
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

70 | P a g e  

www.ijacsa.thesai.org 

Comparison between Traditional Approach and 

Object-Oriented Approach in Software Engineering 

Development 

Nabil Mohammed Ali Munassar 1 

PhD Student 3rd  year of Computer Science & Engineering 

Jawaharlal Nehru Technological University 

Kuktapally, Hyderabad- 500 085, Andhra Pradesh, India 

 

Dr. A. Govardhan 2 

Professor of Computer Science & Engineering 

Principal JNTUH of Engineering College, Jagityal, 

Karimnagar (Dt), A.P., India 

Abstract— This paper discusses the comparison between 

Traditional approaches and Object-Oriented approach. 

    Traditional approach has a lot of models that deal with 

different types of projects such as waterfall, spiral, iterative and 

v-shaped, but all of them and other lack flexibility to deal with 

other kinds of projects like Object-Oriented.  

    Object–oriented Software Engineering (OOSE) is an object 

modeling language and methodology. The approach of using 

object – oriented techniques for designing a system is referred to 

as object–oriented design. Object–oriented development 

approaches are best suited to projects that will imply systems 

using emerging object technologies to construct, manage, and 

assemble those objects into useful computer applications. Object 

oriented design is the continuation of object-oriented analysis, 

continuing to center the development focus on object modeling 

techniques. 

Keywordss- Software Engineering; Traditional Approach; 

Object-Oriented Approach; Analysis; Design; Deployment; Test; 

methodology; Comparison between Traditional Approach and 

Object-Oriented Approach. 

I. INTRODUCTION  

All software, especially large pieces of software produced 
by many people, should be produced using some kind of 
methodology. Even small pieces of software developed by one 
person can be improved by keeping a methodology in mind. A 
methodology is a systematic way of doing things. It is a 
repeatable process that we can follow from the earliest stages 
of software development through to the maintenance of an 
installed system. As well as the process, a methodology should 
specify what we‟re expected to produce as we follow the 
process. A methodology will also include recommendation or 
techniques for resource management, planning, scheduling and 
other management tasks. Good, widely available 
methodologies are essential for a mature software industry. 

A good methodology will address at least the following 
issues: Planning, Scheduling, Resourcing, Workflows, 
Activities, Roles, Artifacts, Education. There are a number of 
phases common to every development, regardless of 
methodology, starting with requirements capture and ending 
with maintenance. During the last few decades a number of 
software development models have been proposed and 
discussed within the Software Engineering community. With 
the traditional approach, you‟re expected to move forward 

gracefully from one phase to the other. With the modern 
approach, on the other hand, you‟re allowed to perform each 
phase more than once and in any order [1, 10]. 

II. TRADITIONAL APPROACH 

There are a number of phases common to every 
development, regardless of methodology, starting with 
requirements capture and ending with maintenance. With the 
traditional approach, will be expected to move forward 
gracefully from one phase to the other. The list below describes 
the common phases in software development [1, 6].  

A.  Requirements 

Requirements capture is about discovering what is going to 
achieve with new piece of software and has two aspects. 
Business modeling involves understanding the context in which 
software will operate. A system requirement modeling (or 
functional specification) means deciding what capabilities the 
new software will have and writing down those capabilities [1].  

B.  Analysis 

Analysis means understanding what are dealing with. 
Before designing a solution, it needs to be clear about the 
relevant entities, their properties and their inter-relationships. 
Also needs to be able to verify understanding. This can involve 
customers and end users, since they‟re likely to be subject-
matter experts [1]. 

C.  Design 

In the design phase, will work out, how to solve the 
problem. In other words, make decisions based on experience, 
estimation and intuition, about what software which will write 
and how will deploy it. System design breaks the system down 
into logical subsystems (processes) and physical subsystems 
(computers and networks), decides how machines will 
communicate, and chooses the right technologies for the job, 
and so on [1]. 

D.  Specification 

Specification is an often-ignored, or at least often-
neglected, phase. The term specification is used in different 
ways by different developers. For example, the output of the 
requirements phase is a specification of what the system must 
be able to do; the output of analysis is a specification of what 
are dealing with; and so on [3]. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

71 | P a g e  

www.ijacsa.thesai.org 

Code Test 
 

System/information 

engineering 

Analysis Design 

E.  Implementation 

In this phase is writing pieces of code that work together to 
form subsystems, which in turn collaborate to form the whole 
system. The sort of the task which is carried out during the 
implementation phase is „Write the method bodies for the 
Inventory class, in such a way that they conform to their 
specification‟ [5]. 

F.  Testing 

When the software is complete, it must be tested against the 
system requirements to see if it fits the original goals. It is a 
good idea for programmers to perform small tests as they go 
along, to improve the quality of the code that they deliver [5]. 

G.  Deployment 

In the deployment phase, are concerned with getting the 
hardware and software to the end users, along with manuals 
and training materials. This may be a complex process, 
involving a gradual, planned transition from the old way of 
working to the new one [1].  

H. Maintenance 

When the system is deployed, it has only just been born. A 
long life stretches before it, during which it has to stand up to 
everyday use – this is where the real testing happens. The sort 
of the problem which is discovered discover during the 
maintenance phase is „When the log-on window opens, it still 
contains the last password entered.' As the software developers, 
we normally interested in maintenance because of the faults 
(bugs) that are found in software. Must find the faults and 
remove them as quickly as possible, rolling out fixed versions 
of the software to keep the end users happy. As well as faults, 
users may discover deficiencies (things that the system should 
do but doesn‟t) and extra requirements (things that would 
improve the system) [3, 6]. 

 

 
Figure 1: The linear Sequential Model [6]. 

 

III. OBJECT-ORIENTED APPROACH 

    In object-oriented approach, a system is viewed as a set 
of objects. All object-orientation experts agree that a good 
methodology is essential for software development, especially 
when working in teams. Thus, quite a few methodologies have 
been invented over the last decade. Broadly speaking, all 
object-oriented methodologies are alike – they have similar 
phases and similar artifacts – but there are many small 
differences. Object-oriented methodologies tend not to be too 
prescriptive: the developers are given some choice about 
whether they use a particular type of diagram, for example. 
Therefore, the development team must select a methodology 
and agree which artifacts are to be produced, before they do 
any detailed planning or scheduling. In general, each 
methodology addresses: 

 The philosophy behind each of the phases. 

 The workflows and the individual activities within 

each phase. 

 The artifacts that should be produced (diagrams, 

textual descriptions and code). 

 Dependencies between the artifacts. 

 Notations for the different kinds of artifacts. 

 The need to model static structure and dynamic 

behavior. 
Static modeling involves deciding what the logical or 

physical parts of the system should be and how they should be 
connected together. Dynamic modeling is about deciding how 
the static parts should collaborate. Roughly speaking, static 
modeling describes how we construct and initialize the system, 
while dynamic modeling describes how the system should 
behave when it‟s running. Typically, we produce at least one 
static model and one dynamic model during each phase of the 
development. 

Some methodologies, especially the more comprehensive 
ones, have alternative development paths, geared to different 
types and sizes of development.[1,4] 

The benefits of Object-Oriented Development are reduced 
time to market, greater product flexibility, and schedule 
predictability and the risks of them are performance and start-
up costs [5]. 

A.  Analysis 

The aim of the analysis process is to analyze, specify, and 
define the system which is to be built. In this phase, we build 
models that will make it easier for us to understand the system. 
The models that are developed during analysis are oriented 
fully to the application and not the implementation 
environment; they are "essential" models that are independent 
of such things as operating system, programming language, 
DBMS, processor distribution, or hardware configuration.  

Two different models are developed in analysis; the 
Requirements Model and the Analysis Model. These are based 
on requirement specifications and discussions with the 
prospective users. The first model, the Requirements Model, 
should make it possible to delimit the system and to define 
what functionality should take place within it.                      For 
this purpose we develop a conceptual picture of the system 
using problem domain objects and also specific interface 
descriptions of the system if it is meaningful for this system. 
We also describe the system as a number of use cases that are 
performed by a number of actors. The Analysis Model is an 
architectural model used for analysis of robustness. It gives a 
conceptual configuration of the system, consisting of various 
object classes: active controllers, domain entities, and interface 
objects. The purpose of this model is to find a robust and 
extensible structure for the system as a base for construction. 
Each of the object types has its own special purpose for this 
robustness, and together they will offer the total functionality 
that was specified in the Requirements Model. To manage the 
development, the Analysis Model may combine objects into 
Subsystems [2]. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

72 | P a g e  

www.ijacsa.thesai.org 

B.  Construction 

We build our system through construction based on the 
Analysis Model and the Requirements Model created by the 
analysis process. The construction process lasts until the coding 
is completed and the included units have been tested. There are 
three main reasons for a construction process:  

1) The Analysis Model is not sufficiently formal. 

2) Adaptation must be made to the actual  

implementation environment. 

3) We want to do internal validation of the analysis 

results.  
The construction activity produces two models, the Design 

Model and the Implementation Model. Construction is thus 
divided into two phases; design and implementation, each of 
which develops a model. The Design Model is a further 
refinement and formalization of the Analysis Model where 
consequences of the implementation environment have been 
taken into account. The Implementation model is the actual 
implementation (code) of the system. [2]. 

C.  Testing 

Testing is an activity to verify that a correct system is being 
built. Testing is traditionally an expensive activity, primarily 
because many faults are not detected until late in the 
development. To do effective testing we must have as a goal 
that every test should detect a fault. 

Unit testing is performed to test a specific unit, where a unit 
can be of varying size from a class up to an entire subsystem. 
The unit is initially tested structurally, that is, "white box 
testing." This means that we use our knowledge of the inside of 
the unit to test it. We have various coverage criteria for the test, 
the minimum being to cover all statements. However, coverage 
criteria can be hard to define, due to polymorphism; many 
branches are made implicit in an object-oriented system. 
However, polymorphism also enhances the independence of 
each object, making them easier to test as standalone units. The 
use of inheritance also complicates testing, since we may need 
to retest operations at different levels in the inheritance 
hierarchy. On the other hand, since we typically have less code, 
there is less to test. Specification testing of a unit is done 
primarily from the object protocol (so-called "black box 
testing). Here we use equivalence partitioning to find 
appropriate test cases. Test planning must be done early, along 
with the identification and specification of tests [2]. 

D.  UML 

By the mid-1990s, the best-known methodologies were 
those invented by Ivar Jacobson, James Rumbaugh and Grady 
Booch. Each had his own consulting company using his own 
methodology and his own notation. By 1996, Jacobson and 
Rumbaugh had joined Rational Corporation, and they had 
developed a set of notations which became known as the 
Unified Modeling Language (UML). The „three amigos‟, as 
they have become known, donated UML to the Object 
Management Group (OMG) for safekeeping and improvement. 
OMG is a not-for-profit industry consortium, founded in 1989 
to promote open standards for enterprise-level object 
technology; their other well-known work is CORBA [1]. 

1) Use Case Diagram 

A use case is a static description of some way in which a 
system or a business is used, by its customers, its users or by 
other systems. A use case diagram shows how system use cases 
are related to each other and how the users can get at them. 
Each bubble on a use case diagram represents a use case and 
each stick person represents a user. Figure 2 depicts a car rental 
store accessible over the Internet. From this picture, we can 
extract a lot of information quite easily. For example, an 
Assistant can make a reservation; a Customer can look for car 
models; Members can log on; users must be logged on before 
they can make reservations; and so on [1, 3]. 

 

Figure 2: A use Case Diagram 

2)  Class Diagram (Analysis Level) 

A class diagram shows which classes exist in the business 
(during analysis) or in the system itself (during subsystem 
design). Figure 3 shows an example of an analysis-level class 
diagram, with each class represented as a labeled box. As well 
as the classes themselves, a class diagram shows how objects 
of these classes can be connected together. For example, Figure 
3 shows that a CarModel has inside it a CarModelDetails, 
referred to as its details.U3: View Car Model Details. (Extends 
U2, extended by U7.) Preconditions: None. 

a) Customer selects one of the matching Car Models. 

b) Customer requests details of the selected Car Model. 

c) iCoot displays details of the selected Car Model 

(make, engine size, price, description, advert and 

poster). 

d) If Customer is a logged-on Member, extend with U7. 
Postconditions: iCoot has displayed details of selected Car 

Models. 

Nonfunctional Requirements: r1. Adverts should be 
displayed using a streaming protocol rather than requiring a 
download [1, 5]. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

73 | P a g e  

www.ijacsa.thesai.org 

Figure 3: A class Diagram at the Analysis Level. 

3) Communication Diagram 

A communication diagram, as its name suggests, shows 
collaborations between objects. The one shown in Figure 4 
describes the process of reserving a car model over the Internet: 
A Member tells the MemberUI to reserve                   a 
CarModel; the MemberUI tells the ReservationHome to create 
a Reservation for the given CarModel and the current Member; 
the MemberUI then asks the new Reservation for its number 
and returns this to the Member [1]. 

1) Deployment Diagram 

A deployment diagram shows how the completed system 
will be deployed on one or more machines. A deployment 
diagram can include all sorts of features such as machines, 
processes, files and dependencies. Figure 5 shows that any 
number of HTMLClient nodes (each hosting a Web Browser) 
and GUIClient nodes communicate with two server machines, 
each hosting a WebServer and a CootBusinessServer; each 
Web Server communicates with a CootBusinessServer; and 
each CootBusinessServer communicates with a DBMS running 
on one of two DBServer nodes [1]. 

Figure 4: A communication Diagram 

 

Figure 5: A deployment Diagram. 

2)  Class Diagram (Design Level) 

    The class diagram shown in Figure 6 uses the same notation 

as the one introduced in Figure 3. The only difference is that 

design-level class diagrams tend to use more of the available 

notation, because they are more detailed. This one expands on 

part of the analysis class diagram to show methods, 

constructors and navigability [1, 3]. 

 
  



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

74 | P a g e  

www.ijacsa.thesai.org 

Figure 6: A design-level Class Diagram 

3)  Sequence Diagram 

A sequence diagram shows interactions between objects. 
Communication diagrams also show interactions between 
objects, but in a way that emphasizes links rather than 
sequence. Sequence diagrams are used during subsystem 
design, but they are equally applicable to dynamic modeling 
during analysis, system design and even requirements capture. 
The diagram in Figure 7 specifies how a Member can log off 
from the system. Messages are shown as arrows flowing 
between vertical bars that represent objects (each object is 
named at the top of its bar). Time flows down the page on a 
sequence diagram. So, Figure 7 specifies, in brief: a Member 
asks the AuthenticationServlet to logoff; the 
AuthenticationServlet passes the request on to the 
AuthenticationServer, reading the id from the browser session; 
the AuthenticationServer finds the corresponding Member 
object and tells it to set its session id to 0; the Member passes 
this request on to its InternetAccount; finally, the Member is 
presented with the home page [1, 5]. 

 
 

           Figure 7: A sequence Diagram from the Design Phase 

IV. COMPARISON BETWEEN TRADITONAL APPROACH AND 

OBJECT-ORIENTED APPROACH TO DEVELOPMENT IN 

SOFTWARE ENGINEERING 

Summarize the comparison between Traditional Approach 
and Object-Oriented Approach shows through the table1. 

TABLE 1. COMPARISON BETWEEN TRADITIONAL APPROACH AND OBJECT-
ORIENTED APPROACH 

TABLE I.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traditional Approach Object-Oriented Approach 

Used to develop the 

Traditional Projects that uses 

procedural programming. 

Used to develop Object-oriented 

Projects that depends on Object-

Oriented programming. 

Uses common processes 

likes: analysis, design, 

implementation, and testing. 

Uses UML notations likes: use case, 

class diagram, communication 

diagram, development diagram and 

sequence diagram. 

Depends on the size of 

projects and type of projects. 

Depends on the experience of the 

team and complexity of projects 

through the numbers of objects. 

Needs to large duration 

sometimes to development 

the large projects. 

Need to more time than Traditional 

approach and leads that to more 

cost. 

The problem of Traditional 

approach using classical life 

cycle [7, 8]. 

The object-oriented software life 

cycle identifies the three traditional 

activities 

of analysis, design, and 

implementation.[8]. 

 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

75 | P a g e  

www.ijacsa.thesai.org 

Waterfall 
Model

Iterative 
Dev.

V-Shape 
Model

Spiral 
Model

XP Model

Large Projects

Medium Projects

Small Projects

Figure 8: Illustrate The Different Models of Traditional Approach with 

Different Projects. [1, 6, 11] 

    From the previous figure 8 which illustrates the five 
models from traditional approach that deals with three types of 
projects, where we notice the waterfall model deals properly 
with large and medium projects like spiral model and iterative 
model that needs more time more cost and experience for team, 
however the V-shape model and XP model use properly with 
medium and small projects, because they need little time and 
some experience of team to perform projects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Illustrate The Different Criteria (Complexity, Experience and Cost) 

for Traditional Approach and Object-oriented Approach. [3, 5, 10] 

    From the previous chart illustrates the some criteria such 
as (Complexity, Experience, and Cost). In Traditional 
Approach this criterion depends on the type of model and size 
of project, but in general as shows from figure 9 is little above 
from the middle, however the Object-Oriented Approach 
depends on the complexity of project that leads to increase the 
cost than other approach.   

V. CONCLUSION AND FUTURE WORK 

After completing this paper, it is concluded that: 

1. As with any technology or tool invented by human 

beings, all SE methodologies have limitations [9]. 

2. The software engineering development has two ways to 

develop the projects that: traditional approach and object-

oriented approach. 

3. The traditional approach uses traditional projects that 

used in development of their procedural programming 

like C, this approach leads software developers to focus 

on Decomposition of larger algorithms into smaller ones.  

4. The object-oriented approach uses to development 

the object-oriented projects that use the object-

oriented programming like: C++ and Java. 

5. The object-oriented approach to software 

development has a decided advantage over the 

traditional approach in dealing with complexity and 

the fact that most contemporary languages and tools 

are object-oriented. 

Finally, some topics can be suggested for future works:  

1. Design the model that includes the features of 

traditional approach and object-oriented approach to 

develop and deals with different projects in software 

engineering. 

2. Updating some traditional approach to be able to use 

different types of projects. 

3. Simplifying the object-oriented approach through its 

steps to use the smallest projects that deal with simple 

programming.  
 

REFERENCES 

[1] Mike O‟Docherty, "Object-Oriented Analysis and Design Understanding 
System Development   with UML 2.0", John Wiley & Sons Ltd, 
England, 2005. 

[2] Magnus Christerson and Larry L. Constantine, “Object-Oriented 
Software Engineering- A Use Case Driven Approach “, Objective 
Systems, Sweden, 2009. 

[3] Ian sommerville, “Software Engineering”, Addison Wesley, 7th edition, 
2004. 

[4] Pankaj Jalote, “An Integrated Approach to Software Engineering”, 
Springer Science Business Media, Inc, Third Edition, 2005. 

[5] Grady Booch, “Object-Oriented Analysis and Design with applications”, 
Addison Wesley Longman, Inc, second Edition, 1998. 

[6] Roger S. Pressman, “Software Engineering a practitioner‟s approach”, 
McGraw-Hill, 5th edition, 2001. 

[7] M M Lehman,”Process Models, Process Programs, Programming 
Support”, ACM, 1987.  

[8] Tim Korson and John D. McGregor,” Understanding Object-Oriented: A 
Unifying Paradigm”, ACM, Vol. 33, No. 9, 1990.  

[9] Li Jiang and Armin Eberlein,” Towards A Framework for Understanding 
the Relationships between Classical Software Engineering and Agile 
Methodologies“, ACM, 2008. 

[10] Luciano Rodrigues Guimarães and Dr. Plínio Roberto Souza Vilela,” 
Comparing Software Development Models Using CDM”, ACM, 2005. 

[11] Alan M. Davis and Pradip Sitaram, “A Concurrent Process Model of 
Software Development”, ACM, Software Engineering Notes Vol. 19 No. 
2, 1994. 

 

AUTHORS PROFILE 

Nabil Mohammed Ali Munassar  

Was born in Jeddah, Saudi Arabia in 1978. He studied 

Computer Science at   University of Science and 

Technology, Yemen from 1997 to 2001. In 2001 he 

received the Bachelor degree. He studied Master of 

Information Technology at Arab Academic, Yemen, from 

2004 to 2007. Now he Ph.D. Student 3rd year of CSE at 

Jawaharlal Nehru Technological University (JNTU), 

Hyderabad, A. P., India. He is working as Associate 

Professor in Computer Science & Engineering College in 

University Of Science and Technology, Yemen. His areas of 

interest include Software Engineering, System Analysis and 

Design, Databases and Object Oriented Technologies. 

0

10

20

30

40

50

60

70

80

90

Traditiona App.

Complixity

Experience

Cost

Object-Oriented 

 App. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

76 | P a g e  

www.ijacsa.thesai.org 

Dr.A.Govardhan  

Received Ph.D. degree in Computer Science and Engineering 

from Jawaharlal Nehru Technological University in 2003, 

M.Tech. from Jawaharlal Nehru University in 1994 and B.E. 

from Osmania University in 1992. He is working as a Principal 

of Jawaharlal Nehru Technological University,

 Jagitial. He has published around 108 papers in various national 

and international Journals/conferences. His research of interest 

includes Databases, Data Warehousing & Mining, Information 

Retrieval, Computer Networks, Image Processing, Software 

Engineering, Search Engines and Object Oriented Technologies. 


