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Abstract—Generalized Nets are extensions of Petri Nets. They 

are a suitable tool for describing real sequential and parallel 

processes in different areas. The implementation of correct 

Generalized Nets models is a task of great importance for the 

creation of a number of applications such as transportation 

management, e-business, medical systems, telephone networks, 

etc. The cost of an error in the models of some of these 

applications can be very high. The implementation of models of 

similar applications has to use formal approaches to prove that 

the developed models are correct. A foundation stone of software 

verification, which is suitable for verification of Generalized Nets 

models with transitions without temporal component, is Floyd’s 

inductive assertion method. This article presents a modification 

of Floyd’s inductive assertion method for verification of 

flowcharts, which allows Generalized Nets without temporal 

component to be verified. Using an illustrative example, we show 

that the offered adaptation is appropriate for the purpose of 

training university students in the Informatics and Computer 

Sciences in formal methods of verification. 

Keywords—Floyd’s inductive assertions method; generalized 

nets; verification; formal methods; education 

I. INTRODUCTION 

Generalized Nets (GNs) [1, 2] are a means of modeling 
sequential and parallel processes in a variety of areas, 
including medicine, industry, transport, software protection, 
etc. They were introduced in 1982 by Krassimir Atanassov as 
a further extension of the standard Petri Nets (PNs) and their 
modifications and extensions. GNs are defined in a way that is 
fundamentally different from the ways of defining Regular 
PNs, E-nets, Time PNs, Colored PNs, Self-modifying PNs, 
Stochastic PNs, Predicate-transition nets, and other PNs. In 
the 1980s, it was proved that the functioning and the results of 
the work of each of these types of nets can be described by a 
GN. Moreover, it was proved that for each of the classes of 
standard or extended PNs, there exists a GN that is universal 
for this class, i.e., it represents the functioning and the results 
of the work of each of the elements of the respective class of 
nets. In the following years, similar results were published for 
the Super nets, Numerical PNs, Fuzzy PNs, and others PNs. 

Automatic tools for execution of GNs [3–10] have been 
developed and are currently in process of improvement. 

In parallel with the scientific research related to GN, a 
great number of GN models have been developed, which 

simulate real-life processes. Designing such GN models is 
useful as researching their characteristics allows for focusing 
the attention of the real-life system developers on the most 
important (from the point of view of performance quality) 
elements, as well as to eliminate the unnecessary details when 
realizing the real-life systems. After developing a GN model, 
which presents the behavior of a real-life system, research 
should be conducted to discover how adequate is the 
developed model, as evaluated against the criteria for the 
respective real-life system. 

Checking the model adequacy is done in two steps: model 
verification (if it meets the requirements), and model 
validation (if the requirements posed to the model are 
adequate to the real-life system). For some models, such a 
check is obligatory to be done. 

This article presents a method of formal verification of 
GNs, which are without temporal components. The method is 
a modification of Floyd’s inductive assertion method for 
verification of flowcharts.  

The rest of thе paper is organized as follows. Part II 
presents the definitions of a GN, of its main component – the 
transition, as well as of the GN loop. Part III is dedicated to an 
adaptation of Floyd’s method of verification of flowcharts for 
verification of GNs with transitions without temporal 
components. As a result, methods for proving the partial 
correctness and the termination of such GNs are proposed. In 
Part IV, these methods are illustrated by a simple example. 
Applying Floyd’s method for verification of practically 
applicable GN models is a subject of another paper due to 
volume constrains. Part V of the paper provides comments on 
applying the presented method for GN verification and ideas 
for further research in the field. 

II. GENERALIZED NETS 

GNs are defined in a way that [1, 2] is fundamentally 
different from the ways of defining the other types of PNs. 

Definition 1 (Transition). Every transition is described by 
a seven- tuple: 

Z = L′, L″, t1, t2, r, M, □, 

where:  
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Fig. 1. GN Transition 

 L′ and L″ are finite, non-empty sets of places (the 
transition’s input and output places, respectively); for 

the transition Z in Fig. 1 these are: L′ = },..., ,{ ''
2

'
1 mlll

and L″ = },..., ,{ ' '' '
2

' '
1 nlll ; 

 t1 is the current time-moment of the transition’s firing; 

 t2 is the current value of the duration of its active state; 

 r is the transition’s condition, determining which 
tokens will transfer from the transition’s inputs to its 
output places. The parameter r has the form of an 
Index Matrix (IM) [1, 11]: 

r 
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(ri,j  – predicate) 

(1  i  m, 1  j  n) 
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 where ri,j is the predicate which gives the condition for 
transfer from the i-th input place to the j-th output place. 
When ri,j has truth-value “true”, then a token from the i-th 
input place can be transferred to the j-th output place; 
otherwise, this is impossible; 

 M  is an IM of the capacities of transition’s arcs:  

  
1l"  … 

jl"  … 
nl"  

 
1l'  

mi,j 

(mi,j  0 – natural number 

or ) 

(1  i  m, 1  j  n) 

M =  
 

il'  

  
 

ml'  

 □ is called transition type. It is an object having a form 
similar to a Boolean expression. It may contain as 
variables the symbols that serve as labels for 
transition’s input places. It is an expression consisting 

of variables and the Boolean connectives  and  
determining the following conditions: 

 






u
iii

lll  ..., , ,
21

 – every place 
u

iii
lll  ..., , ,

21

 must 

contain at least one token, 








u
iii

lll  ..., , ,
21

– there must be at least one token 

in all places , ..., , ,
21 u

iii
lll  where {

u
iii

lll  ..., , ,
21

}  

L′. When the value of a type □ (calculated as a Boolean 
expression) is “true”, the transition can become active, 
otherwise it cannot. 

Definition 2 (Generalized Net) [1, 2]: The ordered four-
tuple: 

E = A, A, L, c, f, 1, 2, K, πK, K, 

T , t
o
 , t*, X, , b 

is called a Generalized Net if: 

 A is a set of transitions (Definition 1); 

 A is a function giving the priorities of the transitions, 

i.e., A : A → N, where N is the set of natural numbers; 

 L is a function giving the priorities of the places, i.e., 

L : L → N, where L =    A    A. Naturally, L is the 

set of all GN-places; 

 c is a function giving the capacities of the places, i.e., c 
: L → N; 

 f is a function that calculates the truth values of the 
predicates of the transition’s conditions. For the 
(ordinary) GNs, described in this section, the function f 
obtains values “false” or “true”, or values from set {0, 
1}. If P is the set of the predicates used in a given 
model, then f can be defined as f : P → {0, 1}; 

 1 is a function giving the next time-moment for which 

a given transition Z can be activated, i.e., 1(t) = t′, 

where pr3 Z = t, t′ [T, T + t*] and t  t′. The value of 
this function is calculated at the moment when the 
transition terminates its functioning; 

 2 is a function giving the duration of the active state of 

a given transition Z, i.e., 2(t) = t′, where pr4Z = t  [T, 

T + t*] and t′  0. The value of this function is 
calculated at the moment when the transition starts 
functioning; 

 K is the set of the GN’s tokens; 

 πK is a function giving the priorities of the tokens, i.e., 
πK : K → N; 
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 K is a function giving the time-moment when a given 

token can enter the net, i.e., K() = t, where   K 

and t  [T, T + t
*
]; 

 T is the time-moment when the GN starts functioning. 
This moment is determined with respect to a fixed 
(global) time-scale; 

 t
o
 is an elementary time-step, related to the fixed 

(global) time-scale; 

 t* is the duration of the GN functioning;  

 X is a function which assigns initial characteristics to 
each token when it enters input places of the net;  

  is the characteristic function which assigns new 
characteristics to each token when it transfers from an 
input to an output place of a given transition; 

 b is a function giving the maximum number of 
characteristics a given token can receive, i.e.,  

b : K → N. 

It can be concluded that similarities between PNs and GNs 
exist, however, there are also differences. The GN transitions 
have a more complex structure of that of the PN ones. It must 
be noted that the GN transition contains: an index matrix with 
predicates that determine whether a token from i-th input 
place can go to the j-th output place; an index matrix with 
natural numbers that determine the capacities of the arc 
between i-th input and j-th output place; and a special 
condition, that determines whether the transition can be 
activated. The GN definition is also more complex than the 
definition of a PN. The GN-tokens enter the net with initial 
characteristics, determined by the characteristic function X. 
Upon entering a new place, the GN-tokens obtain new 

characteristics, defined by the characteristic function . In 
contrast to the Colored PNs and the Predicate-Transition Nets, 
the GN-tokens can keep all their characteristics and they can 
be used for evaluation of the truth-values of the transition 
condition predicates [1, 2]. 

Definition 3 (GN loop). A sequence of places of a GN, 
which a given token can go through sequentially and can reach 
the starting position, is called a GN loop. 

III. VERIFICATION OF GNS, BASED ON FLOYD’S METHOD OF 

VERIFICATION OF A FLOWCHART 

The method presented here can be used for verification of 
GN models without temporal component (without the 

components: 1, 2, K, T, t
o  

and t*). Respectively, the GN 
transitions do not contain the temporal components t1 and t2. 
The reason for this is that this restriction and the existence of 
index matrices with predicates and characteristic functions 
cause each component of a GN to have a respective segment 
as in a flowchart. The GNs, which will be verified through a 
technique following Floyd’s method for verification of 
flowcharts [12], consist of the components given in Fig. 2. In 
order to increase the readability, we will use the notations for 
Floyd’s method for verification of flowcharts. 

Three types of characteristics of the GN (grouped as three 
vectors) are distinguished: 

 An input vector 1 2( , ,..., ),nx x x x which sets the 

values of the initial characteristics 1 2, ,..., nx x x  of the 

GN tokens. 

 An intermediate vector 1 2( , ,..., ),my y y y which is 

used as temporary storage during the GN execution and 
describes the changing values of the characteristics 

1 2, ,..., my y y  of the GN tokens. 

 An output vector 1 2( , ,..., ),kz z z z that yields the 

values of output characteristics 1 2, ,..., kz z z of tokens 

when the GN execution terminates. 

These characteristics are specific for each GN model under 
verification. 

Three types of non-empty domains are distinguished as 
well: 

 an input domain   ̅                        

 an intermediate domain   ̅                    

     and 

 an output domain   ̅                         

  Start 

 

 
 
A token enters an input place with 

characteristic ( ̅  ̅)  ( ̅  ( ̅)), 

where      ̅    ̅ is a total function.  

f is defined according to the definition 
of the function X. 

Assignment 

 

 
A token enters an S place with 
characteristic  ̅ that changes to  ( ̅  ̅), 
i.e., the simultaneous assignment 
operator   ̅   ( ̅  ̅) is executed in the 
place S.  
h is defined according to the definition 

of the function . 

Transition  
       

 

 
The matrix r on the transition Z1 sets 
the conditions for the transition. Note 
that the transition Z1 does not depend 
on time. 

Halt

 

 

 
The token that enters an output 

place sets the value of ,z  i.e., it 

realizes the assignment 

( , ).z g x y  
 

g is defined according to the 

definition of the function . 

Fig. 2. Components of a GN. 

halt 

output      

   

start 
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As in the case of the flowcharts, the verification of a GN 
without temporal components depends on the following 
predicates: 

 An input predicate, which will be denoted by ( ).x  It 

is a total predicate over ,xD  which describes those 

elements (data) that may be used as values of the initial 

characteristics 1 2, ,..., nx x x of the GN tokens. 

 An output predicate, which will be denoted by ( , ).x z  

It is a total predicate over ,x zD D which describes 

the relationships that must be satisfied between the 
input and the output values of the characteristics of the 
GN tokens at the termination of the GN execution. 

The predicates ( )x  and ( , )x z set the input-output 

specification with respect to which the GN will be verified. 

Definition 4. GN P without temporal components is 

partially correct with respect to ( )x  and ( , )x z  if for 

every input vector ,  for which the input predicate ( )   is 

true and the computation of    terminates, ( , ( ))P   is true. 

Definition 5. GN P without temporal components 

terminates over ( ),x  if for every input vector ,  for which 

( )   is true, the execution of P terminates (stops). 

Definition 6. GN P of the type described above is totally 

correct with respect to ( )x  and ( , ),x z  if for every vector 

,  for which the input predicate ( )   is true, the execution 

of P terminates over ( )x and the output predicate 

( , ( ))P    is true. 

Verifying a GN without temporal components with respect 
to the input-output specification means proving its total 
correctness regarding this specification. What follows from 
the definitions above is that the GN P is totally correct with 

respect to ( )x and ( , ),x z  if P is partially correct with 

respect to ( )x  and ( , )x z  and P terminates over ( )x . 

A. Partial Correctness of a GN 

A technique for proving that a GN of the type described 

above is partially correct with respect to input predicate ( )x  

and output predicate ( , )x z  will be presented. It is similar to 

this for flowcharts [12]. 

Let us execute the following three steps: 

Step 1 (Cutpoints). 

Each GN loop connects to a cut (see cutpoints S1 and S2 on 
Fig. 5). Start and halt cuts are added to this set of cutpoints 
(see Fig. 3). Only paths which start and end at cutpoints and 
which have no intermediate cutpoints are considered. For each 
path   from cutpoint i to cutpoint j there is a predicate 

( , )R x y over x yD D  and a vector ( , )r x y  

       : .x y yr D D D     r 

The predicate ( , )R x y  indicates the condition for this 

path to be traversed, and the vector ( , )r x y describes the 

transformation of the values of y affected by path   

traversion.  

This function can be derived by means of the backward-

substitution technique [12]. First, the values of the ( , )R x y

and ( , )r x y  (values in cut j), are set to true (we will denote 

true by Т) and ,y  respectively. Then, at each step, the old R 

and r are used to construct the new R and r, moving 
backwards toward the cutpoint i. The description of the new 
values in the components is shown in Fig. 3. The resulting R 

and r in the cut i are the desired ( , )R x y  and ( , )r x y . 

 

 

( , )t x y  is the condition for transfer from place P1 to place 

P2. 

 

Fig. 3. Rules for constructing the new predicate ( , )R x y  and the new 

function ( , )r x y  for different types of components. 

  

{
      ( ̅  ̅)   ( ̅  ̅)

      ( ̅  ̅)                  
 

{
 ( ̅  ̅)
 ( ̅  ̅)

 

 

   

   

 ̅   ( ̅)  

start 

input 

{
       ( ̅  ( ̅))
       ( ̅  ( ̅))

 

{
 ( ̅  ̅)
 ( ̅  ̅)

 

 

 ̅   (  ̅  ̅)   

{
      ( ̅  (  ̅  ̅))
      ( ̅  (  ̅  ̅))

 

{
 ( ̅  ̅)
 ( ̅  ̅)

 

 

 ̅   ( ̅  ̅)  

halt 

output 

{
                  
      ( ̅  ̅)

 

,
   
   ̅
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Fig. 4 presents an example for constructing ( , )R x y  and 

( , )r x y  for path α, where the condition for transfer from the 

input place P1 to the output place P2 is 1( , ),t x y and the 

condition for transfer from the input place P2 to the output 

place P3 is 2 ( , ).t x y
 

 
Fig. 4. Constructing the Rα and rα functions for the path α. 

Step 2 (Inductive assertions).  

With each cutpoint i of the GN, a predicate ( , )ip x y  is 

associated. This predicate is called inductive assertion. It 
characterizes the relation between the values of the 
characteristics x  and y  of the tokens at this point, i.e., 

( , )ip x y  will have the property that, whenever the 

implementation reaches point i, ( , )ip x y , must be true for the 

current values of x  and y  at this point. The input predicate 

( )x  is attached to the start cutpoints, and the output 

predicate ( , )x z  is attached to the halt cutpoints. 

Step 3 (Verification conditions). 

The final step is to build the verification conditions for 
each path of the GN: 

 For each path   for which i is cutpoint start 

   ̅  * ( ̅)    ( ̅)
 
⇒   ( ̅   ( ̅))+ 

 For each path  , from the i cutpoint to cutpoint j 

  ̅  ̅    ( ̅  ̅)    ( ̅  ̅)
 
⇒   ( ̅   ( ̅  ̅))  

 For each path   for which j is cutpoint halt 

  ̅  ̅    ( ̅  ̅)    ( ̅  ̅)
 
⇒  ( ̅   ( ̅  ̅))  

and to prove that all these conditions are true. 

If the constructed verification conditions for all paths that 
cover the GN are satisfied, the GN is partially correct with 

respect to ( )x and ( , ).x z  This leads to the follow theorem. 

Theorem 1. The following steps are applied to a given GN 

P without temporal components, an input predicate ( )x  and 

an output predicate ( , )x z : 

 Тhe loops of the GN are cut. 

 An appropriate set of inductive assertions is found. 

 The verification conditions (1), (2) and (3) are 
constructed. 

If all the verification conditions are true, then P is partially 

correct with respect to ( )x  and ( , )x z . 

B. Termination of a GN 

The following is a description of a method of proving the 
termination of a GN without temporal components regarding 

an input predicate ( )x . The method was proposed by Floyd 

for a flowchart [12]. Well-founded sets are used [12]. 

Note that the paths in steps 1 and 3 do not contain 
intermediate cutpoints. 

Let’s perform the following three steps: 

Step 1 (Good assertions).  

Select a set of cutpoints that cut the loops of the GN. 

Associate an assertion
 

( , )iq x y  with every cutpoint i, which is 

a good assertion [12], i.e.,  

 For each path   from the start cutpoint to cutpoint j, 
the following is satisfied: 

   ̅ * ( ̅)    ( ̅)
 

⇒  ( ̅   ( ̅))+ 

 For each path   from the i cutpoint to cupoint j, the 
following is satisfied: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 9, 2018 

462 | P a g e  

www.ijacsa.thesai.org 

  ̅  ̅ *  ( ̅  ̅)    ( ̅  ̅)
 
⇒  ( ̅   ( ̅  ̅))+ 

Step 2 (Well-founded set).  

Choose a well-founded set (   ) and with every cutpoint 

i of the GN associate a partial function ( , )iu x y   

ui :    ̅     ̅ ⟶    

which is a good function [12], i.e., for every curpoint i, is 
satisfied: 

   ̅  ̅   ( ̅  ̅)
 
⇒(  ( ̅  ̅)   )  

Step 3 (Termination conditions). 

Show that the termination conditions hold. This means that 
for every path   from a cutpoint i to a cutpoint j, which is a 
part of some GN loop, the following is satisfied:  

   ̅  ̅ *  ( ̅  ̅)    ( ̅  ̅)
 

⇒(  ( ̅  ̅)    ( ̅   ( ̅  ̅)))+ 

This means that after each time a path, which is a part of a 
loop, is executed, the values of the functions ui, that are 
associated with the cuts, strictly decrease. As (   ) is a well-
founded set, i.е. there are no infinite decreasing sequences of 
elements of W, then the number of the path executions is 
limited. This leads to the follow theorem. 

Theorem 2. The following steps are applied to a given GN 

  of the type described above and an input predicate  ( ̅): 

 The loops are cut and “good” (satisfying (4) and (5)) 
inductive assertions are found. 

 A well-founded set is selected and “good” (satisfying 
(6)) partial functions are found. 

 The termination conditions (7) are checked.  

If all the termination condition are true, then   terminates 
over     

IV. ILLUSTRATIVE EXAMPLE  

The generalized net in Fig. 5 implements the model of a 

sequential program, finding 2
1

x
z x  (where 0

0
 is considered 

to be equal to 1), where    is an integer and    is a 
nonnegative integer.  

A start component, a halt component, 2 assignment 
components and 9 transition components are shown in the 
figure. The execution of the GN begins at entering the token 
with characteristic 

1 2 1 2 3( , ) ( , , , , ),x y x x y y y
 

into an input place, where y1 means the current value of the 
base, y2 means the current value of the exponent and y3 – the 
current value of the exponential result.  

 

Fig. 5. GN which implements finding .2
1

x
xz   

The moment the token enters an input place with 

characteristic 1 2 1 2 3( , ) ( , , , , ),x y x x y y y  it gets the value 

1 2 1 2( , , , ,1)x x x x . The figure also shows how 1 2 3( , , )y y y y  

of the characteristic of the token changes in places L1 and L2; 
and shows that, when it enters into an output place, it receives 
characteristic z = y3. 

The GN has one transition Z1, with predicate matrix r1 of 
transition: 

               

           )(  0  
22

yoddy   )(   0  
22

yoddy  

        )(  0  
22

yoddy   )(   0  
22

yoddy  

        )(  0  
22

yoddy   )(   0  
22

yoddy  

We will perform GN verification by the method described 
above over: 

 the input predicate: 2( ) : 0x x   and 

 the output predicate: 
2

1( , ) :
x

x z z x 
 

where 1 2 1 2 3( , ), ( , , ), .x x x y y y y z z     

A. Partial Correctness 

Let us cut the two loops of the GN at points S1 and S2 (see 
Fig. 5), and attach to the cutpoint    and cutpoint    the 
assertion: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 9, 2018 

463 | P a g e  

www.ijacsa.thesai.org 

2 2
2 2 3 1 1( , ) : 0 0 . .

y x
p x y x y y y x      

This GN is covered by the following paths: 

1.  start halt 

2.  start S1 

3.  start S2 

4.  S1 S1 

5.  S2 S2 

6.  S1 S2 

7.  S2  S1 

8.  S1  halt 

9.  S2  halt 

We will prove the verification conditions only for paths 1 
and 7 below. The other verification conditions are proved 
likewise. The functions R and r for the paths 1, 2, …, 9 have 
the form: 

1.  R: x2 = 0, r: 1 

2.  R: x2  0  odd(x2),    r: (x1, x2−1, x1) 

 3. R: x2  0  ¬ odd(x2), r: ( 1 ,
2
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 4.  R: y2  0  odd(y2),   r: (y1, y2−1, y1.y3) 
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 7. R: y2  0  odd(y2),   r: (y1, y2−1, y1.y3) 
 8. R: y2 = 0, r: y3 

 9. R: y2 = 0, r: y3 
The verification condition for path 1 has the form: 
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is evidently satisfied. 

The verification condition for path 7 has the form: 
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Since all verification conditions are true, it follows that the 
GN is partially correct. 

B. Termination 

Let choose the well-founded set (, <), that is, the set of 
natural numbers with the usual ordering <. We cut the two 
loops at points S1 and S2 (see Fig. 5.) Next, we choose

1
( , )sq x y and 

2
( , )sq x y to be y2 ≥ 0. Let 

1
( , )su x y  and 

2
( , )su x y are equal to y2. 

Step 1. 
1
( , )sq x y and 

2
( , )sq x y are good assertions. 

Here we will prove the condition only for path 6. The 
assertions for other paths are proved similarly. 
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Step 2. 
1
( , )su x y  and 

2
( , )su x y are good functions. 

The condition for cutpoint S1 is: 
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that is,  0.   0     22   yy The condition is evidently 

satisfied. 

The condition for S2 cutpoint is proved similarly. 

Step 3. The termination condition holds. 

Only paths 4, 5, 6 and 7 are considered as they are parts of 
some GN loop. 
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)) ,(  ) ,((
3

22

1321

22321

 ,
2

 ,,,

   )(   0    ),, ,(

22

2

y
y

yxuyyyxu

yoddyyyyxq

SS

S





 

i.е., 

2
   )(  0    0  2

2222

y
yyoddyy   

Path 6   S1  S2 

)) ,(  ) ,((
3

22

1321

22321

 ,
2

 ,,,

   )(   0    ),, ,(

21

1

y
y

yxuyyyxu

yoddyyyyxq

SS

S





 
i.е., 

2
   )(  0    0  2

2222

y
yyoddyy   

Path 7 S2  S1 

)). ,1,(),,((

   )( 0    ),, ,(

3121321

22321

 ,   ,
12

2

yyyyxuyyyxu

yoddyyyyxq

SS

S




 

i.е., 

1    )( 0    0  
22222
 yyyoddyy  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 9, 2018 

464 | P a g e  

www.ijacsa.thesai.org 

Since all conditions of the three steps are true, the GN 

terminates for every 0
2
x  natural number.  

V. APPLICATIONS AND IDEAS FOR FURTHER RESEARCH  

The necessity for developing methods and environments 
for formal verification of GN models is triggered by the 
implementation of real-life methods of software protection by 
using GNs [13]. Using Floyd’s inductive assertion method for 
verification of flowcharts, adapted for GNs, GN models which 
realize sequential processes, and sequential programs in 
particular [14], can be verified. It can also be applied for 
verification of GNs, which model parallel processes. To this 
end, a transition’s type component □ is applied. 

Following our belief that training in applying formal 
methods for developing of correct software is the most 
efficient method of implementing these methods in the 
software industry, we intend on introducing the method 
described above in teaching students of specialty Informatics 
and Computer Sciences at Sofia University. In order to 
achieve this, we will develop and add tools for its application 
to the educational framework presented in [15]. The ideas 
presented in [16, 17, 18] are implemented in the educational 
framework. The resulting educational framework may be 
applied not only in teaching programming and data structures 
[19, 20], but also in creating GN models of applications, such 
as: classical transaction processing systems [21], mobile 
information applications for public access [22, 23], business 
process models [24, 25], software services models [26, 27], 
data models [28], etc. Thus, students will be stimulated to 
search for out of the box solutions of the tasks given in the 
programming courses [29] and in the courses in discrete 
mathematics (discrete structures) [30].  

Furthermore, we consider designing and improving an 
educational framework with tools for verification of GN 
models with temporal components. 

VI. RELATED WORK 

The field of formal verification of GN models has not been 
studied by now. The most closely related work with the one 
presented here is the book by Zohar Manna [12]. This book 
represents an introduction in the mathematical theory of 
informatics, and is considered the main reference book in this 
area for many universities around the world, including the 
Sofia University. Chapter 3 of [12] explores the verification of 
computer programs. Sections 3-1 and 3-2 of this chapter 
contains definitions, related to the verification of programs 
presented in terms of flowcharts, and Floyd’s inductive 
assertions method for program verification is provided. Since 
the methodology of development of Generalized Net models is 
difficult enough as such, in order to enhance the understanding 
of the herewith presented adaptation of Floyd’s inductive 
assertions method for formal verification of GN models 
without temporal components, we opted to use as much as 
possible the denotations and theorems, formulated in [12]. 

VII. CONCLUSION 

The paper presents the authors’ first attempt to achieve 
formal verification of GN models. Our research has been 

restricted to verification of GN models without temporal 
components. Since the proposed verification approach belongs 
to the set of formal verification methods, it bears all of their 
limitations, as well. Significant efforts are required to 
construct the input/output specification; to prove the 
conditions for partial correctness and for termination of the 
execution; the procedures are to be realized by the rare highly 
qualified experts in formal modelling. Using automated tools 
for formal theorem proving would reduce the mentioned 
difficulties. The active and impactful research on development 
of such tools has motivated us to continue the work in this 
direction by developing methods for formal verification of GN 
models featuring temporal components, as well as verification 
of the GN models of the applications proposed here in Part V. 

REFERENCES 

[1] K. Atanassov, Generalized Nets, World Scientific, Singapore, 1991. 

[2] K. Atanassov, On Generalized Nets Theory, Prof. Marin Drinov 
Academic Publishing House, Sofia, 2007. 

[3] T. Trifonov, and K. Georgiev, “GNTicker – A software tool for efficient 
interpretation of generalized net models,” Issues in Intuitionistic Fuzzy 
Sets and Generalized Nets, vol. 3, Warsaw, 2005.  

[4] T. Trifonov, K. Georgiev, and K. Atanassov, “Software for modelling 
with Generalised Nets,” Issues in Intuitionistic Fuzzy Sets and 
Generalized Nets, vol. 6, pp. 36–42, 2008. 

[5] V. Gochev, “An implementation of generalized nets using object-
oriented programming in .NET framework, Management and 
education,” vol. VI (4), pp. 227–231, 2010. 

[6] K. Atanassov, D. Dimitrov, and V. Atanassova, “Algorithms for Tokens 
Transfer in the Different Types of Intuitionistic Fuzzy Generalized 
Nets,” Cybernetics and Information Technologies, vol. 10, No. 4, pp. 
22–35, 2010. 

[7] D. G. Dimitrov, “Graphical Environment for Modeling and Simulation 
with Generalized Nets,” Annual of “Informatics”, Section Union of 
Scientists in Bulgaria, vol. 3, pp. 51–66, 2010. 

[8]  D. G. Dimitrov, “Software Products Implementing Generalized Nets,” 
Annual of “Informatics”, Section Union of Scientists in Bulgaria, vol. 3, 
pp. 37–50, 2010. 

[9] D. G. Dimitrov, “Optimized Algorithm for Token Transfer in 
Generalized Nets,” Recent Advances in Fuzzy Sets, Intuitionistic Fuzzy 
Sets, Generalized Nets and Related Topics, vol. 1, pp. 63–68, 2010. 

[10]  N. Angelova, M. Todorova, and K. Atanassov, “GN IDE: 
Implementation, Improvements and Algorithms,” Comptes Rendus de 
L'Academie Bulgare des Sciences, Tome 69, vol. 4, pp. 411−420, 2016. 

[11] K. Atanassov, Index Matrices: Towards an Augmented Matrix Calculus, 
Springer, Cham, 2014. 

[12] Z. Manna, Mathematical theory of computation, New York, 1974. 

[13] M. Todorova, and D. Orozova, “Software protection integrating 
registration-number and anti-debugging protections,” 9th International 
Conference Information Systems & Grid Technologies, St. Kliment 
Ohridski University Press, 2015. 

[14] M. Todorova, and D. Orozova, “Generalized Net Model of Sequential 
Programs,” 20th International Symposium on Electrical Apparatus and 
Technologies (SIELA), 3 – 6 June, 2018, Bourgas, Bulgaria (in print), 
[Digests 20th International Symposium on Electrical Apparatus and 
Technologies, Bulgaria, pp. 265−266, 2018]. 

[15] M. Todorova and K. Kanev, “Educational framework for verification of 
object−oriented programs,” The Joint International Conference on 
Human−Centered Computer Environments HCCE’2012, Hamamatsu, 
Japan, pp. 23−27, 2012.  

[16] A. Shannon, D. Langova−Orozova, E. Sotirova, I. Petrounias, K. 
Atanassov, M. Krawczak, P. Melo−Pinto, and T. Kim, Generalized Net 
Modelling of University Processes, KvB Visual Concepts Pty Ltd, 
Monograph No. 7, Sydney, 2005. 

[17] A. Shannon, K. Atanassov, D. Orozova, M. Krawczak, E. Sotirova, 
P. Melo−Pinto, I. Petrounias and T. Kim, Generalized nets and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 9, 2018 

465 | P a g e  

www.ijacsa.thesai.org 

information flow within a university, Warsaw School of Information 
Technology, Warsaw, 2007. 

[18] D. Orozova, and K. Atanassov, “Generalized net model of the process of 
selection and usage of an intelligent e-learning system,” Comptes 
Rendus de l'Academie bulgare des Sciences, tome 65, No. 5, pp. 
591−598, 2012. 

[19] I. Donchev, and E. Todorova, “Implementation of ADS Linked List Via 
Smart Pointers,” International Journal of Advanced Computer Science 
and Applications, vol. 6, No. 2, pp. 196−203, 2015. 

[20] I. Donchev, and E. Todorova, “Implementation of Binary Search Trees 
Via Smart Pointers,” International Journal of Advanced Computer 
Science and Applications, vol. 6, No. 3, pp. 59−64, 2015. 

[21] K. Kaloyanova, “Successful practices for learning information systems 
development,” 7th International Technology, Education and 
Development Conference, pp. 4849−4855, 2013. 

[22] I. Patias and V. Georgiev, “Mobile medical applications as instrument in 
supporting patients compliance,” American Journal of Engineering 
Research, vol. 6, No. 8, pp. 96−102, 2017. 

[23] I. Patias and V. Georgiev, “Modeling and implementation of bus rapid 
transit corridor based on isolated or coordinated traffic prioritization and 
automatic location,” Journal of Emerging Research and Solutions in 
ICT, vol. 1, No. 2, pp. 17–24, 2016. 

[24] E. Krastev and K. Shahinyan, “Computer assisted quality assessment of 
a set of business process models,” Proceedings of the 9th IEEE 
European Modelling Symposium of Mathematical Modelling and 
Computer Simulation, IEEE Computer Society, pp. 180−186, 2015. 

[25] V. Dimitrov, “Deriving semantics from WS-BPEL specifications of 
parallel business processes on an example,” Computer Research and 
Modeling, vol. 7, No.  3, pp. 445−454, 2015. 

[26] S. Hadzhikoleva and E. Hadzhikolev, “Model for automated integration 
of data from heterogeneous sources in the COMPASS-OK application 
for (self) evaluation and accreditation,” International Journal of Applied 
Engineering Research, vol. 11, No. 12, pp 7648−7653, 2016. 

[27] S. Hadzhikoleva, T. Rachovski and E. Hadzhikolev, “Generalized Net 
Model for Building Responsive Design of Web Pages,” 20th 
International Symposium on Electrical Apparatus and Technologies 
SIELA 2018, 3 − 6 June 2018, Bourgas, Bulgaria (in print). 

[28] V. Dimitrov, “Relationship Specified in Z-notation,” Physics of 
Elementary Particles and Atomic Nuclei, Letters, vol. 8, No. 4 (167), pp. 
655−663, 2011.  

[29] K. Yordzhev, “The Bitwise Operations Related to a Fast Sorting 
Algorithm,” International Journal of Advanced Computer Science and 
Applications, vol. 4, No. 9, pp. 103−107, 2013.  

[30] K. Yordzhev, Sudoku, S-permutation matrices and bipartite graphs, LAP 
LAMBERT Academic Publishing, 2016. 

 

http://da.uni-vt.bg/pubinfo.aspx?p=16776
http://da.uni-vt.bg/pubinfo.aspx?p=16776
http://da.uni-vt.bg/pubinfo.aspx?p=16776
http://da.uni-vt.bg/pubinfo.aspx?p=16537
http://da.uni-vt.bg/pubinfo.aspx?p=16537
http://da.uni-vt.bg/pubinfo.aspx?p=16537

