
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Secure Fast Fourier Transform using Fully
Homomorphic Encryption

Thomas Shortell
Department of Computer Science

Drexel University
3141 Chestnut St.

Philadelphia, PA, 19104
Email: tms38@drexel.edu

Ali Shokoufandeh
Department of Computer Science

Drexel University
3141 Chestnut St.

Philadelphia, PA, 19104
Email: tms38@drexel.edu

Abstract—Secure signal processing is becoming a de facto
model for preserving privacy. We propose a model based on
the Fully Homomorphic Encryption (FHE) technique to mitigate
security breaches. Our framework provides a method to perform
a Fast Fourier Transform (FFT) on a user-specified signal. Using
encryption of individual binary values and FHE operations over
addition and multiplication, we enable a user to perform the FFT
in a fixed point fractional representation in binary. Our approach
bounds the error of the implementation to enable user-selectable
parameters based on the specific application. We verified our
framework against test cases for one dimensional signals and
images (two dimensional signals).

Keywords—Image processing, computer security, Fast Fourier
Transforms

I. INTRODUCTION

Security breaches are severe situations that can cause
significant problems when using cloud computing resources.
This can occur because unencrypted data stored within these
resources is vulnerable to security attacks, even if the cloud
computing resource is trusted. Encrypting the data can mitigate
such potential vulnerabilities. However, if the resources are
being used to perform significant computations, then encrypt-
ing the data is not normally a possibility. Our focus is on
solving the problem with the ability to process data while
encrypted using Fully Homomorphic Encryption (FHE) [1].
FHE enables a user to encrypt their data and run a prescribed
process against the encrypted data. In this paper we will focus
on secure signal processing particularly, with performing the
Fast Fourier Transform (FFT) using the FHE framework.

Use of FHE for secure signal processing is new technology
and has potential for many more applications. Previous con-
cepts focused on securing just the data. With FHE capabilities,
it is possible to secure the data and process the data (i.e.
perform a signal processing algorithm on it). Performing the
signal processing algorithm while the data is encrypted enables
the additional layer of security. This occurs because the system
running the secure signal processing algorithm is not able to
see the data and may not understand the process that is being
used on the data 1. Since signal processing is an often used
technique in real world application, obfuscation of the data

1Reverse engineering could be done to determine the algorithm. We assume
the algorithm is not identified to the system (i.e. naming the process Process10
vice EncryptedFFT)

will be important and the method of FHE provides this. An
additional note is the intermediate results of the algorithm are
encrypted, so it is not possible for an attacker to gain any
additional information.

Focusing on the overall problem, our user has a set of data
that needs to be processed on a cloud computing resource. As
illustrated in Fig. 1, the FHE process involves a user (client
side) using a cloud computing resource (server side). The first
step in the process is to generate keys for the encryption
((public, secret) key pair). With this key pair, the original signal
can be encrypted (Step 2). The next step (3) in the process
is to transport the data from the client to server; which is
not a major focus of this paper, except the data should be
transmitted via a secure channel to minimize exposure. Next,
the encrypted process (Step 4) can occur (FFT in this paper).
Here it is important to note that the processing on the server
is actually developed by the user and transported to the server
(this is not shown in the diagram). Similar to Step 3, Step 5
involves getting the data from the server back to the client
(assumed secure connection). Finally (Step 6), the encrypted
processed signal can be decrypted. The decryption results in
the processed signal for the user. This process also leaves open
the possibility of generating algorithms that are unknown to
the client side. A complex algorithm that uses an FFT would
need the building block of an encrypted FFT.

Considering the approach used by Shortell and Shokoufan-
deh [2], we improve it to perform an FFT in the encrypted
space. Our approach focuses on using single binary digit
encryption of fixed point values. This requires development
of binary gate processors to take binary digit computations to
full byte and word processing. Once this is done, it is possible
to build an encrypted version of the FFT. This is analogous to
building a CPU and having a computer program that performs
the FFT via additions, subtractions, and multiplications. We
verified our approach in one and two dimensional (image)
cases of the FFT. Results of two dimensional are shown in
Fig. 2.

The remainder of this paper will flow as follows. Section II
presents the related work to encryption and performing secure
signal processing. We discuss some background related to the
FHE scheme used in Section III. Section IV provides the
detailed discussion on implementation of FFT. In Sections V
and VI we discuss the accuracy errors and our implementation

756 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Fig. 1. FHE in cloud computing: Steps to perform FHE on a cloud computing resources from a data perspective.

evaluation results. We provide details on Time/Space Complex-
ities of FFT over FHE in Section VII. Finally, we present our
conclusions and future work in Section VIII.

II. RELATED WORK

Research in secure signal processing has received increas-
ing attention over the past decade. Troncoso-Pastoriza and
Perez-Gonzalez [3] examined secure signal processing in the
cloud very similar to the concept we use in our work. They fo-
cused on privacy issues that occur with cloud computing which
is ideally what a Fully Homomorphic Encryption scheme can
provide. Wang et. al. [4] also considered privacy issues with
secure signal processing. Their focus was on biometrics and
protecting authentication and privacy. This paper is similar in
keeping confidentiality of private data in a cloud computing
environment.

Other research in this field focuses on using the Paillier
encryption scheme that provides homomorphic addition and
constant multiplication. But the lack of ciphertext-ciphertext
multiplication precludes this scheme from being fully homo-
morphic. Hsu, Lu, and Pei [5] used this scheme to perform
the Scale Invariant Feature Transform (SIFT) in an encryption
fashion. Bai et al. [6] also used the scheme for an encrypted
SURF. There are a few other examples of using the Paillier
scheme [7], [8]. While all of these examples can be performed
in the encrypted domain, they fail to be a Fully Homomorphic
Encryption. In contrast, our approach uses a Fully Homomor-
phic Encryption scheme.

It is also important to note some of the recent advances
in Fully Homomorphic Encryption in the past few years.
Gentry developed the original scheme in 2009 [1], [9]. The

original scheme was designed for encrypting binary values and
improvements over time continued to look at time and space
complexity and the ability to encrypt more than just binary
values [10], [11]. An improved scheme [12] developed a few
years later is used in this paper as a FHE tool of choice for
our solution

III. NOTATION AND BACKGROUND

In this paper we use small caps to identify individual binary
gates. Zq is used to represent an integer ring with a modulus
of q. Letters are used for variables in error analysis equations.
For Complex variables, we will use Re and Im to represent
the real and imaginary values of a complex number.

To perform an encrypted FFT, we need the ability to
encrypt and then process the ciphertexts. We use the Fully
Homomorphic Encryption scheme defined and proposed by
Gentry, Sahai, and Waters [12] that provides the basic ca-
pabilities including: key generation, encryption, decryption,
and evaluation. Key generation provides a public/secret key
pair that encrypts with the public key and decrypts with the
secret key. Hardness of their scheme is based on learning with
errors problem [13]; hence the secret key is a trapdoor in the
public key to extract the original plaintext. Encryption and
decryption are relatively straightforward conceptual processes.
It is important to note that the ciphertexts are matrices that
embed integers numbers, and the scheme can operate under
the Zq ring. Moving into evaluating ciphertexts, the scheme
has four capabilities: addition, constant multiplication, two
ciphertext multiplication, and a NAND gate. The first three
operate over the Zq ring, but last operation is only for binary
values. We also rely on the fact the NAND gates can be
combined into any other gate.

757 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Fig. 2. Example of running FFT in encrypted domain for 2D images. The first row shows original images, the second row is the unencrypted FFT, third row
is the FFT over FHE, and final row is the difference of the FFT results. As we can see in the last row our results showed that the 2D version of the FFT in the
encrypted domain performs as well as the unencrypted version. The images have been scaled to aid in reviewing.

IV. FFT IN FHE

To implement FFT in the chosen FHE scheme, it is
necessary to develop a structure that enables using the binary
NAND gate to perform encrypted additions and constant mul-
tiplications. Since the individual ciphertexts are binary values,
the additions and multiplications are going to need to be
binary gates. Additionally, we need to perform calculations
with fractional numbers given an arbitrary bit size. So the
addition and multiplication processes in binary need to account
for this.

Binary addition and multiplication are computed using
different binary gates, mainly XOR and AND gates. NAND
gates are extremely useful because all other binary gates
can be calculated from them! This includes AND, OR, XOR,
NOT, NOR, and XNOR. Having these gates available enables
generation of more complex binary processes. Many of these
gate computations are well known techniques.

Our next step is to use these binary gates and generate
half and full adders. Having half and full adders will allow for
performing an arbitrary bit size addition of two ciphertexts.
Binary addition (and subtraction) is relatively straightforward.
Full adders linked together starting from the lowest bit to
the highest bit will generate the addition of two ciphertexts.
Interestingly, subtraction can be performed by inverting the
second binary values and using an initial carry bit of 1.

Next, we focus on constant multiplication and ciphertext-

ciphertext multiplication. Binary multiplication causes the dou-
bling of size for the binary values, which is an extremely im-
portant fact because of a two’s complement implementation of
binary numbers. Bit extension is necessary because otherwise
negative numbers will not be calculated correctly. We used
an implementation known as Wallace Trees for multiplication
[14] as it provides a way to arbitrarily handle different binary
sizes 2. There is a potential security concern that may be
introduced by constant multiplication. Because the constant is
unencrypted, the binary values of the original constant can be
partially traced into the Wallace tree computations. This can
potentially provide an attacker knowledge about intermediary
values. While this will not review the original ciphertext, it
enables the attacker to identify values that the encrypted result
cannot be. For example, if a few zeroes in the constant factor
can identify a result bit to be zero, the space of potential values
of the result has been reduced. Technically this is true of just
multiplying an even constant factor because the result must be
even.

At this point, we have methods to add, subtract, and mul-
tiply integers. The FFT algorithm will require computations
involving floating point numbers. Our implementation uses
fixed point numbers to emulate floating point numbers. By
using a fixed point representation, we can use the integer based
numbers to represent floating point numbers. This was similar
to what was done in other work [2] but we improve this by

2For brevity, we refer the reader to [14] for implementation

758 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

using binary digits to handle cases that the straight integer
implementation can’t handle. Using a multiplier that is a factor
of 2 (based on using binary values), floating point numbers can
become fixed point numbers in an integer space. This approach
introduces error, which we will discuss in the next section. For
addition and subtraction, fixed point implementation is easily
provided that the fractional bit size is consistent for both num-
bers (which we enforce). Multiplication is complicated because
of the expansion in the bit size (doubling) and our solution is to
extract a different set of the bits than just the lowest x (where
x is the input bit size). By extracting the middle bits of the
input size, an implicit division is occurring which provides
a true implementation of fixed point multiplication. This also
solves an earlier problem that caused long term expansion of
fixed point multipliers during multiplication.

We have all the necessary building blocks required to
implement FFT in the encrypted space. Step one of FFT is
to perform a bit reversal, which is extremely easy since the
order of the points is known and can easily be modified in
position without revealing anything other than a bit reversal
occurred. Step two requires calculating the Wn multipliers and
running the butterfly computations over the signal for logN
iterations (N logN driver). The multipliers are constants, so
these can be input and used with constant multiplication.
Constant multiplication results drive the additions for the signal
points; yielding the two new points for the next iteration of
the FFT. After N iterations of signal calculations and logN
iterations of the outer loop, the process will be complete.

Theorem 1. Fast Fourier Transform can be calculated in the
encrypted domain via Fully Homomorphic Encryption.

To prove Theorem 1, we need to show that the process does
in fact perform the FFT in the encrypted domain. Following
the process, we must prove that the encryption piece, the
evaluation piece, and then the decryption piece work.

Lemma 1. The FHE scheme properly encrypts values in the
fixed fractional format to a vector of encrypted ciphertexts.

Lemma 2. The FHE scheme properly decrypts values in the
fixed fractional format from a vector of ciphertexts.

Lemma 3. The FHE scheme properly evaluates the Fast
Fourier Transform for binary vector ciphertexts of a vector
of fixed fractional values.

To prove Lemma 3, we need to show that the output of
each binary vector is the same result as expected by the FFT
algorithm. The key point here is that the butterfly computations
of FFT provide the correct result. As we had shown earlier,
addition, subtraction, and multiplication are needed to perform
the butterfly computation. This becomes recursive as each
operation is built from binary gates and finally at the NAND
gate from the scheme itself. We start with individual lemmas
for the individual gates and move up to three main operations.
We assume the NAND gate is working as part of these lemmas.
Theorem 3 of [12] proves the working of the FHE scheme
basics (include Lemmas 1 and 2).

Lemma 4. Given the NAND gate of the FHE scheme works,
the FHE scheme properly performs a NOT, AND, OR, and XOR

gates. 3

Proof: Previous research [15] has shown that a NAND
gate can be used to generate all other logic gates including
NOT, AND, OR, and XOR (which are important to this paper).
Because the FHE scheme can compute a NAND gate, therefore
we know the framework will correctly compute the remaining
logic gates.

With Lemmas for the individual binary gates, we can create
Lemmas for the half and full adders. Having the individual
Lemmas will make the proofs significantly easier.

Lemma 5. Given that a XOR and AND gate are available in
the FHE scheme, the FHE scheme properly calculates a half
adder.

Proof: Since the half adder is a known working structure of
binary arithmetic, our focus is to prove that it works in FHE.
Lemma 4 proved FHE can correctly compute XOR and AND
thus FHE can correct compute a half adder.

Lemma 6. Given that an OR gate and a half adder are
available in the FHE scheme, the FHE scheme properly
calculates the full adder.

Proof: Just as the half adder, a full adder is built from two
half adders and an OR gate, this is a known correct concept.
Lemma 4 proved the OR gate works in FHE. Lemma 5 proved
a single half adder works in FHE. By construction, following
the correct paths provides a full adder capability. It is now
time to move on to addition and subtraction.

Lemma 7. Given the binary gate and adder capabilities of the
FHE scheme, the FHE scheme properly calculates arbitrary
bit addition and subtraction of integers and fixed fractional
format.

Proof: Proving the scheme can correctly calculate addition
and subtraction requires proving the binary result is correct.
Since the algorithm is the same for both integers and the fixed
fractional format, proving one proves both. We have the basic
algorithm for adding and subtracting binary numbers and it is
know to comprise a set of full adders. Lemma 6 proves the
scheme can calculate a full adder correctly. Given this, we have
proved that the addition and subtraction of ciphertexts occurs
correctly in our FHE scheme.

Our next two lemmas are related to multiplication. Our first
lemma will involve proving multiplication works for simple
integer numbers including truncating the high order bits. The
second lemma focuses on fixed fractional format and obtaining
the correct resulting value. An interesting note at this point
because of the lemma, is that binary division could actually
be implemented but was not because it was not needed for
FFT; however a single division is needed to support the fixed
fractional format.

Lemma 8. Given AND gates and half and full adders, the FHE
scheme properly calculates integer multiplication via Wallace
Trees.

3We omit NOR and XNOR because they are not used for FFT.

759 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Proof: Starting off, we know that the Wallace Trees cor-
rectly calculate integer multiplication of binary values. To
prove our scheme calculates multiplication of two binary
integers correctly, we need to show that we can correctly
compute the Wallace Trees. Wallace Trees are built from a
set of AND gates, followed by combinations of half and full
adders. All three of these correctly compute binary values
in our scheme based on our previous lemmas. The final
importance of the proof is to show both positive and negative
can be correctly calculated. This can be done easily by bit
extending the binary values to twice the original size. Finally,
we drop the higher order bits to keep the binary values size at
their original size. Therefore, our scheme correctly calculates
integer multiplication in the encrypted domain.

Lemma 9. Given AND gates and half and full adders, the
FHE scheme properly calculates fixed fractional format mul-
tiplication via Wallace Trees.

Proof: We start with the fact that we can assume to have
AND gate, half adder and a full adder that correctly compute
their binary values in FHE. From Lemma 8, our scheme will
properly calculate integer multiplication, which is part of our
fixed fractional format. In a fixed number format, we need to
divide the scaling factor out of the multiplied values, which is
2n of the previous size. Because we forced the multiplier to
be a power of two, division is a simple bit shift. This is easy
in our FHE scheme to drop the lower and higher order bits
(extract the middle bits). Thus, the scheme calculates the fixed
fractional format multiplication.

Using the above lemmas and their respective proofs, we
can prove the evaluation lemma (3) which is the key butterfly
computation of the FFT; without which the correctness of
computations for FFT in encryption domain cannot be proven
to be correct.

Proof: Remembering the two parts of the FFT, first is
the bit reversal and then the butterfly computations. The bit
reversal does not need to occur in the encrypted domain
so this process works correctly as before. As the butterfly
computations are processed in a loop and the loop processing
is not encrypted, proving that the butterfly computations can
be calculated in the encrypted domain will prove that the FFT
can be calculated using FHE.

Simply, the butterfly computation is a pair of equations
of complex numbers. Equivalently, there are six real number
equations to calculate. These equations are a combination of
addition, subtraction, and multiplication (via constant values).
Lemmas 7 and 9 proved that the FHE scheme correctly cal-
culates addition, subtraction, and multiplication of encrypted
fixed fractional values. Because of this, we can calculate the
butterfly computations and properly calculate the FFT.

Finally we can prove Theorem 1. Proof: To prove that
FFT can be calculated via an FHE method, we focused on
three pieces in the FHE scheme: Encryption, Evaluation, and
Decryption. We have used three individual lemmas to prove
that each one of these pieces is correctly computed in FHE
(Lemmas 1, 3, and 2). Because we have proved the entire
process works, we have proved the FFT can be computed in
the encrypted domain using our FHE scheme.

V. ERROR ANALYSIS

Having discussed the implementation of FFT using FHE,
we turn our attention to estimating the error. Our only source
of error is the conversion of floating point numbers to fixed
point numbers. We note that the FHE scheme will use the
term “error” as well. FHE error is not the same error as we
discuss in this section. The FHE error is the primary security
technique that enables the encryption and decryption, but the
scheme itself accurately can encrypt and decrypt a single bit.
Going back to the error introduced by the implementation,
while initially this error might not be a major problem, over
time the calculations will lose accuracy - the concept is no
different than standard floating point operations in that over
time accuracy can be lost. Immediately, we know that there
will be dependencies on the number of points in the signal
because of the dependency on the size with the number of
iterations.

This error analysis is very important. This is the key enabler
for making the framework a viable solution. Bounding the
error enables the user to select parameters that will make the
framework succeed. Without this analysis and thought, a user
could easily run the algorithm and obtain inaccurate results
without understanding why it failed.

We start with building up the bounds of the error introduced
by the fixed point representation. There will some initial error
caused by truncation when moving to fixed point represen-
tation. Following that, the main computation is the two point
butterfly, which involves a complex point multiplication and an
addition. We complete this section with a proof on the error
bound for the entire FFT in FHE.

Lemma 10. For a multiplication involving two complex points
(a + bi, c + di) with an error of ∆, (0 ≤ ∆ < 1) in each of
the real and imaginary components, the error in the resultant
is bounded by:

(∆ (a + c− b− d) ,∆ (a + b + c + d)) . (1)

Proof: Our two initial points are:

(a + ∆, b + ∆) (2)
(c + ∆, d + ∆) (3)

Multiplying these together yields,

((a + ∆) · (c + ∆)− (b + ∆) · (d + ∆) ,

(b + ∆) · (c + ∆) + (a + ∆) · (d + ∆)) (4)

As we expand the factors, we will drop terms of ∆2 as
these will not be the primary source of error in our final
equations because ∆2 < ∆ < 1.

(a · d + ∆ · (a + c)− (b · d + ∆ · (b + d)) ,

b · c + ∆ · (b + c) + a · d + ∆ · (a + d)) (5)

Continuing to combine terms,

(a · d− b · d + ∆ · (a + c− b− d),

b · c + a · d + ∆ · (b + c + a + d)) (6)

760 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

This provides errors in the real and imaginary components
as:

(∆ · (a + c− b− d),

∆ · (b + c + a + d)) (7)

Next, we examine the error for a single butterfly computa-
tion. The original FFT equation is:

Xi = xi + Wn ∗ xj . (8)

Lemma 11. For a single butterfly computation, the error is
bounded by

∆ · (Re(Wn) + Im(Wn) + Re(xj) + Im(xj) + 1) (9)

for a single butterfly computation of a single point where
∆ is the original error.

Proof: We start with the butterfly computation equation for
a single point:

Xi = xi + Wn · xj (10)

Then adding ∆ to each of the terms:

Xi = xi + ∆ + (Wn + ∆) · (xj + ∆) (11)

Lemma 10 provides the bound on the error for the right
hand side of the equation. Then there is only addition of
another ∆ in both real and imaginary parts. This yields:

∆ · (Re(Wn) + Re(xj)− Im(Wn)− Im(xj) + 1)

∆ · (Re(Wn) + Re(xj) + Im(Wn) + Im(xj) + 1) (12)

On the second half of the butterfly computations, the signs
of the real and imaginary values are flipped (the one is always
positive).

The previous two lemmas help us bound the overall error
of the FFT by estimating the error accumulated over time. The
most important item about the butterfly computations is that
they reduce an O(N2) algorithm to a O(N logN) algorithm.
This means the resulting value the FFT for a single point is a
O(N2)-based value that only uses O(N logN) computations.
This helps bound the error from above: the summation of all
signal points and the Wn values. But because we perform less
computations, the value can be bounded lower.

Theorem 2. For performing FFT in FHE, the error introduced
by the processing is bounded by:

∆ · N
2

(logN + Xb + 1) , (13)

where ∆ is the original representation, WS (used in proof)
is a sum of all Wn that appear in the FFT for a given size N ,
and Xb is a bound on the size of the signal points.

Proof: Using Lemma 11, we know after a single butterfly
for a value the error is:

∆ · (Re(Wn) + Re(xj)− Im(Wn)− Im(xj) + 1) ,

∆ · (Re(Wn) + Re(xj) + Im(Wn) + Im(xj) + 1) . (14)

After the second iteration of the outer loop of FFT, the Wn

will be unchanged but the xjs will have additional values (and

error). The key point here is what is being added to the error
over time. It is actually the real and imaginary components of
the signal points. This tells us at the second iteration, we have
added up all Wn plus a number of terms from each xj seen
so far, and an equivalent number of ones from the xi sides.
After the logN iterations, each point will have the following
error contributions:

∆ ·

 ∑
Wn∈W

Wn +
∑

evenj

xj +
N

2

 , (15)

where we have used W to represent the set of Wn. Since
each Wn is a known constant for a given N , we will call this
sum bound as WS . Additionally, we know that we can assume
a bound on each xj without loss of generality. Calling this
value Xb and knowing there are N

2 of them, we can update
the bound as:

∆ ·
(
WS +

N

2
(Xb + 1)

)
(16)

An equivalent view on WS parameter is that the Wn

absolute values are less than one, which means WS is bounded
by the number of times any Wn enters an equation (i.e.,
N logN

2 ) resulting in a total error of

∆ ·
(
N

2
(logN + Xb + 1)

)
. (17)

This provides some different results than [2]. In particular,
the error depends on the total number of points, which in
turn means that the error will increase as the size of the
signal increases. So when choosing a multiplier with the
fixed fractional format, the signal size will matter. This is a
good place to remember that an FHE scheme can evaluate
ciphertexts indefinitely by refreshing ciphertexts (see [1] and
[12] for details).

VI. EXPERIMENTAL RESULTS

We implemented the encrypted FFT with FHE as a method
to compare our theoretical analysis against a practical imple-
mentation. To verify our implementation works, we ran random
signals against the FFT in FHE and compared the results to
an unencrypted standard version FFT. Our main focus is to
measure the error introduced by our implementation and verify
Theorem 2 is valid. We used signal sizes of 8, 16, 32, 64,
and 128 complex data signals. Additionally, we constrained
the signal to be values in the range [0, 1] similar to what
many real world signals operate in. In the encrypted domain,
we work in a 32-bit binary space and 16-bit fractional space.
This means we limit our non-fractional integer size to 16-bits
and we are using a multiplier of 65536. Having a multiplier
of 65536 is useful since it will provide numerical accuracy
up to 1/65536 ≈ 1.5259e − 5. As we saw in the previous
section, we will not be containing the entire set of values in
this space because over time the processing will lose accuracy
(particularly in multiplication).

It is important to look at measured error introduced as a
whole for given signals. Our main focus is to make sure we can
constrain the error. When comparing individual values between

761 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

the unencrypted and encrypted results, we can calculate the
total error sum of all points (2n from n complex points). We
also calculate the mean error across the points along with the
variance and standard deviation. Table I shows the results of
the measured error from the random testing. One of the key
aspects of the results is that the average error per point is
slowly rising upwards above zero but is staying in the 10−5

range. This is expected as the error is dependent on the total
number of points in the signal. Considering our accuracy of
1/65536 and that the signal size is a multiplicative factor as
well, experimentally the error is contained below the bounding
from the previous section.

TABLE I. MEASURED ERROR IN ONE DIMENSIONAL TESTS

Complex Total Average Standard
Point Size Error Error Variance Deviation
8 pt 0.0207 1.294e-5 8.208e-11 9.060e-06
16 pt 0.0709 2.216e-5 2.434e-10 1.560e-05
32 pt 0.258 4.199e-5 1.714e-09 4.140e-05
64 pt 1.030 8.383e-5 4.400e-09 6.633e-05
128 pt 4.437 1.81e-4 2.856e-08 1.69e-04

Finally, we tested our configuration using 16× 16 images
(10 total images; shown in Fig. 2). This provided a two
dimensional test of the FFT over FHE in the multidimensional
case. Table II shows the results of the ten images (mapped
to the image order in Fig. 2). Overall the error was well
contained across the images as the average total error was
0.0313. Average error across the images was 6.12e− 5 with a
variance and standard deviation of 5.764e− 9 and 7.584e− 5.
These values show our framework contains the error within
bounds. Comparing these to the random generated signals for
the one dimensional case identifies a few key points. Since the
random signals had higher accuracy from the start, truncation
of values occurred when going into the encrypted domain. The
images initially had limited accuracy in comparison. Therefore
when using the encrypted FFT, it is important to remember that
the framework can represent certain number accurately and
when the initial values do not contain much error the growth
of error will not increase as fast.

TABLE II. MEASURED ERROR IN TWO DIMENSIONAL TESTS

Total Average Standard
Image Error Error Variance Deviation
One 0.0308 6.020e-5 5.498e-9 7.415e-5
Two 0.0323 6.300e-5 6.803e-9 8.248e-5
Three 0.0294 5.751e-5 5.142e-9 7.171e-5
Four 0.0302 5.891e-5 5.982e-9 7.734e-5
Five 0.0325 6.343e-5 5.133e-9 7.164e-5
Six 0.0324 6.332e-5 5.480e-9 7.403e-5
Seven 0.0326 6.375e-5 5.227e-9 7.230e-5
Eight 0.0300 5.866e-5 6.122e-9 7.824e-5
Nine 0.0323 6.312e-5 6.011e-9 7.7529e-5
Ten 0.0308 6.017e-5 6.239e-9 7.899e-5

VII. TIME/SPACE COMPLEXITIES

FHE schemes are known to be computationally intensive.
Encrypting a single value plaintext generates a two dimen-
sional matrix in the ciphertext space. A NAND gate in the FHE
scheme is an O(N3) process (matrix-matrix multiplication).
This can be partially reduced by using parallelization tech-
niques (GPU processing is real potential here). Focusing on
FFT, which is an O(M logM) process, we need to understand
the number of gates that can processed in total. M logM is the
number of addition and multiplication gates being processed
in total. A fixed point addition process is 36 ∗ F NAND gates,

where F is the size of fixed point size and 36 comes from
the nand gates in the F sequential full adders. A fixed point
multiplication process is 288F 2 logF NAND gates. 4F AND
gates for the first step and worst case assumed full adders for
the logF process. This second process is for 2F full adders.
It should be noted that this bound is worst case and can be
significantly tightened because Wallace trees do not need to run
full adders at each step. Combining these calculations yields
an asymptotic running time of O(M logMF 2 logFN3) with
constants removing, where we have used M to be the number
of data points in the FFT, F to be the fixed point binary size,
and N to be ciphertext size. Our implementation takes on the
order of hours (˜2.5) to process a 16×16 image using parallel
techniques available with FFT (processing multiple butterfly
computations at once).

Coming back to the space complexity, we know a cipher-
text text has N2 space (matrix). We will set the size of the
signal to be L, i.e. the total amount of data points in the
signal whether single or multi-dimensional. Each data point
has a set of F binary values. Multiplying these together yield:
O(LFN2) space complexity. In both cases, these are ex-
tremely high complexities (especially compared to unencrypted
processing). Our implementation showed that a 16×16 image
while encrypted is about 87MB.

VIII. CONCLUSION

Having shown that we can perform the Fast Fourier Trans-
form in the encrypted domain, we are now able to expand the
capabilities of the FHE framework to target additional signal
processing algorithms and other potential image processing
algorithms like SIFT and SURF. There are other open issues
with FHE. One major open item is that the FHE processing
takes significant amount of time because of the matrix-matrix
multiplication required for the underlying processing. Being
able to improve computational performance of the FHE pro-
cessing would contribute significantly to making FHE a viable
solution in real world computing.

REFERENCES

[1] C. Gentry, “Computing arbitrary functions of encrypted data,” Commu-
nications of the ACM, vol. 53, no. 3, pp. 97–105, 2010.

[2] T. Shortell and A. Shokoufandeh, “Secure signal processing using fully
homomorphic encryption,” in Advanced Concepts for Intelligent Vision
Systems. Springer, 2015, pp. 93–104.

[3] J. R. Troncoso-Pastoriza and F. Perez-Gonzalez, “Secure signal pro-
cessing in the cloud: Enabling technologies for privacy-preserving mul-
timedia cloud processing,” Signal Processing Magazine, IEEE, vol. 30,
no. 2, pp. 29–41, 2013.

[4] Y. Wang, S. Rane, S. C. Draper, and P. Ishwar, “A theoretical analy-
sis of authentication, privacy, and reusability across secure biometric
systems,” Information Forensics and Security, IEEE Transactions on,
vol. 7, no. 6, pp. 1825–1840, 2012.

[5] C.-Y. Hsu, C.-S. Lu, and S.-C. Pei, “Homomorphic encryption-based
secure sift for privacy-preserving feature extraction,” in IS&T/SPIE
Electronic Imaging. International Society for Optics and Photonics,
2011, pp. 788 005–788 005.

[6] Y. Bai, L. Zho, B. Cheng, and Y. F. Peng, “Surf feature extraction
in encrypted domain,” in Multimedia and Expo (ICME), 2014 IEEE
International Conference on. IEEE, 2014, pp. 1–6.

[7] A. Lathey, P. K. Atrey, and N. Joshi, “Homomorphic low pass filtering
on encrypted multimedia over cloud,” in Semantic Computing (ICSC),
2013 IEEE Seventh International Conference on. IEEE, 2013, pp.
310–313.

762 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

[8] M. Mohanty, W. T. Ooi, and P. K. Atrey, “Scale me, crop me, knowme
not: Supporting scaling and cropping in secret image sharing,” in
Multimedia and Expo (ICME), 2013 IEEE International Conference
on. IEEE, 2013, pp. 1–6.

[9] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homo-
morphic encryption without bootstrapping,” in Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. ACM, 2012,
pp. 309–325.

[11] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” in Foundations of Computer Science

(FOCS), 2011 IEEE 52nd Annual Symposium on. IEEE, 2011, pp.
97–106.

[12] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asympotically-faster,
attribute-based,” in Advances in Cryptology–CRYPTO 2013. Springer,
2013, pp. 75–92.

[13] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[14] C. S. Wallace, “A suggestion for a fast multipler,” Electronic Computers,
IEEE Transactions on, no. 1, pp. 14–17, 1964.

[15] T. Wesselkamper et al., “A sole sufficient operator.” Notre Dame Journal
of Formal Logic, vol. 16, no. 1, pp. 86–88, 1975.

763 | P a g e


