
Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

721 | P a g e

Systematic Review of Trends and Gaps in

Collaborative Software Engineering in the Cloud

Stanley Ewenike

School of Computing and Digital

Technologies

Staffordshire University

Stoke-on-Trent, United Kingdom

Stanley.Ewenike@staffs.ac.uk

Dr Elhadj Benkhelifa

School of Computing and Digital

Technologies

Staffordshire University

Stoke-on-Trent, United Kingdom

E.Benkhelifa@staffs.ac.uk

Prof Claude Chibelushi

School of Computing and Digital

Technologies

Staffordshire University

Stoke-on-Trent, United Kingdom

C.C.Chibelushi@staffs.ac.uk

Abstract—This paper presents a review of trends and

challenges in collaborative Software Engineering. Due to the

nature and size of large-scale Software Engineering projects,

effective collaboration is important and necessary. Hence, it is

not uncommon to see the adoption of a remix of practices,

models, methodologies, tools and skills. However, this remix,

alongside adoption of emerging paradigms such as Cloud

computing, results in factors that undermine collaborative

Software Engineering projects. This paper aims to provide a

systematic review and analysis of existing trends, models and

challenges. This is with a view towards fostering better

understanding of factors undermining the collaborative Software

Engineering process, as well as, helps to identify motivations,

gaps, and issues pertinent to this research area for a more

effective process in the Cloud. A systematic approach was

employed in this research. This approach is instrumental to

identifying relevant primary studies. Its design provides a means

for continuity in terms of any future extension to this review.

Keywords—Collaborative software engineering; software

development process; models; trends; cloud computing;

collaboration; systematic review

I. INTRODUCTION

Currently in the software development industry, there exist
different trends and development environments promoting
vendor-specific range of tools. These contribute to the
introduction of new factors undermining the collaborative
software development process. The result of this include:
complexities that undermine collaboration in the process;
failure to efficiently capture all related contexts at each stage of
the software development lifecycle; oversights,
misunderstanding, and lack of synchronized understanding of
requirements, artefacts and other related information at each
stage of the software development lifecycle; risk of inadequacy
of current practices and methodologies; risk of inadequacy of
software developed due to lack of explicit theoretically-
grounded architectures; increasing chances of vendor lock-in
scenarios; standardization issues, compliance, interoperability
issues, etcetera.

The factors mentioned above, among others discussed later
in this paper, negatively impact collaboration within the
development process. This necessitates the need to review and
analyze existing trends, models and practices. It is with the aim
of identifying motivations, gaps, challenges, and issues
pertinent to this research area. This lays the groundwork for

synthesizing new approaches, models and theoretical
foundations to underpin and adapt suitable methodologies for a
more sustainable, context aware, collaborative process.

In order to ensure verifiable findings, as contribution to
existing body of knowledge, research in the area of Software
Engineering needs the adoption of the structured, systematic
literature review approaches [1]. Part of the downside to
employing this approach is that it can be resource-intensive and
time consuming, thereby, necessitating the need to strike a
balance between rigour and requisite effort [1], [2].

II. METHODOLOGICAL APPROACH

This research starts off by systematically reviewing
literature from the parent discipline – Software Engineering, to
ascertain trends. It then proceeds to review literature related to
the research problem area – collaborative software
development in the Cloud, along with other related concepts.
This was done using an adapted systematic approach [3]. The
review analyzes existing body of knowledge with respect to
Software Engineering trends, and relating to the software
development process. It proceeds to review ccollaborative
software development process. It then moves on to review
related concepts, and how they could be leveraged to enhance
the process. The review builds a case for modifying the
existing process, through analysis of existing body of
knowledge in the domain area. This is to further strengthen the
relevance and need for a more efficient and context-aware
development process.

Table 1 presents the query strings used in the search and
retrieval of literature for review. This was done using
Mendeley, a reference manager useful for finding, storing,
managing and correlating academic research materials and
libraries [4]. Mendeley was chosen because of its reasonably
fair approximation of research databases, such as Scopus. It has
one of the largest databases in terms of research articles and
journal coverage, and traffic [5]. The search for literature was
restricted to a decade timeline. This is to minimize risk of using
obsolete and irrelevant information; and to maximize the
limited duration of the research project and resources.
However, this comes with the risk of missing out on useful
foundational knowledge within the research area, due to the
restricted scope, in terms of the chosen duration, as well as the
research management tool. The effect of this is minimized
through additional manual search.

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

722 | P a g e

TABLE I. QUERY STRINGS FOR SYSTEMATIC LITERATURE SEARCH

Area of literature

search/topic
Query strings Time span

Number of

articles before de-

duplication

Number of articles

after 1st tier de-

duplication

Extending Boehm’s

Software Engineering

trends timeline

(title: “Software engineering trends” AND year: [2010 TO 2017])

OR (title: “trends in Software engineering” AND year: [2010 TO

2017]) OR ((title: “*Software engineering*” AND “*trends*”)
AND year: [2010 TO 2017])

2010 - 2017 161 97

Collaborative Software

Development

((title: “distributed software development”) OR (title:

“collaborative software development”) OR (title: “global software
development”)) AND (year: [2008 TO 2017])

2008 - 2017 1309 607

Collaborative Software

Development in the

Cloud

((((title: “*software development*”) OR (title: “*collaborative

software development*”) OR (title: “*software engineering*”) OR

(title: “*collaborative software engineering*”)) AND (title:
“*cloud*”)) AND (year: [2008 TO 2017]))

2008 - 2017 118 76

Collaboration in

Software development

(title: “*collaboration*”) AND ((title: “*Software engineering*”)

OR (title: “*software development*”) OR (title: “*cloud*”)) AND

(year: [2010 TO 2017])

2008 - 2017 356 277

Fig. 1. Decade survey of collaborative software development within cloud

context, grouped by year.

Fig. 2. Decade survey of collaborative software development general

research, grouped by year.

1st tier de-duplication involved merging articles with fields
where details match, or, are conflicting using the capabilities
present in Mendeley [4]. 2nd tier de-duplication involved
exporting data in an xml format into Excel. In Excel, it
underwent further de-duplication process by using the
„Remove Duplicates‟ functionality within Excel to easily
identify fields that contain duplicate data. Combining these
fields to form a composite set allowed further identification
and removal of duplicates. This de-duped data table was then
normalized, reviewed, and analysed using charts and a
combination of methods involving open and axial coding [6].
This helped to identify gaps, challenges, issues, concepts,
categories, ideas, and existing relationships and applications.
This method was useful for generating themes, patterns and
categories, as well as, for testing generated data against any
existing data [7]. It was also useful for better understanding
and describing the gaps, challenges, issues, concepts,
categories, ideas, and existing relationships and
applications [8].

The charts in Fig. 1, 2, 3 and 4, highlight the timely
relevance of this research project as can be seen from the
proximity value of the coefficient of determination, R

2
.

However, the coefficient of determination, R
2
, does not

indicate the cause of the relatively lower research effort in this
research area, neither does it indicate the level of
appropriateness of the chosen independent variable. This
approach to literature review, played an important role in
definition of research themes, key dimensions, related
concepts, as well as facilitating efforts towards the generation
of taxonomies and ontologies [9]. The information generated
was via analysis and review of data presented, in line with
context, experience and understanding of authors, and this
research [8].

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

723 | P a g e

Fig. 3. Measurement of research spread for collaborative software development general research area.

Fig. 4. Measurement of research spread for collaborative software development within cloud context.

III. REVIEW OF SOFTWARE ENGINEERING TRENDS AND ITS

RELEVANCE

Software Engineering is a discipline that seeks to take away
randomness in the way software is developed. This is achieved
by establishing and applying systematic, disciplined and
procedural approaches, principles, practices, frameworks,
models, and methodologies to the design, development, and
testing of software products and the management of the
development process [10], [11]. A typical Software
Engineering process involves harmonious interaction between:
a set of people with various skills, an environment, tangible
and intangible artefacts; towards achieving an end goal [12].
However, factors such as constant changing needs and
requirements, affect the harmonious interactions between the
different aspect of the process, and ultimately the end goal.
This gives rise to a constant need for adequate processes and
environments that can adapt or react appropriately to changing
contexts, to ensure continuously meeting end goals and
outcomes. This need drives Software Engineering trends [13].

The Software Engineering trend timeline in Fig. 5 captures
the state of Software Engineering, by identifying various
underlying phenomena and trends influencing the evolution of
Software Engineering practices. This timeline gives rise to
predictions about the future of Software Engineering and the
development process, based on observed trend pattern [14]–
[16]. Verifying the veracity of these predictions and
ascertaining relevance and usefulness, can be done by
calibrating the prediction after reviewing the build up to the
prediction [17]. Calibrating the prediction helps in identifying
the current trends that were predicted, and those that were not
predicted. The timeline diagram reveals that the problems of
Software Engineering remain fundamentally the same. Over
time, these problems have morphed into different forms
identified by the different labels or terminologies, and still
prevail till date. These include:

 demand, growth and diversity (issues affecting
productivity, scalability, collaboration);

y = 0.0136x + 2007.5

R² = 0.9788

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

0 100 200 300 400 500 600 700

Mea sure o f re sea rch sprea d f o r Co l lbo ra t ive So f tw a re Deve lo pment(Sta n da rd

devia t io n)

y = 2009.6e4E-05x

R² = 0.9514

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

0 10 20 30 40 50 60 70 80

Mea sure o f re sea rch sprea d f o r Co l lbo ra t ive So f tw a re Deve lo pment in the

Clo ud(Sta nda rd devia t io n)

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

724 | P a g e

 software differences (issues affecting integration,
interoperability and compliance); and

 skills shortfall (technological issues).

The timeline also reveals trends that have contributed in
ways such as continuous integration, collocation of customers,
more simplistic designs, short development builds or
increments, and pair programming, etcetera, towards
collaborative software development e.g. Agile methods, etc.

However, the impact of these contributions have been mostly
felt in small projects, but not so much in larger projects [14],
[16]. The trends timeline positions collaboration as a spotlight
issue of this decade, because of factors such as: scale issues,
clashes in models, platforms and technologies, global
connectivity issues, business needs and requirements,
efficiency, and security issues. All these contribute to spur on
research and development efforts, and resulting into new trends
[2], [3], [14], [18]–[25].

Fig. 5. Timeline of Software Engineering trends.

Fig. 6. Typical makeup of a Software development project.

Investigating and developing better ways of tackling issues
and challenges in collaborative software development is not
just about another trend in Software Engineering. It is more
about responding to both existing and evolving Software
Engineering and business needs, in alignment with, available
resources and technologies of the time [26]. Equally important
is the development and implementation of practices and
context-aware mechanisms, in line with predicted future trends
likely to influence Software Engineering [14]–[16], [27], [28].
This is towards allowing Software development processes and
practices to adapt and evolve appropriately. It is also about
fostering better understanding of considerations for planning
and developing right approach, architecture, strategy, process
and support mechanisms, to enhance and sustain collaborative
software development processes.

The trends, though a means to an end, introduce factors
such as complexity and diversity due to distribution, and

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

725 | P a g e

differentiation at different levels. These include: hardware
level, the software level, cultural aspects, and the software
development activity phases. The identified trends undermine
and impact the inherent existing collaboration within
collaborative software development processes. This results in
the need for more efforts toward supporting the existing
collaboration. It also emphasizes the need for more efforts
towards enhancing and creating more context-aware
collaborative processes that would be adaptive, or harder to
undermine. Analysis of the trends timeline and the calibration
of the predicted trends highlight increasing dependence of
organizations, products, services and systems. It indicates:

 a gradual trend of software-defined or software-enabled
ecosystems;

 a need for competitive differentiation;

 rapid adaptability to change;

 a need for facilitation of rapid adaptation of products to
align with business and client requirements; and

 a need for reliability and security of software-defined
systems or ecosystem.

Addressing these needs will entail changes to the way
software is defined, designed, developed, and deployed.

IV. OVERVIEW OF COLLABORATIVE SOFTWARE

DEVELOPMENT LIFECYCLE PROCESS

The Software development process refers to the entire
process of developing software. It includes: a team,
interactions, framework of activities, set of practices providing
guidelines for designing, developing, testing, deploying,
maintaining and managing software [29]. This process spans
the entire development lifecycle from conceptualization of
software, to the retirement or decommissioning of the software.
This process is usually embodied in a defined high-level
abstraction usually referred to as a software development
model [30]. The stages of the development process are not
always set in stone, neither are the boundaries of the stages
always clearly delineated or differentiated [31], [32]–[34], but
the activities are usually, by consensus [40]–[42], centered
around addressing questions like:

 What needs to be done – requirement gathering and
analysis

 How to do what needs to be done – design

 Doing what needs to be done – development

 Verifying, validating and evaluating the solution –
testing

 Deploying or handing over the solution to client or
customer or user - deployment

 Ensuring the solution remains useable – maintenance.

Addressing these questions above, gives rise to tasks or
activities, which make up stages or phases of the software
development process. Software development models are used
to facilitate and coordinate these tasks or activities to transform
problem definitions and requirements into software [29], [30],
[33], [35]. Table 2 presents a cross-sectional summary and
comparison of some popular software development models.

The collaborative software development lifecycle process,
simply put, refers to how all stakeholders within a software
development project, work together on various activities,
throughout the software development lifecycle, to achieve a
common goal or outcome [36]. The goal in this instance refers
to the design, development, and release or deployment of the
software. This collaborative development process is one giant
activity, made up of sub-activities, involving requirements that
undergo transformations via interactions, to yield knowledge-
based artefacts. The artefacts from preceding activities mediate
and influence succeeding activities. They also form the basis
for verifying and validating each stage of the process, until the
end goal is achieved. A typical software development project
usually comprise: a team, made up of people of diverse
cultures, skillset, technical expertise, technological and non-
technological viewpoints, either. This team work together on
different tasks, or separately on complementary tasks, at
different stages of the process, towards a common goal. This
calls for efficient collaboration and management in the
software development process via a variety of tools or medium
[27], [41] (see Fig. 6).

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

726 | P a g e

TABLE II. CROSS-SECTIONAL COMPARISON OF SOFTWARE DEVELOPMENT MODELS

Category
Differentia-ting

Aspects

Software development models

Plan-driven Agile FOSS

Characteristic

Themes

Underlying

Philosophical objective

Seeks to establish and ensure
reliability, predictability and

stability

Seeks quick ways of adding value to

business, as well as adaptation to changes

Mainly seeks to ensure

freedom for user

Disciplined definition
Formal – Defined stages and

activities
Formal – Agile Manifesto

Informal – works on

voluntary collaboration

Development Cycles Sequential and Relatively longer
Iterative + relatively shorter + more focus on
testing

Iterative + relatively

shorter + more focus on

testing + free software

Focus of development

activities

Sequential processes and

documentation
Customer collaboration

User participation and

four freedoms – run

code, study code,
improve code, and

distribute code

Location emphasis

Favors both co-location and

geographically distributed

stakeholders or team members

Emphasis on co-location

Favors both co-location

and geographically
distributed stakeholders

or team members

Release period Relatively less frequent Relatively more frequent Same as in Agile

Documentation Relatively more documentation Relatively less documentation Same as in Agile

Client involvement Relatively lower Relatively higher Relatively lower

Reliance on tool support

for development tasks
Yes No Yes

Overall goal
Improvement of software

development process

Improvement of software development

process

Improvement of software

development process

Other

Examples
Waterfall, Unified process (e.g. as

implemented in IBM‟s Rational)

Extreme, Scrum, Kanban, Crystal, Rapid
Application Development (RAD), Lean

Development methodology,

GNU, Linux, Apache,

Mozilla

Typical number
of activity

stages

0-4 No Yes Yes

5-9 Yes No No

Prominent
challenge and

issues

Less client involvement, long
development times, inflexibility

with management of changes in

requirements, delays and
development backlog, more

predictive than reactive

Less concrete planning, size of team is
relatively smaller, less emphasis on

documentation, can be tasking for the team in

terms of time commitment, product evolution
may be quite different from that envisaged,

more reactive than predictive

Varies

Similarities and
dissimilarities

Communication
Emphasis on formal

communication
Emphasis on informal communications Varies

Control/Management
Approaches and implements control
through structure

Approaches and implements control through
flexibility

Varies

Planning Tends to be more upfront Tends to be on-going as and when Varies

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

727 | P a g e

V. COLLABORATIVE SOFTWARE DEVELOPMENT IN THE

CLOUD

One of the most adopted definition of Cloud computing,
defines the paradigm as “…. a model for enabling convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g. networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction” [43], [44]. This definition captures main
characteristics Cloud computing, which constitute some of the
most attractive features of the Cloud, as well as, represents the
strengths from where a lot of the benefits attributed to the
Cloud come from. Pre-Cloud setups were characterized by:
reliance on silo-like architectures that were difficult to scale;
resource waste; complex administrative and management
functions; less agility towards change; high capital and
operational costs [40], [42], [43]. Benefits of Cloud computing
include [37]–[39], [44]–[48]:

 Enabling opportunities for sustainable models of
computing and businesses;

 relatively higher degrees of flexibility, productivity and
scalability;

 faster and larger scale of computation, processing and
sharing;

 wider accessibility and greater availability;

 cost savings and efficiency;

 scalable resources for storage, backup and recovery;

 relatively easier setting up of customized environments
and quicker deployments;

 agility;

 facilitation of innovation and R&D;

 adaptability;

 extensibility and opportunities for all stakeholders to
collaborate; and

 provides framework or platform for integrating
technologies and platforms to promote more sustainable
strategies.

The advent of Cloud computing has brought about a myriad
of service provisioning options. This has resulted in the
consumption of resources as services on a pay-per-use basis.
This greatly favours organizations and companies with limited
resources [49]. Since the emergence of Cloud computing, more
efforts are now directed towards exploiting and leveraging
cloud computing for the range of benefits and advantages it
offers, mostly as services. This is evident in the range of Cloud
applications and services springing up and used by
organizations [50], [51]. However, there are certain challenges
and issues in Cloud Computing which would need
consideration [52], [53], [55], [56]. These include:

 security issues;

 vendor lock-in and interoperability issues;

 portability issues;

 efficiency of automation considerations;

 performance issues;

 availability and integrity of relevant information;

 handling uncertainty about heterogeneity, content type,
location of client, bandwidth unpredictability, dynamic
workload variations, workflow schedules, architecture
and resource optimization; and

 context awareness and reproducibility within contexts.

Fig. 7. A representation of Cloud computing characteristics.

Some of these issues mentioned above are partly inherited,
due to Cloud Computing being a paradigm that leverages a
couple of other technologies [49], [51], [57]. Effect of the
changes brought about by the Cloud Computing trend can be
seen in the paradigm shift from use of desktop IDEs to Cloud
APIs, in building software projects. Various Cloud services
providers have their own API offerings, often built on top of
their IaaS offerings [54]. The benefits and advantages offered
by the Cloud, amongst other features and characteristics makes
the case for the suitability of Cloud Computing for Cloud-
based Collaborative Software Development. The Cloud allows
for rapid provisioning of resources as web services, which
could be harnessed to achieve much needed rapid responsive
development, and provide the environment that could enhance
the collaboration needed [50], [58]. Leveraging the Cloud
would require the adaptation of existing collaborative software
development processes to align with the capabilities of the
Cloud. However, this is likely to raise issues for legacy
applications and existing management practices and
methodologies of software development projects [54]. Issues to
contend with include: considerations regarding existing
processes, applications, practices and methodologies used in
Software development projects. An attempt is made in this
research project to summarize strengths, weaknesses,
opportunities, and threats of Cloud computing via SWOT
analysis to highlight aspects of Cloud Computing that need to
be critically considered and evaluated, and others that need to
be further exploited for more benefits. Table 3 summarizes the
findings from the SWOT analysis carried out.

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

728 | P a g e

Majority of R&D efforts in Collaborative software
development process in the Cloud concentrate mostly, on
specific aspects of the process, more than others, giving rise to
lopsided or unbalanced collaboration within the process.
Efforts devoted towards Collaborative Software Development
life cycle process in general, and within Cloud context, have
been mainly in the areas of [29], [30], [67]:

TABLE III. A SWOT ANALYSIS OF CLOUD COMPUTING

STRENGTHS (INTERNAL) OPPORTUNITIES (EXTERNAL)

 Scalable and elastic
infrastructure

 On-demand self-service

 Measured usage: pay-as-you
go

 Agility. Ease of resource
provisioning and pooling

 Broad network access

 Provider assurances of over

95% availability rate

 Minimal management effort

 Regular and easy update

 Shared resources

 Broad network access.

Promotes mobility and
accessibility

 Scalable and elastic
infrastructure

 Ease of resource provisioning

 Ease to setup and ease of

implementation

 Service-nature of resources
e.g. accessing resources as

web services

WEAKNESSES (INTERNAL) THREATS (EXTERNAL)

 Absence of universally
accepted Cloud

interoperability standards

 Requires a fast and constant
internet connection for best

performance

 Dependency on provider, to

an extent

 Inability to predict peak and

trough periods for resource

usage

 Service agreement changes

and API changes

 Auditability of services/data

 Legislative issues: lack of
international regulatory legal

precedents or framework

 Security issues, privacy and
risks such as insider threat

 Ownership of data and
services

 Scheduled and unscheduled
service failures and outages

 asynchronous collaboration;

 more support for coding and deployment stages of the
software development process;

 collaborative software development from the
standpoints of trust and privacy;

 collaboration in isolated aspects of the software
development process, such as coding activities, or
design activities, or testing activities, version control
repositories;

 non-cloud-based collaborative software development
process;

 use of open-source tools for contributing, improving,
and managing code; and

 integrating social networking and communication
features with the development process.

Although these efforts represent valid contributions and
important enablers, they are still missing important aspects that
enable a more holistic process, with solid theoretical
foundation [27], [59]–[61]. Leveraging the Cloud to enhance
the development process is necessary for the following
reasons:

 To help address inefficiencies and inconsistencies of the
traditional process and environments.

 To align the development with current trends and
changing business requirements.

 To leverage new concepts, frameworks and methods for
a more optimal development process.

 For economies of scale and efficient use of resources,
tighter collaboration, efficient management from
automation and context-aware linking and sharing of
information.

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

729 | P a g e

TABLE IV. SUMMARY OF GAPS IN CLOUD-BASED COLLABORATIVE SOFTWARE DEVELOPMENT

Main gaps identified Summary Comments

 Need for Cloud-based context-aware Collaborative software

development architectures with explicit theoretical foundation

[3], [55], [59]–[63]

 Emerging technologies change the way software is accessed, utilised, stored and

maintained. They introduce or emphasize new considerations such as:

distribution, more complexity and more contexts. There is need to develop
reliable software for continuous adaptation to changing requirements.

 Current innovative solutions rely on results from mix of successful and failed

implementations, as well as glitches.

Observed impact include:

i) Randomness in the science of Software Engineering process.

ii) Undermined collaboration in collaborative lifecycle development process.
iii) Emphasis on need for better and sustainable frameworks, architectures, tools, and

strategies, with explicit theoretical foundations for more structured adaptation

and sustainable collaboration.
iv) Need for adequate methods for managing change in the Cloud-based

development process in the Cloud, and knowledge creation.

 Need for effective capture and representation of context data
and all related data across entire life cycle process, in a

Cloud-agnostic format for generation of actionable insights

[2], [15], [22]–[25], [64]–[67]

 Insufficient context data and other related data are sometimes poorly collected,
completely missed, ignored, misunderstood, or poorly applied.

 Requirements, artefacts from various activities, action plans, feedback, and other

important related information necessary to achieve a goal are sometimes not
clearly and accurately defined, and agreed upon by all concerned.

Observed impact include:

i) Negative impact on balancing and optimizing of flow of information within the
development environments and teams.

ii) Late detection and resolution of issues and bugs that could have been otherwise

avoided if sufficient context data are collected, and taken into consideration and
applied within activities.

iii) Inadequate tracking of project progress.

iv) Conflicts in perspectives, understanding, interpretation and execution of
activities. This often results in defective software, or software needing more

rework.

 Need for effective ways for managing complexity across

stages of Cloud-based life cycle development process to
ensure synchronous collaboration and verifiable

outputs/outcomes at various stages of the process [1], [20],

[46], [64], [69]

 Certain disciplines such as the engineering disciplines, are usually guided,

constrained and regulated by physical laws that ensure regularity and a way of

keeping complexity in check. Conversely, Software Engineering is not easily
regulated by physical laws.

Observed impact include:

i) Growth in complexity of software artefacts and the life cycle process.
ii) Differences and difficulty in understanding, developing and testing in the right

way and correctly.

iii) Increased need to challenge and validate results via some form of empirical
effort.

 Need for adequate ways for benchmarking Cloud-based
collaborative development and testing [17]–[19], [21], [62],

[68]

 The existing standards are not adequate and mostly generic. Does not expressly cater
for analysis, assessment and measurement of the Cloud-based collaborative

development process.

There is growing activity from industry in Cloud-based
collaboration, with a lot of emphasis in content management,
sharing and storage, but relatively less in collaborative
software development. Although some notable industry
players, have managed to make breakthroughs in collaborative
Cloud-based software development, there is little detailed
documentation available [37], [46]. Table 4 presents a
summary of the most commonly identified issues and
challenges, which presents as gaps.

VI. CONCLUSION

For effective collaboration to occur within the software
engineering process in the Cloud, mere communication and
coordination are not enough. Companies who have transitioned
their development environments to the Cloud, have started
realizing benefits such as: cost reduction in hardware;
relatively accelerated software development life cycle process
via reduction of time and effort needed to set up development
and testing environments; unified management; service and

functionality expansion; on-demand provisioning and access to
resources and development environments. Collaborative
Software development lifecycle process in the Cloud, presents
complexities and contexts, amidst other factors, that need to be
considered during the process. These are sometimes
underestimated, ignored, or sometimes not given enough
consideration and planning. This undermines the collaboration
in the process, randomizes the process, and impacts the ability
to facilitate a reproducible, sustainable, context-aware
collaborative lifecycle development process in the Cloud. This
is one of the motivations for this research.

Other motivations include: need for identification of
reliable ways of managing and measuring collaboration and
other success factors within the process; need for new
methodologies and ways of enhancing effective collaboration
within the lifecycle development process; need for effective
ways of managing complexity and ensuring synchronous
regularity, as well as, verifiable outputs and outcomes at the

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

730 | P a g e

various stages of the collaborative development process. Also,
development of key dimensions for analysing and
benchmarking the process is essential for continuous process
improvement and sustainability. Being able to consistently
reproduce the enhanced process would require standardization
in the form of frameworks, architectures and standards.

REFERENCES

[1] H. Zhang and M. Ali Babar, „Systematic reviews in software
engineering: An empirical investigation‟, Inf. Softw. Technol., vol. 55,
no. 7, pp. 1341–1354, Jul. 2013.

[2] B. A. Kitchenham, T. Dyba, and M. Jorgensen, „Evidence-based
software engineering‟, in Proceedings of the 26th international
conference on software engineering, 2004, pp. 273–281.

[3] B. Kitchenham and S. Charters, „Guidelines for performing systematic
literature reviews in software engineering. Tech. Rep. EBSE 2007-001,
Keele University and Durham University Joint Report‟, 2007.

[4] J. Raubenheimer, Mendeley: Crowd-sourced Reference and Citation
Management in the Infomation Era. True Insight Publishing, 2014.

[5] B. Cronin and C. R. Sugimoto, Beyond Bibliometrics: Harnessing
Multidimensional Indicators of Scholarly Impact. MIT Press, 2014.

[6] C. Auerbach and L. B. Silverstein, Qualitative Data: An Introduction to
Coding and Analysis. NYU Press, 2003.

[7] C. Grbich, Qualitative Data Analysis: An Introduction. SAGE, 2012.

[8] T. Basit, „Manual or electronic? The role of coding in qualitative data
analysis‟, Educ. Res., vol. 45, no. 2, pp. 143–154, Jun. 2003.

[9] E. H. Bradley, L. A. Curry, and K. J. Devers, „Qualitative Data Analysis
for Health Services Research: Developing Taxonomy, Themes, and
Theory‟, Health Serv. Res., vol. 42, no. 4, pp. 1758–1772, Aug. 2007.

[10] K.-J. Stol and B. Fitzgerald, „Uncovering Theories in Software
Engineering‟, 2013.

[11] C. Ghezzi, M. Jazayeri, and D. Mandrioli, „Fundamentals of software
engineering‟, 2002.

[12] M. DEVLIN and S. DRUMMOND, „Software Engineering Students‟
Cross-Site Collaboration: An Experience Report.‟, 2007.

[13] S. L. Pfleeger, Software engineering: theory and practice. Prentice Hall,
2001.

[14] B. W. Boehm, „Some Future Software Engineering Opportunities and
Challenges‟, in ResearchGate, 2010, pp. 1–32.

[15] B. Boehm, „A View of 20th and 21st Century Software Engineering‟, in
Proceedings of the 28th International Conference on Software
Engineering, New York, NY, USA, 2006, pp. 12–29.

[16] B. Boehm, „Some future trends and implications for systems and
software engineering processes‟, Syst. Eng., vol. 9, no. 1, pp. 1–19, Mar.
2006.

[17] J. Münch and K. Schmid, Perspectives on the Future of Software
Engineering: Essays in Honor of Dieter Rombach. Springer Science &
Business Media, 2013.

[18] M. Mohtashami, T. J. Marlowe, and C. S. Ku, „Metrics Are Needed for
Collaborative Software Development‟, J. Syst. Cybern. Inform., vol. 9,
no. 5, pp. 41–47, 2011.

[19] N. Chanda and X. F. Liu, „Intelligent analysis of software architecture
rationale for collaborative software design‟, in 2015 International
Conference on Collaboration Technologies and Systems (CTS), 2015,
pp. 287–294.

[20] M. Mohtashami, V. Kirova, T. Marlowe, and F. Deek, „A Comparison
of Three Modes of Collaboration for Software Development‟, AMCIS
2009 Proc., Jan. 2009.

[21] T. Marlowe, „Addressing Change in Collaborative Software
Development: Process and Product Agility and Automated Traceability‟.

[22] N. Jastroch, „Advancing Adaptivity in Enterprise Collaboration‟, Social
Science Research Network, Rochester, NY, SSRN Scholarly Paper ID
1907348, Nov. 2009.

[23] T. Zimmermann and C. Bird, „Collaborative Software Development in
Ten Years: Diversity, Tools, and Remix Culture‟, in Proceedings of the
Workshop on The Future of Collaborative Software Development, 2012.

[24] Begel, J. Bosch, and M.-A. Storey, „Social Networking Meets Software
Development: Perspectives from GitHub, MSDN, Stack Exchange, and
TopCoder‟, IEEE Softw., vol. 30, no. 1, pp. 52–66, Jan. 2013.

[25] R. Oberhauser, „Towards Cloud-based Collaborative Software
Development: A Developer-Centric Concept for Managing Privacy,
Security, and Trust‟, in ICSEA 2013, The Eighth International
Conference on Software Engineering Advances, 2013, pp. 533–538.

[26] M. Nordio, H.-C. Estler, C. A. Furia, and B. Meyer, „Collaborative
Software Development on the Web‟, ArXiv11050768 Cs, May 2011.

[27] Finkelstein and J. Kramer, „Software engineering: a roadmap‟, in
Proceedings of the Conference on The Future of Software Engineering,
New York, NY, USA, 2000, pp. 3–22.

[28] J. D. Herbsleb, „Global Software Engineering: The Future of Socio-
technical Coordination‟, in 2007 Future of Software Engineering,
Washington, DC, USA, 2007, pp. 188–198.

[29] Fuggetta, „Software process: a roadmap‟, in Proceedings of the
Conference on The Future of Software Engineering, New York, NY,
USA, 2000, pp. 25–34.

[30] Sommerville, Software Engineering, 9 edition. Boston: Addison Wesley,
2010.

[31] T. Dybå and T. Dingsøyr, „Empirical studies of agile software
development: A systematic review‟, Inf. Softw. Technol., vol. 50, no. 9–
10, pp. 833–859, Aug. 2008.

[32] N. M. A. Munassar and A. Govardhan, „A Comparison Between Five
Models Of Software Engineering‟, IJCSI Int. J. Comput. Sci. Issues, vol.
7, no. 5, pp. 94–101, 2010.

[33] M. Magdaleno, C. M. L. Werner, and R. M. de Araujo, „Reconciling
software development models: A quasi-systematic review‟, J Syst Softw,
vol. 85, no. 2, pp. 351–369, Feb. 2012.

[34] J. Feller, B. Fitzgerald, and others, Understanding open source software
development. Addison-Wesley London, 2002.

[35] Mistrík, J. Grundy, A. Hoek, and J. Whitehead, Collaborative Software
Engineering. Springer Science & Business Media, 2010.

[36] M. Lepmets and M. Nael, „Comparison of Plan-driven and Agile Project
Management Approaches: Theoretical Bases for a Case Study in
Estonian Software Industry‟, in Proceedings of the 2011 Conference on
Databases and Information Systems VI: Selected Papers from the Ninth
International Baltic Conference, DB&IS 2010, Amsterdam, The
Netherlands, The Netherlands, 2011, pp. 296–308.

[37] L. Barnett and C. E. Schwaber, „Applying open source processes in
corporate development organizations‟, Forrester Res., pp. 1–15, 2004.

[38] P. Mell and T. Grance, „The NIST definition of cloud computing‟, 2011.

[39] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, „Draft cloud
computing synopsis and recommendations‟, NIST Spec. Publ., vol. 800,
p. 146, 2011.

[40] Quest, „Challenges-Benefits-Cloud-Computing.pdf‟, pp. 1–10, 2012.

[41] S. Logo, „Introduction to Cloud Computing‟.

[42] Warth, N. Levin, D. Rinehart, J. Teijaro, H. P. Benton, and G. Siuzdak,
„Metabolizing Data in the Cloud‟, Trends Biotechnol., 2017.

[43] F. Durao, J. F. S. Carvalho, A. Fonseka, and V. C. Garcia, „A systematic
review on cloud computing‟, J. Supercomput., vol. 68, no. 3, pp. 1321–
1346, Jun. 2014.

[44] Z. Mahmood and S. Saeed, Software Engineering Frameworks for the
Cloud Computing Paradigm. Springer Publishing Company,
Incorporated, 2013.

[45] Jackson, „Cloud Collaboration‟, Mix, vol. 35, no. 5, pp. 16–18, May
2011.

[46] Benkhelifa, M. Abdel-Maguid, S. Ewenike, and D. Heatley, „The
Internet of Things: The eco-system for sustainable growth‟, in 2014
IEEE/ACS 11th International Conference on Computer Systems and
Applications (AICCSA), 2014, pp. 836–842.

[47] M. Armbrust et al., „Above the clouds: A berkeley view of cloud
computing‟, 2009.

[48] G. Skourletopoulos et al., „Big Data and Cloud Computing: A Survey of
the State-of-the-Art and Research Challenges‟, in Advances in Mobile
Cloud Computing and Big Data in the 5G Era, C. X. Mavromoustakis,

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

731 | P a g e

G. Mastorakis, and C. Dobre, Eds. Springer International Publishing,
2017, pp. 23–41.

[49] Q. Zhang, L. Cheng, and R. Boutaba, „Cloud computing: state-of-the-art
and research challenges‟, J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18,
2010.

[50] M. Armbrust et al., „A view of cloud computing‟, Commun. ACM, vol.
53, no. 4, pp. 50–58, 2010.

[51] S. M. Hashemi and A. K. Bardsiri, „Cloud Computing Vs. Grid
Computing‟, 2009.

[52] E. M. Maximilien and P. Campos, „Facts, trends and challenges in
modern software development‟, Int. J. Agile Extreme Softw. Dev., vol.
1, no. 1, pp. 1–5, Jan. 2012.

[53] R. Oberhauser, „Cloud-based Collaborative Software Development: A
Concept for Managing Transparency and Privacy based on Datasteads‟,
Int. J. Adv. Softw., vol. 7, no. 3 and 4, pp. 435–445, Dec. 2014.

[54] S. Ardaiz, „Collaborative Communication: Why Methods Matter‟, Triple
Pundit People Planet Profit, Dec. 2011.

[55] C. Gadea, B. Solomon, B. Ionescu, and D. Ionescu, „A Collaborative
Cloud-Based Multimedia Sharing Platform for Social Networking
Environments‟, in 2011 Proceedings of 20th International Conference on
Computer Communications and Networks (ICCCN), 2011, pp. 1–6.

[56] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, „Social Coding in
GitHub: Transparency and Collaboration in an Open Software
Repository‟, in Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work, New York, NY, USA, 2012, pp. 1277–
1286.

[57] H. K. Buhrer, „Software Development: What It is, What It Should Be,
and How to Get There‟, SIGSOFT Softw Eng Notes, vol. 28, no. 2, p. 5–
, Mar. 2003.

[58] R. Jeffery, „Theory, models and methods in software engineering
research.‟, in ICSE‟2000 Workshop on” Beg, Borrow, or Steal: Using
Multidisciplinary Approaches in Empirical Software Engineering
Research”(2000), 2000, pp. 2–7.

[59] P. Ralph, „Software Engineering Process Theory: A Multi-Method
Comparison of Sensemaking-CoevoIution-Implementation Theory and
Function-Behavior-Structure Theory‟, ArXiv13071019 Cs, Jul. 2013.

[60] P. Ralph, „Possible Core Theories for Software Engineering‟.

[61] I. Gorton, A. B. Bener, and A. Mockus, „Software Engineering for Big
Data Systems‟, IEEE Softw., vol. 33, no. 2, pp. 32–35, Mar. 2016.

[62] G. Mark, „Extreme Collaboration‟, Commun ACM, vol. 45, no. 6, pp.
89–93, Jun. 2002.

[63] T. Hildenbrand, F. Rothlauf, M. Geisser, A. Heinzl, and T. Kude,
„Approaches to Collaborative Software Development‟, in International
Conference on Complex, Intelligent and Software Intensive Systems,
2008. CISIS 2008, 2008, pp. 523–528.

[64] A. Kyriakidou-Zacharoudiou, „Distributed development of large-scale
distributed systems: the case of the particle physics grid‟, phd, The
London School of Economics and Political Science (LSE), 2011.

[65] M. Mohtashami, T. J. Marlowe, V. D. Kirova, and F. P. Deek, „Risk-
driven Management Contingency Policies in Collaborative Software
Development‟, Int. J. Inf. Technol. Manag., vol. 10, no. 2–4, pp. 247–
271, Jan. 2011.

[66] V. Pankratius, Emerging Research Directions in Computer Science:
Contributions from the Young Informatics Faculty in Karlsruhe. KIT
Scientific Publishing, 2010.

[67] M. Richards, Software architecture patterns, 1st ed. O‟Reilly Media,
Inc., 20015.

[68] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI for Development:
Guidelines for Process Integration and Product Improvement, 3 edition.
Upper Saddle River, NJ: Addison Wesley, 2011.

[69] E. M. Bouwers, „Metric-based Evaluation of Implemented Software
Architectures‟, 2013.

