
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

457 | P a g e

www.ijacsa.thesai.org

Applying Floyd’s Inductive Assertions Method for

Verification of Generalized Net Models Without

Temporal Components

Magdalina Todorova
1
, Nora Angelova

2

Faculty of Mathematics and Informatics

Sofia University “St. Kl. Ohridski”

Sofia, Bulgaria

Abstract—Generalized Nets are extensions of Petri Nets. They

are a suitable tool for describing real sequential and parallel

processes in different areas. The implementation of correct

Generalized Nets models is a task of great importance for the

creation of a number of applications such as transportation

management, e-business, medical systems, telephone networks,

etc. The cost of an error in the models of some of these

applications can be very high. The implementation of models of

similar applications has to use formal approaches to prove that

the developed models are correct. A foundation stone of software

verification, which is suitable for verification of Generalized Nets

models with transitions without temporal component, is Floyd’s

inductive assertion method. This article presents a modification

of Floyd’s inductive assertion method for verification of

flowcharts, which allows Generalized Nets without temporal

component to be verified. Using an illustrative example, we show

that the offered adaptation is appropriate for the purpose of

training university students in the Informatics and Computer

Sciences in formal methods of verification.

Keywords—Floyd’s inductive assertions method; generalized

nets; verification; formal methods; education

I. INTRODUCTION

Generalized Nets (GNs) [1, 2] are a means of modeling
sequential and parallel processes in a variety of areas,
including medicine, industry, transport, software protection,
etc. They were introduced in 1982 by Krassimir Atanassov as
a further extension of the standard Petri Nets (PNs) and their
modifications and extensions. GNs are defined in a way that is
fundamentally different from the ways of defining Regular
PNs, E-nets, Time PNs, Colored PNs, Self-modifying PNs,
Stochastic PNs, Predicate-transition nets, and other PNs. In
the 1980s, it was proved that the functioning and the results of
the work of each of these types of nets can be described by a
GN. Moreover, it was proved that for each of the classes of
standard or extended PNs, there exists a GN that is universal
for this class, i.e., it represents the functioning and the results
of the work of each of the elements of the respective class of
nets. In the following years, similar results were published for
the Super nets, Numerical PNs, Fuzzy PNs, and others PNs.

Automatic tools for execution of GNs [3–10] have been
developed and are currently in process of improvement.

In parallel with the scientific research related to GN, a
great number of GN models have been developed, which

simulate real-life processes. Designing such GN models is
useful as researching their characteristics allows for focusing
the attention of the real-life system developers on the most
important (from the point of view of performance quality)
elements, as well as to eliminate the unnecessary details when
realizing the real-life systems. After developing a GN model,
which presents the behavior of a real-life system, research
should be conducted to discover how adequate is the
developed model, as evaluated against the criteria for the
respective real-life system.

Checking the model adequacy is done in two steps: model
verification (if it meets the requirements), and model
validation (if the requirements posed to the model are
adequate to the real-life system). For some models, such a
check is obligatory to be done.

This article presents a method of formal verification of
GNs, which are without temporal components. The method is
a modification of Floyd’s inductive assertion method for
verification of flowcharts.

The rest of thе paper is organized as follows. Part II
presents the definitions of a GN, of its main component – the
transition, as well as of the GN loop. Part III is dedicated to an
adaptation of Floyd’s method of verification of flowcharts for
verification of GNs with transitions without temporal
components. As a result, methods for proving the partial
correctness and the termination of such GNs are proposed. In
Part IV, these methods are illustrated by a simple example.
Applying Floyd’s method for verification of practically
applicable GN models is a subject of another paper due to
volume constrains. Part V of the paper provides comments on
applying the presented method for GN verification and ideas
for further research in the field.

II. GENERALIZED NETS

GNs are defined in a way that [1, 2] is fundamentally
different from the ways of defining the other types of PNs.

Definition 1 (Transition). Every transition is described by
a seven- tuple:

Z = L′, L″, t1, t2, r, M, □,

where:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

458 | P a g e

www.ijacsa.thesai.org

Fig. 1. GN Transition

 L′ and L″ are finite, non-empty sets of places (the
transition’s input and output places, respectively); for

the transition Z in Fig. 1 these are: L′ = },..., ,{ ''
2

'
1 mlll

and L″ = },..., ,{ ' '' '
2

' '
1 nlll ;

 t1 is the current time-moment of the transition’s firing;

 t2 is the current value of the duration of its active state;

 r is the transition’s condition, determining which
tokens will transfer from the transition’s inputs to its
output places. The parameter r has the form of an
Index Matrix (IM) [1, 11]:

r
1l"

…
jl"

…
nl"

1l'

ri,j

(ri,j – predicate)

(1  i  m, 1  j  n)

ml'

 where ri,j is the predicate which gives the condition for
transfer from the i-th input place to the j-th output place.
When ri,j has truth-value “true”, then a token from the i-th
input place can be transferred to the j-th output place;
otherwise, this is impossible;

 M is an IM of the capacities of transition’s arcs:

1l" …

jl" …
nl"

1l'

mi,j

(mi,j  0 – natural number

or )

(1  i  m, 1  j  n)

M =

il'

ml'

 □ is called transition type. It is an object having a form
similar to a Boolean expression. It may contain as
variables the symbols that serve as labels for
transition’s input places. It is an expression consisting

of variables and the Boolean connectives  and 
determining the following conditions:

 






u
iii

lll ..., , ,
21

 – every place
u

iii
lll ..., , ,

21

 must

contain at least one token,








u
iii

lll ..., , ,
21

– there must be at least one token

in all places , ..., , ,
21 u

iii
lll where {

u
iii

lll ..., , ,
21

} 

L′. When the value of a type □ (calculated as a Boolean
expression) is “true”, the transition can become active,
otherwise it cannot.

Definition 2 (Generalized Net) [1, 2]: The ordered four-
tuple:

E = A, A, L, c, f, 1, 2, K, πK, K,

T , t
o
 , t*, X, , b

is called a Generalized Net if:

 A is a set of transitions (Definition 1);

 A is a function giving the priorities of the transitions,

i.e., A : A → N, where N is the set of natural numbers;

 L is a function giving the priorities of the places, i.e.,

L : L → N, where L = A A. Naturally, L is the

set of all GN-places;

 c is a function giving the capacities of the places, i.e., c
: L → N;

 f is a function that calculates the truth values of the
predicates of the transition’s conditions. For the
(ordinary) GNs, described in this section, the function f
obtains values “false” or “true”, or values from set {0,
1}. If P is the set of the predicates used in a given
model, then f can be defined as f : P → {0, 1};

 1 is a function giving the next time-moment for which

a given transition Z can be activated, i.e., 1(t) = t′,

where pr3 Z = t, t′ [T, T + t*] and t  t′. The value of
this function is calculated at the moment when the
transition terminates its functioning;

 2 is a function giving the duration of the active state of

a given transition Z, i.e., 2(t) = t′, where pr4Z = t  [T,

T + t*] and t′  0. The value of this function is
calculated at the moment when the transition starts
functioning;

 K is the set of the GN’s tokens;

 πK is a function giving the priorities of the tokens, i.e.,
πK : K → N;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

459 | P a g e

www.ijacsa.thesai.org

S

 K is a function giving the time-moment when a given

token can enter the net, i.e., K() = t, where   K

and t  [T, T + t
*
];

 T is the time-moment when the GN starts functioning.
This moment is determined with respect to a fixed
(global) time-scale;

 t
o
 is an elementary time-step, related to the fixed

(global) time-scale;

 t* is the duration of the GN functioning;

 X is a function which assigns initial characteristics to
each token when it enters input places of the net;

  is the characteristic function which assigns new
characteristics to each token when it transfers from an
input to an output place of a given transition;

 b is a function giving the maximum number of
characteristics a given token can receive, i.e.,

b : K → N.

It can be concluded that similarities between PNs and GNs
exist, however, there are also differences. The GN transitions
have a more complex structure of that of the PN ones. It must
be noted that the GN transition contains: an index matrix with
predicates that determine whether a token from i-th input
place can go to the j-th output place; an index matrix with
natural numbers that determine the capacities of the arc
between i-th input and j-th output place; and a special
condition, that determines whether the transition can be
activated. The GN definition is also more complex than the
definition of a PN. The GN-tokens enter the net with initial
characteristics, determined by the characteristic function X.
Upon entering a new place, the GN-tokens obtain new

characteristics, defined by the characteristic function . In
contrast to the Colored PNs and the Predicate-Transition Nets,
the GN-tokens can keep all their characteristics and they can
be used for evaluation of the truth-values of the transition
condition predicates [1, 2].

Definition 3 (GN loop). A sequence of places of a GN,
which a given token can go through sequentially and can reach
the starting position, is called a GN loop.

III. VERIFICATION OF GNS, BASED ON FLOYD’S METHOD OF

VERIFICATION OF A FLOWCHART

The method presented here can be used for verification of
GN models without temporal component (without the

components: 1, 2, K, T, t
o

and t*). Respectively, the GN
transitions do not contain the temporal components t1 and t2.
The reason for this is that this restriction and the existence of
index matrices with predicates and characteristic functions
cause each component of a GN to have a respective segment
as in a flowchart. The GNs, which will be verified through a
technique following Floyd’s method for verification of
flowcharts [12], consist of the components given in Fig. 2. In
order to increase the readability, we will use the notations for
Floyd’s method for verification of flowcharts.

Three types of characteristics of the GN (grouped as three
vectors) are distinguished:

 An input vector 1 2(, ,...,),nx x x x which sets the

values of the initial characteristics 1 2, ,..., nx x x of the

GN tokens.

 An intermediate vector 1 2(, ,...,),my y y y which is

used as temporary storage during the GN execution and
describes the changing values of the characteristics

1 2, ,..., my y y of the GN tokens.

 An output vector 1 2(, ,...,),kz z z z that yields the

values of output characteristics 1 2, ,..., kz z z of tokens

when the GN execution terminates.

These characteristics are specific for each GN model under
verification.

Three types of non-empty domains are distinguished as
well:

 an input domain ̅

 an intermediate domain ̅

 and

 an output domain ̅

 Start

A token enters an input place with

characteristic (̅ ̅) (̅ (̅)),

where ̅ ̅ is a total function.

f is defined according to the definition
of the function X.

Assignment

A token enters an S place with
characteristic ̅ that changes to (̅ ̅),
i.e., the simultaneous assignment
operator ̅ (̅ ̅) is executed in the
place S.
h is defined according to the definition

of the function .

Transition

The matrix r on the transition Z1 sets
the conditions for the transition. Note
that the transition Z1 does not depend
on time.

Halt

The token that enters an output

place sets the value of ,z i.e., it

realizes the assignment

(,).z g x y

g is defined according to the

definition of the function .

Fig. 2. Components of a GN.

halt

output

start

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

460 | P a g e

www.ijacsa.thesai.org

As in the case of the flowcharts, the verification of a GN
without temporal components depends on the following
predicates:

 An input predicate, which will be denoted by ().x It

is a total predicate over ,xD which describes those

elements (data) that may be used as values of the initial

characteristics 1 2, ,..., nx x x of the GN tokens.

 An output predicate, which will be denoted by (,).x z

It is a total predicate over ,x zD D which describes

the relationships that must be satisfied between the
input and the output values of the characteristics of the
GN tokens at the termination of the GN execution.

The predicates ()x and (,)x z set the input-output

specification with respect to which the GN will be verified.

Definition 4. GN P without temporal components is

partially correct with respect to ()x and (,)x z if for

every input vector , for which the input predicate ()  is

true and the computation of terminates, (, ())P   is true.

Definition 5. GN P without temporal components

terminates over (),x if for every input vector , for which

()  is true, the execution of P terminates (stops).

Definition 6. GN P of the type described above is totally

correct with respect to ()x and (,),x z if for every vector

, for which the input predicate ()  is true, the execution

of P terminates over ()x and the output predicate

(, ())P   is true.

Verifying a GN without temporal components with respect
to the input-output specification means proving its total
correctness regarding this specification. What follows from
the definitions above is that the GN P is totally correct with

respect to ()x and (,),x z if P is partially correct with

respect to ()x and (,)x z and P terminates over ()x .

A. Partial Correctness of a GN

A technique for proving that a GN of the type described

above is partially correct with respect to input predicate ()x

and output predicate (,)x z will be presented. It is similar to

this for flowcharts [12].

Let us execute the following three steps:

Step 1 (Cutpoints).

Each GN loop connects to a cut (see cutpoints S1 and S2 on
Fig. 5). Start and halt cuts are added to this set of cutpoints
(see Fig. 3). Only paths which start and end at cutpoints and
which have no intermediate cutpoints are considered. For each
path from cutpoint i to cutpoint j there is a predicate

(,)R x y over x yD D and a vector (,)r x y

 : .x y yr D D D   r

The predicate (,)R x y indicates the condition for this

path to be traversed, and the vector (,)r x y describes the

transformation of the values of y affected by path

traversion.

This function can be derived by means of the backward-

substitution technique [12]. First, the values of the (,)R x y

and (,)r x y (values in cut j), are set to true (we will denote

true by Т) and ,y respectively. Then, at each step, the old R

and r are used to construct the new R and r, moving
backwards toward the cutpoint i. The description of the new
values in the components is shown in Fig. 3. The resulting R

and r in the cut i are the desired (,)R x y and (,)r x y .

(,)t x y is the condition for transfer from place P1 to place

P2.

Fig. 3. Rules for constructing the new predicate (,)R x y and the new

function (,)r x y for different types of components.

{
 (̅ ̅) (̅ ̅)

 (̅ ̅)

{
 (̅ ̅)
 (̅ ̅)

 ̅ (̅)

start

input

{
 (̅ (̅))
 (̅ (̅))

{
 (̅ ̅)
 (̅ ̅)

 ̅ (̅ ̅)

{
 (̅ (̅ ̅))
 (̅ (̅ ̅))

{
 (̅ ̅)
 (̅ ̅)

 ̅ (̅ ̅)

halt

output

{

 (̅ ̅)

,

 ̅

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

461 | P a g e

www.ijacsa.thesai.org

Fig. 4 presents an example for constructing (,)R x y and

(,)r x y for path α, where the condition for transfer from the

input place P1 to the output place P2 is 1(,),t x y and the

condition for transfer from the input place P2 to the output

place P3 is 2 (,).t x y

Fig. 4. Constructing the Rα and rα functions for the path α.

Step 2 (Inductive assertions).

With each cutpoint i of the GN, a predicate (,)ip x y is

associated. This predicate is called inductive assertion. It
characterizes the relation between the values of the
characteristics x and y of the tokens at this point, i.e.,

(,)ip x y will have the property that, whenever the

implementation reaches point i, (,)ip x y , must be true for the

current values of x and y at this point. The input predicate

()x is attached to the start cutpoints, and the output

predicate (,)x z is attached to the halt cutpoints.

Step 3 (Verification conditions).

The final step is to build the verification conditions for
each path of the GN:

 For each path for which i is cutpoint start

 ̅ * (̅) (̅)

⇒ (̅ (̅))+ 

 For each path , from the i cutpoint to cutpoint j

 ̅ ̅ (̅ ̅) (̅ ̅)

⇒ (̅ (̅ ̅))  

 For each path for which j is cutpoint halt

 ̅ ̅ (̅ ̅) (̅ ̅)

⇒ (̅ (̅ ̅))  

and to prove that all these conditions are true.

If the constructed verification conditions for all paths that
cover the GN are satisfied, the GN is partially correct with

respect to ()x and (,).x z This leads to the follow theorem.

Theorem 1. The following steps are applied to a given GN

P without temporal components, an input predicate ()x and

an output predicate (,)x z :

 Тhe loops of the GN are cut.

 An appropriate set of inductive assertions is found.

 The verification conditions (1), (2) and (3) are
constructed.

If all the verification conditions are true, then P is partially

correct with respect to ()x and (,)x z .

B. Termination of a GN

The following is a description of a method of proving the
termination of a GN without temporal components regarding

an input predicate ()x . The method was proposed by Floyd

for a flowchart [12]. Well-founded sets are used [12].

Note that the paths in steps 1 and 3 do not contain
intermediate cutpoints.

Let’s perform the following three steps:

Step 1 (Good assertions).

Select a set of cutpoints that cut the loops of the GN.

Associate an assertion

(,)iq x y with every cutpoint i, which is

a good assertion [12], i.e.,

 For each path from the start cutpoint to cutpoint j,
the following is satisfied:

 ̅ * (̅) (̅)

⇒ (̅ (̅))+ 

 For each path from the i cutpoint to cupoint j, the
following is satisfied:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

462 | P a g e

www.ijacsa.thesai.org

 ̅ ̅ * (̅ ̅) (̅ ̅)

⇒ (̅ (̅ ̅))+ 

Step 2 (Well-founded set).

Choose a well-founded set () and with every cutpoint

i of the GN associate a partial function (,)iu x y

ui : ̅ ̅ ⟶

which is a good function [12], i.e., for every curpoint i, is
satisfied:

 ̅ ̅ (̅ ̅)

⇒((̅ ̅))  

Step 3 (Termination conditions).

Show that the termination conditions hold. This means that
for every path from a cutpoint i to a cutpoint j, which is a
part of some GN loop, the following is satisfied:

 ̅ ̅ * (̅ ̅) (̅ ̅)

⇒((̅ ̅) (̅ (̅ ̅)))+ 

This means that after each time a path, which is a part of a
loop, is executed, the values of the functions ui, that are
associated with the cuts, strictly decrease. As () is a well-
founded set, i.е. there are no infinite decreasing sequences of
elements of W, then the number of the path executions is
limited. This leads to the follow theorem.

Theorem 2. The following steps are applied to a given GN

 of the type described above and an input predicate (̅):

 The loops are cut and “good” (satisfying (4) and (5))
inductive assertions are found.

 A well-founded set is selected and “good” (satisfying
(6)) partial functions are found.

 The termination conditions (7) are checked.

If all the termination condition are true, then terminates
over

IV. ILLUSTRATIVE EXAMPLE

The generalized net in Fig. 5 implements the model of a

sequential program, finding 2
1

x
z x (where 0

0
 is considered

to be equal to 1), where is an integer and is a
nonnegative integer.

A start component, a halt component, 2 assignment
components and 9 transition components are shown in the
figure. The execution of the GN begins at entering the token
with characteristic

1 2 1 2 3(,) (, , , ,),x y x x y y y

into an input place, where y1 means the current value of the
base, y2 means the current value of the exponent and y3 – the
current value of the exponential result.

Fig. 5. GN which implements finding .2
1

x
xz 

The moment the token enters an input place with

characteristic 1 2 1 2 3(,) (, , , ,),x y x x y y y it gets the value

1 2 1 2(, , , ,1)x x x x . The figure also shows how 1 2 3(, ,)y y y y

of the characteristic of the token changes in places L1 and L2;
and shows that, when it enters into an output place, it receives
characteristic z = y3.

The GN has one transition Z1, with predicate matrix r1 of
transition:

    

 )(0
22

yoddy  )(0
22

yoddy  

 )(0
22

yoddy  )(0
22

yoddy  

 )(0
22

yoddy  )(0
22

yoddy  

We will perform GN verification by the method described
above over:

 the input predicate: 2() : 0x x  and

 the output predicate:
2

1(,) :
x

x z z x 

where 1 2 1 2 3(,), (, ,), .x x x y y y y z z  

A. Partial Correctness

Let us cut the two loops of the GN at points S1 and S2 (see
Fig. 5), and attach to the cutpoint and cutpoint the
assertion:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

463 | P a g e

www.ijacsa.thesai.org

2 2
2 2 3 1 1(,) : 0 0 . .

y x
p x y x y y y x    

This GN is covered by the following paths:

1. start halt

2. start S1

3. start S2

4. S1 S1

5. S2 S2

6. S1 S2

7. S2 S1

8. S1 halt

9. S2 halt

We will prove the verification conditions only for paths 1
and 7 below. The other verification conditions are proved
likewise. The functions R and r for the paths 1, 2, …, 9 have
the form:

1. R: x2 = 0, r: 1

2. R: x2  0  odd(x2), r: (x1, x2−1, x1)

 3. R: x2  0  ¬ odd(x2), r: (1 ,
2

 ,
22

1

x
x)

 4. R: y2  0  odd(y2), r: (y1, y2−1, y1.y3)

 5. R: y2  0  ¬ odd(y2), r: (
3

22
1

 ,
2

 , y
y

y)

 6. R: y2  0  ¬ odd(y2), r: (
3

22
1

 ,
2

 , y
y

y)

 7. R: y2  0  odd(y2), r: (y1, y2−1, y1.y3)
 8. R: y2 = 0, r: y3

 9. R: y2 = 0, r: y3
The verification condition for path 1 has the form:

2() (0) (,1),x x x   

i.е.,

2

1 10) (0) (22
x

xxx  

is evidently satisfied.

The verification condition for path 7 has the form:

2 2 1 2 1 3(,) 0 () (, , 1, .)p x y y odd y p x y y y y    

i.е.,

 . 0 1) (0

)(y 0 y . 0 0

2
1

1

2
131

2

2

22
2

1
 2

13

2

2

xy

xy

xyyyyx

oddxyyyx







Since all verification conditions are true, it follows that the
GN is partially correct.

B. Termination

Let choose the well-founded set (, <), that is, the set of
natural numbers with the usual ordering <. We cut the two
loops at points S1 and S2 (see Fig. 5.) Next, we choose

1
(,)sq x y and

2
(,)sq x y to be y2 ≥ 0. Let

1
(,)su x y and

2
(,)su x y are equal to y2.

Step 1.
1
(,)sq x y and

2
(,)sq x y are good assertions.

Here we will prove the condition only for path 6. The
assertions for other paths are proved similarly.

),
2

, ,()(0),, ,(
3

22

122321 21

y
y

yxqyoddyyyyxq
SS



i.е.,

0
2

)(0 0
2

222


y
yoddyy

Step 2.
1
(,)su x y and

2
(,)su x y are good functions.

The condition for cutpoint S1 is:






  Νyxuyxq

SS
) ,() ,(

11

that is, 0. 0 22   yy The condition is evidently

satisfied.

The condition for S2 cutpoint is proved similarly.

Step 3. The termination condition holds.

Only paths 4, 5, 6 and 7 are considered as they are parts of
some GN loop.

Path 4 S1  S1

)) ,() ,((
3121321

22321

. ,1,,,

)(0),, ,(

11

1

yyyyxuyyyxu

yoddyyyyxq

SS

S







i.е.,

1)(0 0
22222
 yyyoddyy

Path 5 S2  S2

)) ,() ,((
3

22

1321

22321

 ,
2

 ,,,

)(0),, ,(

22

2

y
y

yxuyyyxu

yoddyyyyxq

SS

S





i.е.,

2
)(0 0 2

2222

y
yyoddyy 

Path 6 S1  S2

)) ,() ,((
3

22

1321

22321

 ,
2

 ,,,

)(0),, ,(

21

1

y
y

yxuyyyxu

yoddyyyyxq

SS

S





i.е.,

2
)(0 0 2

2222

y
yyoddyy 

Path 7 S2  S1

)). ,1,(),,((

)(0),, ,(

3121321

22321

 , ,
12

2

yyyyxuyyyxu

yoddyyyyxq

SS

S





i.е.,

1)(0 0
22222
 yyyoddyy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

464 | P a g e

www.ijacsa.thesai.org

Since all conditions of the three steps are true, the GN

terminates for every 0
2
x natural number.

V. APPLICATIONS AND IDEAS FOR FURTHER RESEARCH

The necessity for developing methods and environments
for formal verification of GN models is triggered by the
implementation of real-life methods of software protection by
using GNs [13]. Using Floyd’s inductive assertion method for
verification of flowcharts, adapted for GNs, GN models which
realize sequential processes, and sequential programs in
particular [14], can be verified. It can also be applied for
verification of GNs, which model parallel processes. To this
end, a transition’s type component □ is applied.

Following our belief that training in applying formal
methods for developing of correct software is the most
efficient method of implementing these methods in the
software industry, we intend on introducing the method
described above in teaching students of specialty Informatics
and Computer Sciences at Sofia University. In order to
achieve this, we will develop and add tools for its application
to the educational framework presented in [15]. The ideas
presented in [16, 17, 18] are implemented in the educational
framework. The resulting educational framework may be
applied not only in teaching programming and data structures
[19, 20], but also in creating GN models of applications, such
as: classical transaction processing systems [21], mobile
information applications for public access [22, 23], business
process models [24, 25], software services models [26, 27],
data models [28], etc. Thus, students will be stimulated to
search for out of the box solutions of the tasks given in the
programming courses [29] and in the courses in discrete
mathematics (discrete structures) [30].

Furthermore, we consider designing and improving an
educational framework with tools for verification of GN
models with temporal components.

VI. RELATED WORK

The field of formal verification of GN models has not been
studied by now. The most closely related work with the one
presented here is the book by Zohar Manna [12]. This book
represents an introduction in the mathematical theory of
informatics, and is considered the main reference book in this
area for many universities around the world, including the
Sofia University. Chapter 3 of [12] explores the verification of
computer programs. Sections 3-1 and 3-2 of this chapter
contains definitions, related to the verification of programs
presented in terms of flowcharts, and Floyd’s inductive
assertions method for program verification is provided. Since
the methodology of development of Generalized Net models is
difficult enough as such, in order to enhance the understanding
of the herewith presented adaptation of Floyd’s inductive
assertions method for formal verification of GN models
without temporal components, we opted to use as much as
possible the denotations and theorems, formulated in [12].

VII. CONCLUSION

The paper presents the authors’ first attempt to achieve
formal verification of GN models. Our research has been

restricted to verification of GN models without temporal
components. Since the proposed verification approach belongs
to the set of formal verification methods, it bears all of their
limitations, as well. Significant efforts are required to
construct the input/output specification; to prove the
conditions for partial correctness and for termination of the
execution; the procedures are to be realized by the rare highly
qualified experts in formal modelling. Using automated tools
for formal theorem proving would reduce the mentioned
difficulties. The active and impactful research on development
of such tools has motivated us to continue the work in this
direction by developing methods for formal verification of GN
models featuring temporal components, as well as verification
of the GN models of the applications proposed here in Part V.

REFERENCES

[1] K. Atanassov, Generalized Nets, World Scientific, Singapore, 1991.

[2] K. Atanassov, On Generalized Nets Theory, Prof. Marin Drinov
Academic Publishing House, Sofia, 2007.

[3] T. Trifonov, and K. Georgiev, “GNTicker – A software tool for efficient
interpretation of generalized net models,” Issues in Intuitionistic Fuzzy
Sets and Generalized Nets, vol. 3, Warsaw, 2005.

[4] T. Trifonov, K. Georgiev, and K. Atanassov, “Software for modelling
with Generalised Nets,” Issues in Intuitionistic Fuzzy Sets and
Generalized Nets, vol. 6, pp. 36–42, 2008.

[5] V. Gochev, “An implementation of generalized nets using object-
oriented programming in .NET framework, Management and
education,” vol. VI (4), pp. 227–231, 2010.

[6] K. Atanassov, D. Dimitrov, and V. Atanassova, “Algorithms for Tokens
Transfer in the Different Types of Intuitionistic Fuzzy Generalized
Nets,” Cybernetics and Information Technologies, vol. 10, No. 4, pp.
22–35, 2010.

[7] D. G. Dimitrov, “Graphical Environment for Modeling and Simulation
with Generalized Nets,” Annual of “Informatics”, Section Union of
Scientists in Bulgaria, vol. 3, pp. 51–66, 2010.

[8] D. G. Dimitrov, “Software Products Implementing Generalized Nets,”
Annual of “Informatics”, Section Union of Scientists in Bulgaria, vol. 3,
pp. 37–50, 2010.

[9] D. G. Dimitrov, “Optimized Algorithm for Token Transfer in
Generalized Nets,” Recent Advances in Fuzzy Sets, Intuitionistic Fuzzy
Sets, Generalized Nets and Related Topics, vol. 1, pp. 63–68, 2010.

[10] N. Angelova, M. Todorova, and K. Atanassov, “GN IDE:
Implementation, Improvements and Algorithms,” Comptes Rendus de
L'Academie Bulgare des Sciences, Tome 69, vol. 4, pp. 411−420, 2016.

[11] K. Atanassov, Index Matrices: Towards an Augmented Matrix Calculus,
Springer, Cham, 2014.

[12] Z. Manna, Mathematical theory of computation, New York, 1974.

[13] M. Todorova, and D. Orozova, “Software protection integrating
registration-number and anti-debugging protections,” 9th International
Conference Information Systems & Grid Technologies, St. Kliment
Ohridski University Press, 2015.

[14] M. Todorova, and D. Orozova, “Generalized Net Model of Sequential
Programs,” 20th International Symposium on Electrical Apparatus and
Technologies (SIELA), 3 – 6 June, 2018, Bourgas, Bulgaria (in print),
[Digests 20th International Symposium on Electrical Apparatus and
Technologies, Bulgaria, pp. 265−266, 2018].

[15] M. Todorova and K. Kanev, “Educational framework for verification of
object−oriented programs,” The Joint International Conference on
Human−Centered Computer Environments HCCE’2012, Hamamatsu,
Japan, pp. 23−27, 2012.

[16] A. Shannon, D. Langova−Orozova, E. Sotirova, I. Petrounias, K.
Atanassov, M. Krawczak, P. Melo−Pinto, and T. Kim, Generalized Net
Modelling of University Processes, KvB Visual Concepts Pty Ltd,
Monograph No. 7, Sydney, 2005.

[17] A. Shannon, K. Atanassov, D. Orozova, M. Krawczak, E. Sotirova,
P. Melo−Pinto, I. Petrounias and T. Kim, Generalized nets and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

465 | P a g e

www.ijacsa.thesai.org

information flow within a university, Warsaw School of Information
Technology, Warsaw, 2007.

[18] D. Orozova, and K. Atanassov, “Generalized net model of the process of
selection and usage of an intelligent e-learning system,” Comptes
Rendus de l'Academie bulgare des Sciences, tome 65, No. 5, pp.
591−598, 2012.

[19] I. Donchev, and E. Todorova, “Implementation of ADS Linked List Via
Smart Pointers,” International Journal of Advanced Computer Science
and Applications, vol. 6, No. 2, pp. 196−203, 2015.

[20] I. Donchev, and E. Todorova, “Implementation of Binary Search Trees
Via Smart Pointers,” International Journal of Advanced Computer
Science and Applications, vol. 6, No. 3, pp. 59−64, 2015.

[21] K. Kaloyanova, “Successful practices for learning information systems
development,” 7th International Technology, Education and
Development Conference, pp. 4849−4855, 2013.

[22] I. Patias and V. Georgiev, “Mobile medical applications as instrument in
supporting patients compliance,” American Journal of Engineering
Research, vol. 6, No. 8, pp. 96−102, 2017.

[23] I. Patias and V. Georgiev, “Modeling and implementation of bus rapid
transit corridor based on isolated or coordinated traffic prioritization and
automatic location,” Journal of Emerging Research and Solutions in
ICT, vol. 1, No. 2, pp. 17–24, 2016.

[24] E. Krastev and K. Shahinyan, “Computer assisted quality assessment of
a set of business process models,” Proceedings of the 9th IEEE
European Modelling Symposium of Mathematical Modelling and
Computer Simulation, IEEE Computer Society, pp. 180−186, 2015.

[25] V. Dimitrov, “Deriving semantics from WS-BPEL specifications of
parallel business processes on an example,” Computer Research and
Modeling, vol. 7, No. 3, pp. 445−454, 2015.

[26] S. Hadzhikoleva and E. Hadzhikolev, “Model for automated integration
of data from heterogeneous sources in the COMPASS-OK application
for (self) evaluation and accreditation,” International Journal of Applied
Engineering Research, vol. 11, No. 12, pp 7648−7653, 2016.

[27] S. Hadzhikoleva, T. Rachovski and E. Hadzhikolev, “Generalized Net
Model for Building Responsive Design of Web Pages,” 20th
International Symposium on Electrical Apparatus and Technologies
SIELA 2018, 3 − 6 June 2018, Bourgas, Bulgaria (in print).

[28] V. Dimitrov, “Relationship Specified in Z-notation,” Physics of
Elementary Particles and Atomic Nuclei, Letters, vol. 8, No. 4 (167), pp.
655−663, 2011.

[29] K. Yordzhev, “The Bitwise Operations Related to a Fast Sorting
Algorithm,” International Journal of Advanced Computer Science and
Applications, vol. 4, No. 9, pp. 103−107, 2013.

[30] K. Yordzhev, Sudoku, S-permutation matrices and bipartite graphs, LAP
LAMBERT Academic Publishing, 2016.

http://da.uni-vt.bg/pubinfo.aspx?p=16776
http://da.uni-vt.bg/pubinfo.aspx?p=16776
http://da.uni-vt.bg/pubinfo.aspx?p=16776
http://da.uni-vt.bg/pubinfo.aspx?p=16537
http://da.uni-vt.bg/pubinfo.aspx?p=16537
http://da.uni-vt.bg/pubinfo.aspx?p=16537

