Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

A New Concept of a Generic Co-Simulation
Platform for Energy Systems Modeling

Jianlei Liu, Clemens Duepmeier and Veit Hagenmeyer
Institute for Applied Computer Science
Karlsruhe Institute of Technology (KIT)
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen, Germany
Emails: jianleiliu@kit.edu; clemens.duepmeier @kit.edu; veit.hagenmeyer@kit.edu

Abstract—In order to model, design, execute, control and
analyze co-simulations for e.g. Smart Grids, a new scalable
and generic system architecture of an agent-based co-simulation
platform framework is presented in this article. Not only different
kinds of simulators e.g. for power grids and technical plants,
but also various types of data sources and real hardware nodes,
such as wind turbines, photovoltaic cells, electrical power grid
equipment, etc. which are instrumented by measurement devices,
can be seamlessly integrated into the co-simulation platform
in order to model large transdisciplinary, multi-domain energy
systems. By integrating Apache Kafka as message exchange
infrastructure into this configurable co-simulation platform the
realistic simulation of SCADA communication via standard
communication network protocols and services for Smart Grid
including big data scenarios can be realized. As basic approaches
container virtualization and microservices, namely, Docker con-
tainers and a Representational State Transfer (REST) application
programming interface (API), are used as an automated runtime
environment to control and manage different simulation nodes
on a (larger) computing cluster. The co-simulation platform
also provides an easy-to-use web browser-based user interface
implemented using Angular2 to allow users to model, implement,
perform and operate co-simulations for future energy system
solutions without any setup or configuration on their local PC
and extensive IT knowledge. Furthermore, after the completion of
simulations by the individual nodes, the results of a co-simulation
run can be automatically stored in databases and then analyzed
and visualized afterwards via a web user interface.

Keywords—Smart grid; agent-based co-simulation platform;
microservice; multi-domain energy system; communication; Rep-
resentational State Transfer (REST); big data

I. INTRODUCTION

With the rapid development of science and technology,
more and more electronic equipment is invented and used.
Meanwhile, the demand for electricity is increasing day by
day. Therefore, efficient energy production, management and
usage become more and more important. Additionally, the
limited availability of non-renewable resources demands an
increase in using renewables for energy production. Due to the
high volatility of renewable energy production, power networks
with renewables need additional components, such as energy
storages. They are, therefore, more complex and harder to
control, which rises the need for highly sophisticated tools for
the planning of modern power grids, like modern data analysis,
hardware labs, and distributed (co-)simulation tools.

To foster research on new energy technology solutions for

the German Energiewende the Federal Ministry of Education
and Research (BMBF) and the Helmholtz Association of
German Research Centers (HGF) set up the EnergyLab 2.0
and Energy System 2050 (ES 2050) research projects. The
main goal of the EnergyLab 2.0 project is the development
of a research infrastructure for investigating and analyzing the
interactions between different components of future intelligent
energy systems [1]. One central component of this research
infrastructure is the Smart Energy System Simulation and
Control Center (SEnSSiCC), which bundles the research on
information and communication technology (ICT) for future
smart energy solutions (e.g. Smart Grids). ICT related research
for smart energy solutions is also the main focus of the research
topic 5 “Toolbox and Data Models” of the joint research initia-
tive ES 2050. In both projects, the KIT focuses its research on
software components e.g. for the simulation of power systems,
architectures for control center operation, the operation of
future energy systems (data collection, management, control,
data analysis, evaluation, forecasting, etc.) and further tools for
planning Smart Grid solutions to improve the understanding
of energy systems [2]. A co-simulation platform which allows
the integration of many different simulators was identified as
one very important tool for the modeling of larger and very
complex future energy solutions.

There is abundant and vast literature proposing various
kinds of co-simulation approaches that can be used to model,
research and analyze complex systems such as Smart Grids.

As mentioned in [3], there are some well-known co-
simulation interfaces standardized for large scale system model
integration, e.g. High Level Architecture (HLA), Functional
Mockup Interface (FMI) and Distribute Interactive Simulation
(DIS), which could be used to perform co-simulations. Their
main applications are in automotive industry, space and de-
fense projects. However, the learning curve of the HLA, FMI
and DIS is substantially long.

In [4] a comparison of co-simulation approaches for com-
bining wireless sensor network models with Smart Grid appli-
cation models like ns-2/adevs [5], ns-2/OpenDSS [6] and ns-
2/Modelica [7] is described for analyzing the effect of SCADA
communication within a Smart Grid application model. The ns-
2/adevs co-simulation approach avoids some synchronization
problems introduced by the coupling through integrating adevs
as a module in ns-2, but this enlarges the complexity of the
power behavior formalization that can drastically decrease the
performance of such a platform [4]. In the ns-2/OpenDSS

97 |Page

coupling approach the intercommunication technique between
the two simulators is not well defined [4]. The ns-2/Modelica
coupling technique can be used for integrating models of
wireless sensor networks with most of the existing communi-
cation technologies, such as WIMAX, WiFi, WPAN, etc. into
Modelica, but Modelica can not determine when to send data
to ns-2 [4]. All three mentioned approaches for the coupling
of wireless communication models to Smart Grid models pose
some problems.

The authors in [8] provide a communication and power
distribution network co-simulation based on the event-driven
simulators OMNet++ and OpenDSS for multidisciplinary
Smart Grid experimentations. Another similar approach, a
co-simulation framework using OMNet++ and OpenDSS for
power systems and communication networks simulation, is
proposed for evaluating the performance of Smart Grid wide
area monitoring applications in [9]. OMNet++ and OpenDSS
are running as two parallel processes and exchange events syn-
chronized at certain time slots. But both solutions are limited
to OpenDSS for grid simulations and are not easily extendible
for other sorts of simulators. The authors of [10] developed
a framework for co-simulations combining DigSILENT as a
power system simulator and OMNET++ as a communication
simulator to also simulate and analyse Smart Grid applications.
Their approach is similar to the previous and only differs in
the aspect that DigSILENT instead of OpenDSS is integrated
into this framework and used to model power systems.

All the approaches described above combine only two
simulators and are limited to particular scenarios. They do
not allow the integration of many different kinds of simu-
lators which could provide a more universal co-simulation
platform for simulating real complex multi-domain energy
system models combining many different model types and the
associated simulators (e.g. for modeling physical components
and technical plants, power and communication networks,
including of economic models, or weather models).

In the German research project Mosaik [11], a more
flexible Smart Grid co-simulation framework is developed,
which allows users to reuse and combine existing simulation
models and simulators to create Smart Grid scenarios where
more than two simulators can be involved. Each simulator
uses an XML-RPC (Extensible Markup Language Remote
Procedure Call) frontend which allows the communications
with a central coordinator and the exchange of data and
events [11]. However, Mosaik does not provide tools for
automatically starting and controlling simulator instances on
large-scale computing clusters in order to perform simulations
in Big Data context. Additionally, Mosaik does not provide real
time streaming communication between the simulator nodes as
needed for larger scale co-simulations with a high volume on
data.

Therefore, as an important application service and planning
tool of the IT infrastructure for EnergyLab 2.0 and ES 2050,
a generic co-simulation platform framework is developed for
modeling and simulating intelligent multi-domain energy sys-
tem solutions (Smart Grids, microgrids, etc.) on the basis of
large computer clusters as distributed runtime infrastructure.
This solution tries to overcome the above mentioned limi-
tations and possesses the following features to remedy the
mentioned shortcomings: It runs distinct simulation models

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

as separate processes with each encapsulating a dedicated
simulator environment as runtime environment of the model
by using container automation technology (e.g. Docker) on
a large computing cluster. Furthermore, it provides a generic
message-oriented middleware-based communication interface
for data and event exchange between the different kinds of
simulators, various types of data sources and real hardware
nodes instrumented by measurement devices to enable an
agent-based co-simulation of large complicated multi-domain
energy systems. Synchronization can be based on events or
- by adding time synchronization co-simulation nodes to the
co-simulation environment - on virtrual clocks. In addition,
the platform logic is encapsulated into a co-simulation service
which can be used through an easy-to-use web user interface
implemented using Angular2 just within a browser. The web
user interface provides four main views: a model component
editor for registering and adding models as reusable model
components to the platform, a co-simulation editor for combin-
ing distinct model components to larger co-simulation models,
an operator interface for running models, and a visualization
and monitoring screen. The platform-independent web user in-
terface allows different users to upload their own models as co-
simulation components and to describe their runtime environ-
ment as well as their parameterization. Then, other users can
combine these model components to implement, perform and
run custom co-simulations of future energy system solutions.
These latter users do neither need to setup nor to configure
any simulation environment on their local PC since startup and
management of simulation nodes is completely managed and
automated by the co-simulation service and solely performed
on nodes of the underlying computing cluster. Additionally,
users performing modeling do not necessarily need detailed
IT knowledge. Moreover, by integrating Apache Kafka and
SCADA communication technology as real time message
exchange infrastructure into this configurable co-simulation
platform the realistic simulation of SCADA communication
via standard communication network protocols and services
for Smart Grid scenarios is possible, and co-simulation models
can work with data coming from real field devices.

The presented article will describe basic concepts of the
new co-simulation platform and is organized as follows: Sec-
tion II focuses on basic information technology concepts and
frameworks which are used to implement the platform. Section
III provides an overview of the platform, its web user interface
and the details of its implementation as well as a co-simulation
example. A use case scenario will be presented in Section IV.
Finally, at the end of the article a conclusion and an outlook
will be given.

II. UNDERLYING IT CONCEPTS AND FRAMEWORKS
In the following, the basic IT concepts and frameworks
used to implement the co-simulation platform are described.

A. REST API

The co-simulation platform uses Representational State
Transfer (REST) ! based interfaces as lightweight communi-
cation mechanism between different components. REST is a
web-based software architecture style rather than a standard.

Thttps://en.wikipedia.org/wiki/Representationa_state_transfer

98 |Page

It is designed to provide interoperability between computer
software applications or programs across a network, such
as services and web applications provided on the Internet.
REST interfaces are usually based on the use of the Hypertext
Transfer Protocol (HTTP) which provides the methods GET,
POST, PUT and DELETE to enable communication between
clients and servers. By using REST application programming
interfaces (API) users can control and manage simulation
models on the co-simulation platform or edit and upload model
components.

B. Angular2

Angular2? is a development framework for building mod-
ern web applications across all operating platforms. It can
provide a state-of-the-art user experience by maximizing ap-
plication speed with single page application design and is
scalable to meet larger data requirements by building data
models on RxJS, Immutable.js or other push-model JavaScript
libraries. Angular applications facilitate a component model
where each component consists of a HyperText Markup Lan-
guage (HTML) template and a component class that can be
developed using JavaScript or TypeScript which control a part
of the screen. This allows to build complex user frontends via
reusable user interface and application components.

C. Apache Kafka as Message Server

Apache Kafka® is a message-oriented, distributed data
streaming platform which is used via a Java API in Java
applications for building real-time data pipelines and data
processing applications. As message server environment for
the co-simulation platform, Kafka can be used to exchange
data between individual nodes and co-simulation services.
Using the consumer group concept, Kafka generalizes the
two traditional models of messaging: queuing and publish-
subscribe. With the use of a queue the processing of data by the
consumer group is distributed to multiple consumer instances
(the different simulation members of the consumer group)
to scale the processing. By instrumenting publish-subscribe,
Kafka can broadcast messages to multiple consumer groups,
which can process data in parallel for different purposes. In
our context that means that different simulator nodes which are
in multiple consumer groups can subscribe and consume the
same messages in parallel (e.g. see the same state of system
represented by a Kafka publish-subscribe message queue).
Furthermore, by using Kafka, streams of data consisting of
a key, a value and a timestamp can be stored in Kafka queue
categories called topics and written to a disc for more than
one week and replicated for fault-tolerance. This can be used
for storing the complete data exchange within a simulation for
subsequent archiving of the simulation run.

D. Docker as Runtime Environment

Docker* is a software containerization platform which can
be used to package and isolate applications in containers by us-
ing operating system virtualization. Docker uses the separation
of resources in the Linux kernel, such as cgroups and the Linux

Zhttps://angular.io/
3https://kafka.apache.org/
“https://www.docker.com/

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

kernel namespace, to create independent software containers.
Since Docker containers can contain all necessary software
dependencies to execute applications, e.g. operating system
and framework libraries as well as the application binaries,
and furthermore, Docker images containing all these applica-
tion components and dependencies can be easily transported
and installed as files, the deployment of applications can be
simplified and easily automated.

With the help of Docker the co-simulation platform can
provide different specific Docker images to run corresponding
standard-alone simulation models as separate but synchronized
processes in Docker containers under the hood on the underly-
ing computing cluster. As an automated runtime environment
for running processes on a cluster, Docker can be used to op-
erate and manage the simulation nodes and associated support
services to interact with them for redefining their adjustable
parameters for some complex parallel tasks such as iterative
grid optimizations.

III. BASIC CONCEPTS OF THE CO-SIMULATION
PLATFORM

The following chapter discusses details of the architecture
and introduces the current web user interface designed for the
co-simulation platform. A simple co-simulation model with
three simulators and a specific adapter for Matlab simulators
will be used as example to further explain how Docker is
used to manage the execution of simulation models and how
the data interaction between the Matlab simulator and other
components is implemented by using the Kafka message
server.

Web User Interface

create and maintain | start and controllmonitor and analyse
co-simulation model | co-simulation results

.
Asset Manager

Co-Simulation
Configuration Storage

Co-Simulation
Service

Communication
Infrastructure

X Jojenwiis
IdY 353y
Rest API

Simulator Z

Rest API
]

Simulator Y

Fig. 1. The architecture of the co-simulation platform.

9 |Page

A. Overview

The architecture of the co-simulation platform with the co-
simulation service as the key component is depicted in Fig.
1. It consists of a web user interface providing several main
views (see upper part of Fig. 1), the co-simulation service,
the communication infrastructure and adapters to attach the
simulators to the co-simulation environment.

The co-simulation service connects, starts, monitors and
controls the different Docker containers running the simula-
tors automatically based on the co-simulation configuration
described by a JSON format.

Generic microservices implementing the communication
infrastructure provide access to Kafka message channels for
exchanging data between individual simulation nodes and data
services.

Specific adapters for different simulators connect the
simulators to the communication infrastructure and the co-
simulation service.

B. Web User Interface

The co-simulation platform provides a web user interface
allowing users to upload different simulation models as model
components, define co-simulations, and operate, control as well
as monitor and analyze simulation runs. The web interface is
built using the Angular2 framework, HTMLS5 and Typescript
(see Fig. 2).

Using the model component editor of the web user interface
(see the left upper part of Fig. 2), not only different kinds
of simulation models e.g. for modeling power grids and
technical plants, but also various types of data sources and
data nodes representing a data interface to real hardware nodes
instrumented by measurement devices, such as wind turbines,
photovoltaic cells, electrical power grid equipment etc., can
be seamlessly uploaded and integrated into the co-simulation
platform. Therefore, Docker images containing the software
and dependencies implementing the modeling environment or
the data source functionality have to be defined and described
through metadata as a model component. This component can
then be added to the co-simulation modeling library. Such
modeling component descriptions will then be stored in the
asset management system for later use by the co-simulation
editor and the runtime environment.

Model Component Editor | Co-Simulation Editor Operator Interface
Docker Image Models Simulators
[Simulatorl * Simulatori...
add W delete * Simulator2...
Input ISimulator2 ; ator detail
imulator details
) _Tig;?:"eters [Simulator3){ ~Status
~Description...
Output P
- [rmEEs [start | stop | monitor |
- Topic
l rngularZVHttp request & regponse
(component event)
- - Visualization
Config

Images

Asset Manager Co-Simulation

Configuration Storage

Co-Simulation|
Service ’\/\/\I\/\/\A/V

Fig. 2. The web user interface.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Co-simulations can be created by using the co-simulation
editor of the web user interface (see the upper middle part
of Fig. 2). On the left side of this view, available model
components are listed in a vertical spreadsheet format. Users
can select the associated model component with the mouse and
drag them to the right side near to the message server in order
to create a new node of the co-simulation. Its configuration
data is persisted in a co-simulation configuration storage. The
nodes can then be connected to message server queues for
message exchange.

The operator interface of the web user interface (see the
upper right of Fig. 2) allows users to load, start and control
co-simulations. It also displays information about the co-
simulation and provides a button for displaying the monitoring
interface to view and visualize data exchange. After a simula-
tion run, all data belonging to a simulation can be saved for
subsequent retrieval and analysis.

C. A Simple Co-Simulation Example with three Simulators

Fig. 3 shows a small generic model with three simulators
for illustration. Due to the consumer group concept of Kafka,
each simulator can publish its data to one or more topic queues
in Kafka and subscribe to one or more topics for receiving
data from the Kafka server. Simulators in different consumer
groups can also share messages of one topic. Additionally, data
streams will be temporarily stored in the distributed, replicated
server infrastructure of Kafka in a fault-tolerant way.

As illustrated in Fig. 3, all simulators and their specific
adapters as well as the Kafka message server are packed into
independent Docker containers. Since these containers include
everything needed to run the simulators, such as code, runtime,
libraries, etc., it is not necessary to deploy particular operating
environments for different kinds of simulators. All simulators
can be executed as separate but synchronized processes in their
Docker containers on the computing clusters. Furthermore, by
managing the containers via the Docker API the simulators
can be managed and controlled simply and efficiently.

Co-Simulation

Service

Docker-Container Docker-Container Docker-Container
()] N
3 P x S
g_, B Message Server < ®
or > (Kafka) G =
(=} i) < E
x wn
Rest API
Simulator Y
Docker-Container

Fig. 3. A co-simulation with three simulators.

100 |Page

D. The Role of Adapters

In the following, the role of adapters is explained by
demonstrating how a Matlab-specific adapter connects a Mat-
lab simulation to the co-simulation communication infrastruc-
ture as shown in Fig. 4.

Fig. 4 describes how data exchange between the co-
simulation communication infrastructure and a single simulator
node is implemented for e.g. a single Matlab simulation node.
In the specific case (a specific Matlab model) shown in Fig.
4 the communication steps needed for sending and receiving
data can be broken down to:

Sending data

(1) The data to be sent (a Matlab matrix object in our
example) is converted into a JSON object.

(2) Using the Matlab function webwrite(), the JSON ob-
ject is sent from Matlab to the co-simulation com-
munication infrastructure adapters REST API frontend
via an HTTP call.

(3) The REST API frontend then sends the JSON object
to a specific Kafka topic created for this type of
information. The topic stores the data on the Kafka
server until all other simulators which have subscribed
to this topic completed their consumption of this
object.

Receiving data

(4) In our simple example, the Matlab model requests data
needed from the co-simulation infrastructure by using
the Matlab function webread() to call the REST API
of the adapter via an HTTP call.

(5) The adapter retrieves a corresponding JSON object
from the Kafka topic queue storing information of the
requested type to which it has subscribed and sends it
back as return value to the function webread().

(6) The Matlab simulator receives the JSON object which
can then be transformed into more appropriate Matlab
type(s) (e.g. a matrix object) for further use.

While writing data from the simulator node to the co-
simulation infrastructure can be easily supported by a REST
API Adapter if the simulator software provides some functions
to send data to a third party, reading operations can be more

Docker Docker
e | !
HTTP
Adapter Kafka

L G

&

—-—

Fig. 4. Connecting a Matlab simulator to the co-simulation communication

infrastructure.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

complicated. Typically, pull operations, where the simulator
model retrieves data by calling a simulator’s internal function
for reading data from a third party, are supported in many
simulators as it is the case in our Matlab example. For pushing
data that arrives in a Kafka queue as soon as possible into a
running simulation on a node, the simulator environment has
to support some kind of asynchronous event communication.
This is often the case and the Matlab adapter will support this
feature in the future.

While the Matlab adapter is clearly specific to Matlab,
many simulators (including Matlab) support the Functional
Mockup Interface (FMI) standard for model and data exchange
in co-simulations. The FMI standard defines a standard C-
API for data exchange which can be used together with all
simulators supporting this standard. Thus, the co-simulation
platform implements a generic FMI adapter that allows to
connect all simulators to the co-simulation platform, which
implement the FMI specification. This connects a whole bunch
of simulators to the co-simulation platform in a very generic
way.

IV. SIMULATION OF A WIND TURBINE AS AN EXAMPLE
OF A CO-SIMULATION

As another more practical but simple modeling example
for the usage of the co-simulation platform, a co-simulation of
a wind power turbine simulating its power output in one node
and providing input data (e.g. wind velocity and temperature)
by a second weather simulation node or weather data source
node will be demonstrated. Fig. 5 illustrates the concept of the
co-simulation which consists of two simulators:

1) A data source or simulation node that generates
or retrieves input data of the wind power turbine,
such as pressure, wind velocity, temperature and the
roughness length, and provides it to the wind turbine
model (and potentially other simulation nodes) via an
Apache Kafka queue with a topic named “Weather-
Information”

2) A Python simulator that uses the library “windpow-
erlib” which is provided by the Python Software
Foundation (US) to build up diverse practical wind
power models and used to calculate time series of
electricity production output of the wind power plant
based on the weather input data [12]

Firstly, before a simulation is started, the wind turbine
simulation node is parameterized by setting the values of a
list of static configuration parameters which specify the height
of the wind turbine and the diameter of its rotor. Similarly,
the weather simulation node or weather data source node is
configured to send weather data according to a certain time
scheme (e.g. every 5 seconds). In our example the weather
data node just pulls weather information containing already
the pressure, wind velocity, temperature and the roughness
length from a csv file and forwards it as JSON object to
the Apache Kafka topic “WeatherInformation” of the co-
simulation model. The wind turbine model exploits the data
from the “WeatherInformation” topic, calculates the electrical
power output and sends it to another Kafka queue with a topic
named “WindTurbinePowerOutput”. Therefrom the power data
are extracted and stored in a database e.g. for usage in a later

101 [Page

Weather Data Kafka Server

Wind Power Plants

A

aatharlnformaibon
indTurbinePowerOulpu

Database Visualization

Fig. 5. A co-simulation example for a wind turbine.

analysis or for visualization. Finally, a visualization application
can be added to the co-simulation which monitors the power
output values arriving in the database and displays them on the
monitoring screen of the co-simulation operation control user
interface as an appropriate visualization (e.g. a line curve).

A part of the output data stream of the wind power turbine
is shown in Fig. 6. This data is converted from time series for-
mat to JSON object data and is then stored in the Kafka server
before it is exported to a database. In Fig. 7, a visualization
template for this scenario used by the visualization component
shows an overview of power data of a wind turbine over a
specific period of time in January 2010, since the weather data
contained in the csv file is from 2010.

V. CONCLUSION AND OUTLOOK

The main scientific contribution described in this paper is
the development of a new scalable and very generic system
architecture for a co-simulation platform framework that is
capable to model, design, plan, perform, control, analyze and
evaluate co-simulations of e.g. Smart Grids. The flexibility that
this co-simulation provides allows users to upload different
kinds of simulators (power grid and technical plant models)
and various types of data sources as well as real hardware
nodes instrumented by measurement devices (electrical power
grid and others) to build up and operate customized co-
simulations for simulating and solving large multi-domain
future energy system problems. It is also possible that users
choose and combine simulators that already exist on the
platform to set up a co-simulation with only using existing
simulation or data source components and just tuning their

Fig. 6. Time series output of the wind power turbine in [W].

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

8000000 T T T T T T T T T T
— Enercon E126

7000000 - R

6000000 - g

5000000 - g

4000000 |- B

3000000

2000000

1000000

0 o o 0 o o 0 0 o 0
I T L\t g\ P L N L\ o Q¥
@1 @ @1 2B 01 91 T 1 11 0
RN N A - R N - D R AR
Fig. 7. A visualization of time series output of wind power plants in [W].

configurations. As a message exchange infrastructure Apache
Kafka is very scalable, high performant and intended to hide
the burden of implementing the communication between differ-
ent individual simulation nodes and the co-simulation service
from ordinary users who just want to build co-simulation
models. Through utilization of container virtualization and
microservices the execution of different independent simula-
tion nodes on the computing cluster is easily and efficiently
implemented. The concrete use case mentioned in the previous
chapter demonstrates the usability and extendability of the
framework.

In the future, a larger modeling library has to be integrated
into the framework for building up complicated co-simulations,
which will instrument other simulation environments, such
as Modelica tools, Simulink, OpenDSS, DigSilent (power
factory), PSLF (positive sequence load flow), etc., in order to
further improve the generic applicability of the platform. The
web user interface consisting of the parameters settings panel
for models can be enhanced to allow users to dynamically
adjust the value of parameters in order to obtain different co-
simulation results. A further future improvement could lie in
an even better and universal access to background data by
fully instrumenting the microservice-based data management
platform of the EnergyLab 2.0. This will allow models to
dynamically and ceaselessly read data they need and swiftly
calculate the relevant output.

REFERENCES

[1] V. Hagenmeyer, H. K. Cakmak, C. Duepmeier, T. Faulwasser, J. Isele,
H.B. Keller, P. Kohlhepp, U. Kuehnapfel, U. Stucky, S. Waczowicz, and
R. Mikut. Information and communication technology in energy lab
2.0: Smart energies system simulation and control center with an open-
street-map-based power flow simulation example. Energy Technology,
4(1):145-162, 2016.

[2] C. Duepmeier, K. Stucky, R. Mikut, and V. Hagenmeyer. A concept
for the control, monitoring and visualization center in energy lab 2.0.
energy informatics. Smart Grid Modeling and Simulation, IEEE First
International Workshop, 9424:83-94, 2016.

[3] C.-H. Yang, G. Zhabelova, C.-W. Yang, and V. Vyathkin. Co-simulation
environment for event-driven distributed controls of smart grid. IEEE
Transactions on Industrial Informatics, 9(3):1423-1435, August 2013.

102 |Page

[4]

[5]

[6]

S. Chouikhi, I. E. Korbi, Y. Ghamri-Doudane, and L. A. Saidane. A
comparison of wireless sensor networks co-simulation platforms for
smart grid applications. [International Journal of Digital Information
and Wireless Communications, 2013.

A disc rete event system simulator. http://web.ornl.gov/~1qn/adevs/;
visited Januray, 11th 2017.

T. Godfrey, S. Mullen, R. C Dugan, C. Rodine, D. W. Griffith, and
N. Golmie. Modeling smart grid applications with co-simulation. The
Ist IEEE International Conference on Smart Grid Communications,
pages 29-296, 2010.

V. Liberatore and A. Al-Hammouri. Smart grid communication and
co-simulation. IEEE Energytech conference, 2011.

M. Levesque, D. Q. Xu, M. Maier, and G. Joos. Communications and
power distribution network co-simulation for multidisciplinary smart
grid experimentations. NSERC Strategic Project Grant, 2011.

(91

[10]

(1]

[12]

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

K. Angappan D. Bhor and K. M. Sivalingam. A co-simulation
framework for smart grid wide-area monitoring networks. /EEE, 2014.
1. Ahmad, J. H. Kazmi, M. Shahzad, P. Palensky, and W. Gawlik. Co-
simulation framework based on power system, ai and communication
tools for evaluating smart grid applications. Innovative Smart Grid
Technologies-Asia, 2015.

S. Schuette, S. Scherflke, and M. Troeschel. Mosaik: A framework for
modular simulation of active components in smart grids. The series
Lecture Notes in Computer Science, pages 55-60, 2011.

A python library to create time series from wind power plants. https:
//pypi.python.org/pypi/windpowerlib/; visited Januray, 20th 2017.

103|Page

