the ground forces to the robots' feet and its articular 
velocity before and after the impact is as follows: 

M(q)*( ̇    ̇ )=                  (29) 

Where  ̇  (Respectively  ̇ ) represents the velocities 
before (respectively after) the impact. 

    =   
 (q)*              (30) 

Where    is the Jacobian matrix of constraints. 

  = (
  

  
)             (31) 

The system resolution is expressed by this equation: 

  = [    
    

 ]             (32) 
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VI. SIMULATION RESULTS 

The computing of the ZMP values during the walking 
cycle of the biped robot is done according to the equation 11. 

Figure 9 shows the curve of the ZMP before the regulation 
of the biped walking stability. However, Figure 10 reperesent 
the curve of the ZMP after the regulation of the biped walking 
stability. In fact, we have implemented an algorithm that 
calculates at each itération the value of the ZMP and it checks 
the stability conditions of the biped robot. According to the 
static and dynamic constraints and avoiding the singularity 
positions, the robot changes the value of the double support 
period and the running speed to bring the ZMP back inside the 
retention  polygon and thus adjust the stability. 

The polygon of sustenance is modelized by the curves in 
red. The biped walk is stable if the ZMP curve calculated 
during the walk cycle remains within the retention polygon. 
To ensure stability of the biped, we have to control the value 
of the ZMP and keep it within the bounds. 

 

Fig. 9. The ZMP and COG Trajectories for Unstable Walking. 

 
Fig. 10. The ZMP and COG Trajectories for Stable Walking. 

The robot is generally in conditions of instability, 
especially during the SSP phase (only one foot in contact with 
the ground) while increasing its speed of movement, also the 
presence of an obstacle to avoid represents a disturbance for 
the stability of the biped. As the figure 9 shows,  the  ZMP 
leaves sustaining polygon when the biped  starts to avoid 
collision with obstacle and  it starts to rise the swing foot.  
This figure proves that the problem of biped imbalance is 
mainly located (in the conditions of a flat and non-ruthless 
ground) at the level of the SSP. 

Figure 10 shows the effectiveness of our algorithm. The 
ZMP is still inside the polygon of sustenance. The robot keeps 
its balance throughout the cycle of walking and even the 
presence of an obstacle to avoid. 

VII. CONCLUSION 

In this paper, an algorithm for controlling the biped 
walking stability has been implemented. The simulation 
results of the ZMP have shown the effectiveness of this 
algorithm. A constraint (the presence of an obstacle to be 
avoided) is added for the disturbance of the balance of the 
biped. Indeed, the limits of the sustenance polygon change 
with the movement of the biped robot through the gait walking 
and the values of the ZMP always remain inside the convex 
surface which constitutes the sustenance polygon. 

The ZMP is a criterion used for the control of the dynamic 
stability and presents one of the most used methods for the 
generation of a stable trajectory for a biped robot because the 
control of balance has a common advantage with the other 
methods used for trajectory generation. The disadvantage of 
this method is that the ZMP is not always applicable. Indeed, 
its use is restricted to flat ground. As a result, it is not suitable 
for climbing up / down stairs, or on uneven ground. In 
addition, the ZMP cannot handle the balance during the flight 
phases during the race movement where there is no contact 
between the robot and the ground. Finally, the multi-contact 
between the arms and the environment is not taken into 
account in the ZMP. In a series of papers, the authors and 
colleagues have developed new feedback control strategies 
[19]. 

As a perspective of our work, we will study other 
scenarios and add other constraints on the walking biped robot 
as the climbing up / down of a stairs, walk on snow ground, 
carry an additional weight or integrate a phase of flight. 
Depending on the type of constraint added, we will associate 
with the ZMP another criterion for the management of the 
balance. An appropriate control method will be implemented 
in a closed loop to control and correct the stability of the biped 
robot according to the different scenarios. 
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