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Abstract—It has become common for many devices to share
bottleneck links when users watch streaming video. When the
DASH standard is used for adaptive video streaming over HTTP
it has been found that good Quality of Experience (QoE) among
video players become a critical issue. Markov Decision Processes
(MDP) is one attempt at optimizing the streaming process by
adopting a policy for maximizing particular QoE parameters.
This paper proposes a novel approach called SHARE that uses
a state-array representation consisting of a quality measurement
called Data Rate Ratio (DRR) from each player in the network.
A third-party network device collects the DRR values of players.
Further it uses a MDP based on discretized DRRs to generate
policies for better bitrate selection at runtime, using a unique
reward function. A three player model is presented. Based on
comparisons with other methods, the result shows that players
adopting these policies obtains good QoE across various metrics,
such as, bandwidth utilization, unfairness, re-buffering ratios,
instability and average quality, with minimal possible trade-offs.
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I. INTRODUCTION

Recently there is a huge increase in Internet video traffic
[1]. This results in a greater possibility of more than one video
player sharing a bottleneck link and competing for bandwidth.
There are many heuristic approaches that attempt to address
multiplayer user QoE. They aim to select player bitrates either
based on available bandwidth, bandwidth-based approaches
[2], or based on buffer occupancy, buffer-based approaches
[3]. There are also approaches which use both bandwidth
and buffer-based approaches [4]. However, current heuristic
approaches are unpredictable and do not give consistent results
as it relates to good QoE.

In this paper the term good QoE means the best allo-
cation of system resources so that each player in a multi-
player streaming environment gets low buffer underruns, high
network bandwidth utilization, low unfairness, low instability
and high average video quality. Thus, good QoE attempts to
get better values for these five parameters, with minimal trade-
offs, relative to existing methods. Interestingly, when there are
two or more players sharing a network bottleneck link, good
QoE becomes a critical issue [4].

Another attempt to model adaptive video streaming dynam-
ics is stochastic-based. Markov Decision Processes [5] are used
to help the player select future video segments. This method
offers a tool for optimizing decision making when outcomes
are partly random and partly under the control of the decision
maker. The process goes through a finite set of states. At each

state, the decision maker can choose a particular action from
a given set. State transitions are random and the transition
probabilities are different for different actions. Each action is
associated with a reward and sometimes a penalty. Revenue
(reward minus penalty) is used to evaluate the outcome for a
given action taken at a given state. Solving an MDP problem
means finding the best action for each state that will maximize
the overall revenue. Once solved, the actions corresponding to
the states are called the optimal policy. One method to solve
an MDP is by using dynamic programming [6].

It is computationally complex to create MDP models that
comprehensively take into account all the parameters that
affect video streaming. Indeed most of the processing is done
offline and few methods select more than five parameters.
However, it is the selection of these key parameters that have
the most influence on the video quality and consequently on the
end-user viewing experience. In this paper we use a normalized
ratio derived from incoming data rates, Data Rate Ratio (DRR),
as the primary QoE parameter to build our MDP model.
This parameter is exchanged amongst players via a third-party
network device, with the goal of each player discovering each
other DRRs.

At the client the proposed method treats the system as a
blackbox and the result is measured by the QoE performance
metrics, buffer underruns, bandwidth utilization, unfairness,
instability and average quality. This method is common with
fully bandwidth-based approaches. However, existing methods
may also use the system as a whitebox. It observes client-side
parameters, for example, buffer levels and other internal states
of the system, which it further uses to optimize the system. The
performance of the system is measured and optimized by those
internal state parameters. This method is common with fully
buffer-based approaches. Based on the literature our proposal
is a stochastic bandwidth-based method.

In the MDP model, state transition matrices are created for
each player in the adaptive streaming environment. A novel
reward function is proposed based on player transitions be-
tween discretized DRRs. This directly influences the players to
contribute in QoE optimization. This optimization is achieved
by appropriately rewarding the discretized DRR parameter.
The result is an optimal streaming policy geared towards good
QoE video bitrate selection for all segments.

The contributions of this paper are as follows: 1) we
propose a Markov decision process optimization problem for
DASH player rate adaptation using a novel discretized DRR
parameter; 2) we propose a new method called SHARE that
results in a different policy for each player rather than the
same policy for each player as in the case of other methods
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that use MDPs; and 3) we compare the performances of the
new method with the conventional, the MDP-DASH (Markov
Decision Process DASH) [7], and the QC-DASH (Quality
Control DASH) [8] client-side algorithms.

This paper is organized as follows. Section II reviews the
MDP-DASH and QC-DASH attempts made in the area of
adaptive streaming. In Section III the new method is presented.
This is a distributed decision making strategy based on Markov
decision processes (MDPs), so that each player can make
locally optimal decisions based on shared observations. Section
IV gives the experimental settings and results. Finally, Section
V consists of the conclusion and future work.

II. RELATED WORK

There is a growing body of literature on the use of MDP
to optimize video streaming. We now outline different ways
MDPs are applied to adaptive video streaming. In [9] and [10],
researchers found that bandwidth can vary severely in different
locations. Adaptive streaming is modelled as an MDP problem
to cope with varying network conditions [11]. The power
consumption problem of video decoding can be effectively
modelled as an MDP [12]. An MDP to optimize rate adaption
of streaming video where the uncertainty in network bandwidth
is modelled as a Markov chain with its own bandwidth states
is given in [13] and [14]. In [8], [15], a stochastic dynamic
programming (SDP) technique was proposed for rate adaption
in DASH players, where the system rate is determined based on
client buffer occupancy and bandwidth conditions. However,
none of these studies used concepts similar to the SHARE
approach to obtain their MDP policies.

Further, we implement two MDP models from the literature
in this paper. These two models are described in the following
paragraphs. These two MDP formulations model the details of
SHARE closest to the ones investigated. However, they differ
in the stated ways: (1) Both methods use different parameters
to devise their MDP model. SHARE uses the single DRR
parameter, while the other models use up to three parameters.
(2) They use formulas to derive their state transition probability
values, whereas SHARE uses historic and run-time experimen-
tal data to obtain these probabilities. (3) The methods use
different rules to reward and penalize various actions, when
compared to SHARE. Though, bitrate switches are used in all
approaches, this is the sole parameter for the reward functions
in SHARE. (4) The methods produce one policy for all the
players to use, whereas SHARE creates a unique policy for
each player. We believe that these fundamental changes to
the MDP model will produce improved streaming policies.
However, in multi-player multi-video bottleneck scenarios the
complexity of the SHARE model increases more rapidly than
other approaches. With MDP modelling this is an inherited
problem, but the multiple polices creates a greater challenge
for SHARE-based player streaming.

We label the two studied models as MDP-DASH (Markov
Decision Process DASH) and QC-DASH (Quality Control
DASH). The goal of MDP-DASH [7] is to explore different
methods to reduce decision making overhead for DASH-based
adaptive video players. The states depend on the quality level
of the downloaded chunk and the time available before the
chunks playback deadline (current buffer occupancy measured
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in time). The actions (decisions) are the quality level of the
next chunk to be downloaded. Higher rewards are given for
‘watching’ a chunk in higher quality. There is a penalty for
missing a deadline as well as switching quality from the
present chunk to the next. For a given action (chunk size), state
transition probabilities are calculated based on the Cumulative
Distribution Function (CDF) of the network bandwidth. The
CDF allows calculation of the probability of a given buffer
occupancy when the next chunk is downloaded. The buffer
occupancy, together with the action (quality level decision),
defines the next state. Transition probabilities will change
with different CDF’s. Different CDF’s lead to different MDP
strategies.

QC-DASH [8] uses Stochastic Dynamic Programming
(SDP) to solve the MDP and aid adaptive video streaming.
The three parameters to compute the state transition matrix
are buffer level, average channel bandwidth and quality. The
authors designed a cost function that penalizes situations that
may lead to a reduction of the QoE. This computation is
done offline, where the control policies map the environment
information to the client requests. The main result is that the
average quality requested with their algorithm is higher, but
it also involves a related number of quality switches among
segments.

Both MDP-based methods significantly improve QoE in
terms of unfairness, re-buffering ratios, instability and video
quality. However, we believe that if players knew about the
state of their counterparts, then they can make better decisions
regarding what bitrates they request from the server. Primarily,
we believe that players should select bitrates that lead to good
QoE.

III. MODEL DESCRIPTION

In an adaptive video streaming model there are n adaptive
video players. Each player, i, could receive different video
data from different servers. Each video consists of various
quality levels, Q; . Where j represents the actual video quality
levels (1,2, , Linaz), and k represents the server number
(1,2,---,n). Each quality level supplied at the server side
corresponds to a received video bitrate value at the client side,
B:,.

J.k

The DRR, R; &> 18 a measure of the received bitrate quality
or levels a video player ¢ is currently experiencing and has
the definition given in (1). The strong players have higher
discretized values than weak players.

i _ Rt
7k T pi _ B
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Each player P; periodically calculates its DRR value and
broadcast it to an external third-party device. The broadcast is
made up of the DRR, sequence number and the IP address of
the broadcasting player. The goal is for the external device to
have a state array containing the most up-to-date DRR values
for all the players in the network. The normalization of the
requested bitrates into DRR values give the advantage that two
or more players with different quality levels can communicate
information about their current quality. For the first 2 minutes
the device uses historic data from a conventional player [16].
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TABLE 1. STATE ARRAYS FOR 3 ADAPTIVE PLAYERS WITH 3

DISCRETIZED DRRS

State ID Array | State ID | Array | State | Array | State | Array
1 111 8 132 15 223 22 321

2 112 9 133 16 231 23 322

3 113 10 211 17 232 24 323
4 121 11 212 18 233 25 331
5 122 12 213 19 311 26 332
6 123 13 221 20 312 27 333
7 131 14 222 21 313

It then listens at 2 minute intervals. It calculates the player
policies using MDPs, see Section III-D. The player policies
are then sent to the respective players. This method enables
players to cope with changing network conditions.

A. State and Action Space for MDP

The state array is made of a discrete representation of the
DRR value of each player. Thus, for the three player model
there would be three discretized DRR values at a single time
stamp. Let us take the first position in the state array, which
is allocated for player one. If the DRR value falls below
0.33 then a discretized DRR value of 1 is assigned to the
first player. If the DRR value falls between 0.33 percent and
0.66 percent, inclusive, then a discretized DRR value of 2
is assigned to the first player. Finally, if the DRR value is
above 0.66 then a discretized DRR value of 3 assigned to
the first player. The same is done for the second and third
players, who occupy the second and third positions of the state
array. To summarize: the three player model would have three
players at position one, two and three in the state array and
each position can have any of three discretized DRR values,
1, 2, or 3. Note that players with same discretized DRR does
not mean same quality or same bandwidth utilization. This
is because the single discretized DRR value can represent
many different bitrates or levels in the video. However, the
discretized DRR values 1, 2, and 3 does indicate increasing
bitrate values. Hence, a player with a discretized DRR value
of 3 does indicate that the discretized DRR was obtained from
a higher bitrate than one at 2. Table I shows all the possible
state arrays for a 3 player model with 3 discretized DRRs.

In order to apply MDP techniques, the state transition
model of the SHARE method needs to be devised. A rate
decision is made at stage k for segment k + 1, so the total
number of stages equals the number of segments K. For stage
k, we denote the state array as uy. Once segment k has been
completely downloaded, the video player P; controller applies
control action a,f * to determine the quality level for segment
k + 1 based on the information in state array wug. At every
time instance, each player may experience different bitrates,
thus their individual ’combined’ mapping to the global state
may differ. Henceforth, each player may have a different policy
and action given the value of state array uy.

B. State Transition Probabilities for MDP

A decision made at the current state will influence the
transition probability of reaching to a specific state at the next
step for a given player. For the MDP model, if 3 players with
3 discretized DRRs are used, each transition matrix will be
27 x 27. For a video with m levels, there are m possible
actions that can result from each player in the system having
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state array uy. For a player P;, given any state u and action
ay, the transition probability of the MDP is given in (2).

P(upyrlug, ar) = Pr(ugg|ug, ar(u)) 2

There are m transition matrices. These transition matrices
initially can be calculated by collecting historic data from
a configured network containing n video players using the
conventional method to HAS. For each player, P; and each
state array wuy, counts can be taken of the number of times the
state array changes to uy1 for a given video quality level.

C. Reward Function for MDP

In an MDP the effectiveness of an action has to be
evaluated. In order to do this we define a reward value 7y
related to action ay, at stage k. The reward value is a function
of state array uj given in (3).

T = R(Uk) (3)

To best explain how the reward function works consider
using 3 players with 3 discretized DRRs, where the first
element in the array corresponds to a discretized DRR value
of player 1, the second to the discretized DRR value of player
2 and the third to the discretized DRR value of player 3. We
consider the first case where all three players have different
discretized DRR values, the maximum, the middle and the
minimum. Thus, one player will have a discretized DRR of 1,
one player will have a discretized DRR of 2, and one player
will have a discretized DRR of 3. Here, the player with the
minimum discretized DRR value is rewarded a value of 2
for moving up by 1 from its current quality level, a value
of 1 for moving up by 2 from its current quality level or
a value of O for any other movements. The player with the
maximum discretized DRR value is rewarded a value of 2
for moving down by 1 from its current quality level, a value
of 1 for moving down by 2 from its current quality level or
a value of O for any other movements. The player with the
middle discretized DRR value gets a reward of 0. The result
is that large quality shifts are penalized, while smaller shifts
are rewarded.

Now consider the case where one player obtains the
minimum discretized DRR value (1 player has a discretized
DRR value of 1) and the two other players have a tie for the
maximum discretized DRR value (2 players have discretized
DRRs of either 2 or 3). The player with the minimum
discretized DRR value is rewarded a value of 2 for moving
up by 1 from its current quality level, a value of 1 for moving
up by 2 from its current quality level or a value of O for any
other movements. This encourages upward quality shifts for
the player with low quality. The other two players IP addresses
are sorted in ascending order. The one with the higher IP is
chosen as the player with the highest discretized DRR value.
This player is rewarded a value of 2 for moving down by 1
from its current quality level, a value of 1 for moving down by
2 from its current quality level or a value of O for any other
movements. The player with high quality is able to reduce
its high bitrate selection request. The player with the middle
discretized DRR value gets a reward of 0, as with the first
case. The antithesis to the previous case is where one player
obtains the maximum discretized DRR value (1 player has a
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discretized DRR value of 3) and the two other players have
a tie for the minimum discretized DRR value (2 players have
discretized DRRs of either 1 or 2). In this case the player with
the lowest discretized DRR value (now the tie is broken by
selecting the player with the smaller IP address) is rewarded a
value of 2 for moving up by 1 from its current quality level,
a value of 1 for moving up by 2 from its current quality level
or a value of O for any other movements. The player with the
maximum discretized DRR value is rewarded a value of 2 for
moving down by 1 from its current quality level, a value of 1
for moving down by 2 from its current quality level or a value
of 0 for any other movements. Again the weak and strong
players are allowed to adjust their bitrates, but note that these
shifts in bitrates may result in the player staying with the same
discretized DRR value. This occurs as a single discretized DRR
value may represent many different bitrates. The player with
the middle discretized DRR value gets a reward of 0, as with
the first and second cases.

Further, consider the last case where all players have
the same discretized DRR value. The last case has three
alternatives. The first alternative is where all 3 players have the
highest discretized DRR values (3 players have a discretized
DRRs of 3). The second alternative is where all 3 players
have mid range discretized DRR values (3 players have a
discretized DRRs of 2). The third alternative is where all
3 players have low discretized DRR values (3 players have
a discretized DRRs of 1). These cases are simple as they
represent players in a convergent state. Hence, no value reward
is given to players. The tendency of the players based on the
increases and decreases in bitrate requests, is to eventually
converge towards discretized DRR harmony, that is, when
all players have the same discretized DRR values. Here, a
convergence occurs amongst video player discretized DRR
values. However, one may argue that all players at discretized
DRR values of 1 or 2 is not ideal. Consequently, it can be said
that a distributed streaming system under the second or third
alternative would not thrive, even if discretized DRR harmony
is present. This is because end users may suffer from sub-
optimal QoE, due to players making a request for low level
bitrates. But the effects of (Transmission Control Protocol)
TCP at the transport layer comes into player in the latter two
alternatives. TCP would detect the low bandwidth usage of
the bottleneck link and the players would slowly ramp up their
bitrate requests. This effect would result in the discretized DRR
harmony having a greater tendency of moving towards higher
discretized DRRs. In additions because the DRR values are
discretized, alternatives one and two may be fruitful for some
players who require lower bitrates for good QoE. For example,
when players are downloading videos with different qualities
or in networks with very low bandwidths. Note that at most
two players are involved in the adjustment of quality levels at
stage k and the r; can be defined as follows:

0 if quality movement is more than two,
r, = ¢ 1 if quality movement is two,
2 if quality movement is one.

Where r; given the values 1 or 2 apply when all players
have different discretized DRRs or a tie occurs between two
players, and the value O for other cases. Note that there are
m reward matrices where m represents the number of video
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Fig. 1. Testbed setup.

quality levels.

D. Finding Optimal Policy for MDP

The core problem of MDPs is to find a policy for each
video player controller. This is a function that given a state
array will return an action (the next quality to request from the
server). The MDP finds a policy for a player that maximizes
the cumulative reward function of that player. Value iteration
[3] is a well known algorithm for finding such a policy and we
use MATLAB pre-build tools to solve the MDP formulation in
this paper. In the case with up to five players, three discretized
DRRs values can be used. However, to reduce complexity and
state space size with more than five players the number of
discretized DRRs values can be reduced to two. This is based
on the assumption that as the number of players increase the
need for having granular discretized DRR values decreases.

IV. EXPERIMENTS

The emulated environment consists of three TAPAS [17]
client video players, a third-party device, a Dummynet [18]
bottleneck link and a single server machine. Fig. 1 shows the
network architecture used. The client, third-party device and
server machines used the Ubuntu 15.04 operating system and
the bottleneck link used FreeBSD. In Fig. 1, the router acts
as the bottleneck link. The maximum throughput allowed at
the bottleneck link is set to 5 Mbps. The video on the server
contains 327 video segments and is 10.88 minutes long. Each
segment is 2 seconds in length. The video consists of seven
different quality levels, ranging from 46 kbps to 4.2 Mbps.
Screen resolutions for the different quality levels are 320x240,
480x360, 1280x720, and 1920x1080. The four resolutions
are divided amongst seven bitrates. Thus, there are similar
resolutions available with different bitrates. The media type for
the video is MP4, which is encoded at 24 frames per second

(fps).

The conventional method is used to generate the data that is
needed to calculate the transition matrices. Players share DRR
values using a broadcast mechanism at each client as described
in Section III. Twenty-five experiments are run, each with 6500
state changes. State transition matrices are created as described
in Section III-B. There are seven levels so this results in seven
different 27 x 27 state transition matrices for each player. In
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addition, reward matrices are created as described in Section
III-C. These seven transition and reward matrices per player
are used as inputs to the MDP method that is executed in
MATLAB.

The output of the MDP process is 3-tuple policy. The action
(client bitrate request level) given by a policy depends on the
actual videos used and network conditions. An example of the
output for this experiment is given in Table II. During runtime
the clients will share DRR value information. In this way they
will be able to form their own state arrays. The state arrays are
identical across all players in the network. Then depending on
the network conditions at the client a look up of action based
on the respective policy is made possible.

See Table II for a sample policy'. Recall that the video
used has seven quality levels. Assume the lowest three bitrates
(level 1, 2 and 3) represent a discretized DRR of 1, the next
two (level 4 and 5) by a discretized DRR of 2 and the last
two (level 6 and 7) a discretized DRR of 3. As an example
the state array of player 1, 2 and 3 consists of three values, 3
2 2. The value 3 indicates the discretized DRR value of player
1. The player then looks up the value it should request. The
quality level then requested is 5. Likewise, the second player
looks up its own state which has a discretized DRR value
of 2. Player 2 follows its own policy and requests a quality
level of 5. The third player observes that its discretized DRR
value is 2. It follows its own policy and requests a quality
level of 7. This is a good example of how the reward function
affected the policy. The weak player with a discretized DRR
value of 2 (tie is broken by selecting player with smaller IP
address) got a next bitrate request of 7, while the strong player
drops its bitrate request to 5. The other player keeps it bitrate
high and so requests a quality level of 7. Note that the global
state of the players are important during streaming at any time
instant. However, the players can be downloading different
segments from different videos from alternative servers and
the method will still be effective. Synchronicity of player are
required by SHARE. However, start or pause-time should not
affect the effectiveness of the method as the players would now
be reacting to the changed DRRs and what quality segments
their respective policy requests for them to download. The
policies shows that there is a general trend towards selecting
better bitrates with a harmony existing when players tend to
move to lower or higher rates adjusting to bottleneck network
conditions. A close look at the values in the policies show that
the reward function plays a vital role in the decision a player
makes to select its next bitrate.

The following MDP client player algorithms are imple-
mented along with the proposed method:

1)  The conventional controller [16]
2) MDP-DASH [7]
3) QC-DASH [8]

A. QoFE Evaluation Metrics

The metrics used to evaluate the performance of the client
players are:

'This policy is the actual policy for the single bottleneck experiment in
Section IV-B

)

2)

3)

4)
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TABLE II. SAMPLE POLICIES FOR PLAYERS 1, 2 AND 3
State Array | Player 1 Player 2 | Player 3
11 1 I 1
112 6 1 1
113 1 4 1
121 4 6 4
122 4 5 5
123 7 6 1
131 1 7 1
132 6 6 5
133 7 7 1
211 1 1 6
212 6 4 5
213 7 4 5
221 5 4 5
222 5 5 5
223 7 7 6
231 4 1 4
232 6 5 5
233 6 7 5
311 1 4 1
312 6 4 7
313 7 1 6
321 5 6 7
322 5 5 7
323 6 7 6
331 1 6 4
332 6 6 7
333 6 6 6

Buffer Underruns [19]: when the playout video rate is
larger than the download bandwidth the video buffer
gets depleted rapidly and becomes empty, a buffer
underrun occurs. This causes the video to stall until
more bits refill the buffer. The re-buffering ratio is
the total time spent re-buffering divided by the total
experiment time as defined in (4).

) total Rebu f fingTime
rebuf_ratio = - -
total ExperimentTime

“

Bandwidth Utilization [20]: the aggregate throughput

or bitrate during a time interval divided by the avail-

able bandwidth in that interval [9] and is defined in

(5). i
t=0 WPt (5)

bw

where tp; is the throughput at time ¢, bw is the

bandwidth for IV time steps

Unfairness [21]: measured by 1 minus the Jain fair-

ness index. The Jain fairness index is defined in (6).

(i1 tpi)®
230 tps

where tp; is the throughput of player j and z is the
number of players.

Instability [16]: a measure of the total quality dif-
ferences between successively downloaded segments.
The instability for player j receiving video at quality
Q; at time t is given by Equation 7.

o Y Qilt—dl — Qft —d — 1] - w(d)
;=
Yam Qslt = d] - w(d)
(N
where w(d) = k — d is a weight function that puts

more weight on more recent samples. k is selected
as 20 samples in our experiments.

utilization =

6)

JainFairy =
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5)  Average Quality [15]: considers the geometric mean
of all the received video segments. It not only
maximizes video quality, but also minimizes quality
variance among N segments.

average_quality = Y/rirars - TN )]

B. Results

The experimental results for the single constrained bottle-
neck experiment are presented in Table III. Conditions:

o Video: Elephants dream 2. The video duration is 10.79
min.

o  The available bandwidth is set to 5 Mbps.

TABLE III. QOE METRICS: SINGLE CONSTRAINED BOTTLENECK
CONV. | MDP-DASH | QC-DASH | SHARE
Utilization Index 0.68 0.73 0.72 0.74
Unfairness Index 0.297 0.116 0.133 0.014
Re-buffering ratio 0.012 0.008 0.010 0.001
Instability 0.013 0.009 0.010 0.001
Average Quality 3.19 342 3.27 343

The SHARE distributed MDP method outperforms the
conventional, MDP-DASH and QC-DASH methods. It per-
forms the best in terms of channel utilization, fair sharing,
re-buffering, stability and quality. This shows that the optimal
policies produced by SHARE are well suited for bottleneck
environments. MDP-DASH outperforms QC-DASH in all met-
rics. Finally, QC-DASH outperforms the conventional in all
metrics.

However, it must be noted that SHARE is a good QoE
sharing-based method. Its main purpose is to help adaptive
video streaming players get good QoE relative to their video
quality levels. Thus, the overall network utilization and the
individual user experiences among the three players will be
better than the conventional, MDP-DASH and QC-DASH.
However, it must be noted that the re-buffering ratio and
average quality value are very close to that of MDP-DASH. In
this context SHARE can be said to provide high bandwidth
utilization, fairness and stability with minor improvements
(possible trade-offs may occur here) in re-buffering and video
quality when compared to other approaches.

Further experiments under time-varying bandwidth condi-
tions are considered. The bandwidth at the bottleneck link is
changed at various times throughout the experiment. Condi-
tions:

o Video: Elephant’s dream®. The video duration is 10.79
min.

o  The available bottleneck bandwidth capacity, is ini-
tialized to 5 Mbps.

e At 2/10, 4/10, 6/10 and 8/10 of the experiment
duration the bottleneck bandwidth capacity drops by
1/2 for 60s, respectively.

In the presence of time-varying bandwidth, SHARE did
the best in all metrics, (Table IV) and player policies in
Table V. This exhibits that SHARE can act in an optimal

Zhttp://www.itec.uni-klu.ac.at/dash/?page_id=207
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TABLE IV. QOE METRICS: TIME-VARYING BANDWIDTH

CONV. MDP-DASH QC-DASH SHARE
Utilization Index 0.56 0.59 0.60 0.67
Unfairness Index 0.343 0.165 0.187 0.081
Re-buffering ratio 0.093 0.072 0.050 0.002
Instability 0.037 0.019 0.027 0.011
Average Quality 245 2.73 2.87 3.05

manner in the presence of bandwidth variations. The MDP-
DASH performs better than QC-DASH only in fairness. The
bandwidth utilization is better because of the extra parameter in
the QC-DASH MDP model which considers this metric. The
conventional performs the worst. SHARE does not seem to
have any trade-offs when network conditions are time-varying.
However, a closer look shows that the instability index is
closest to the other three approaches compared to the other
metrics. Stability is treated as the trade-off for a community
of SHARE players in time-varying network conditions.

Overlapping ON periods are a huge problem for competing
adaptive video streaming players at a bottleneck link [22]. The
lowering of bitrate requests at the application layer for the
player with the higher discretized DRR reduces the ON effect
of this player caused by accelerating TCP rates at the network
layer. This gives the player with the lowest discretized DRR
an opportunity to now claim a larger portion of the bandwidth
by increasing its bitrate request. This holds more so for
the constrained bottleneck link compared to the experimental
condition of a time-varying bandwidth being present. Note that
players using the SHARE approach in time-varying network
conditions have a stability trade-off. This is expected as there
is less bandwidth for players so chances at having successful
download request attempts aimed at increasing and decreas-
ing bitrates becomes less likely. However, the time-varying
bandwidth experiment shows that even with the reduction in
bandwidth the SHARE approach still allows the player with
the lowest bitrate to have a better chance at increasing the
TCP transmission rate at the transport layer. The result of
this probabilistic increase and decrease in bitrate requests may
eventually reduce the oscillatory effects associated with ON-
OFF traffic patterns.

V. CONCLUSION

A novel framework called SHARE for using MDPs in
adaptive video streaming in bottleneck network environments
is proposed which involves a discretized DRR state array of
multiple client players. A reward function is presented, which
penalizes large jumps in quality level shifts. The output of the
MDP process is a separate policy for each client player. We
compare with other MDP models to show the effectiveness
of the SHARE method. SHARE’s design gives good QoE
for players. However, possible trade-offs in buffering and
video quality may exist. Future work includes measuring
the performance of the SHARE method in experiments with
varying start times, in the presence of long-lived TCP flows,
and multi-video scenarios.
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