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Abstract—Motivated by large capacity gains in multiple an-
tenna systems when ideal channel state information (CSI) is
available at both receiver and transmitter and quadrature am-
plitude modulation (QAM) is applied, we examine the achievable
rates of Rayleigh fading channel measurement based optimization
techniques. We consider complex-valued noise Gaussian distri-
bution and try to determine the optimal input distribution of
fixed signalling points. By using Hermite polynomials and under
even-moment constraint, the simulation results show that the
information rate is achieved with unique and optimal input
distribution. It is also shown that the computational complexity
can be reduced by factorizing the optimal distribution into the
product of symmetrical distributions.

Keywords—Polar codes; MIMO fading channel; Hermite poly-
nomials; channel capacity

I. INTRODUCTION

A significant amount of work has been reported to analyze
the performance of multiple input multiple output (MIMO)
systems in combination with other countermeasures, such as
error-correcting codes. Among all the error-correcting codes,
polar codes can accomplish the bit error rate (BER) perfor-
mance approaching Shannon limit. In this paper, we discuss a
concatenation scheme of polar codes and Alamouti encoder
for space-time block codes. The channel capacity CM-QAM
is defined as the maximum information rate found when
quadrature amplitude constellation of size M (M-QAM) is
applied. This CM-QAM is upper limited by C, the channel
capacity, whereas the “reduction” amount in achievable rate
between them can be referred due to the the logarithm of
the constellation size and the channel SNR. Accordingly, the
channel capacity C which grows logarithmically diverges from
the bounded CM-QAM at high values of SNR while they are
close together at low SNRs. First, we try to amplify the
transmitted signal amplitude by scaling the points with a factor
> 0 in order to approach CM-QAM with the channel capacity.
Also, we characterize the optimal distribution through using
Hermite polynomials theory under even-moment constraint.
We show also that the obtained optimal input distribution
can be factored into two identical distributions, and then, as
a result, apply the optimization algorithm on the new input
distribution. This step can hugely lower the complexity of opti-
mization computations along the algorithm. The contributions

thus lie in the study of the capacity of this MIMO channel
model, in which we show that

• CM-QAM is computed with maximum power constraint.

• The capacity-achieving distribution, subject to an
even-moment constraint E[xHx] ≤ P for some P > 0,
is only optimal, Gaussian and continuous.

• The optimal input symbol distribution, numerically
indicated by the results of an optimization procedure
based Hermite polynomials theory, can be factored
into Cartesian product of symmetrical distributions.

Results evolve along the following lines. A model of the
fading MIMO channel model is presented in Section II. Section
III formulates our problem then motivate the use of Hermite
polynomials theory. The optimal input distribution is then
characterized by an iterative and a simplified iterative proposed
solutions, see Section IV. In Section V, the main results are
provided and, finally, a brief conclusion is given in Section
VI.

II. SYSTEM MODEL

Consider a complex system of MIMO fading channel, with
T transmit antennas under power constraint P and R receive
antennas is given by

y = H x + n. (1)

Where y ∈ CR represents the received signal, the column
vector x = (x1, x2, . . . , xM)T ∈ CT is the transmitted signal
with M is the constellation size, and H ∈ CT×R is the channel
gain matrix of random coefficients hij

(
i ∈ [1, . . . ,T ], j ∈

[1, . . . ,R]
)

with zero mean and unit variance. The complex
noise vector n ∈ CR has independent and identically dis-
tributed (i.i.d) Gaussian samples with mean also equals zero
and variance is σ2

n. Suppose the channel state information
(CSI) at the receiver is known and, finally, P is the transmitted
signal power.

Fig. 1 shows the signal constellation of quadrature amplitude
modulation (QAM) with constellation size M= 16 (X16-QAM).
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Fig. 1. Signal constellation of X16-QAM = X4-PAM ×X4-PAM.

Suppose the conditional probability density function (pdf) is

p(y|Hx) = (
1√
2πσ2

)R e
− ||y−hx||

2

2σ2n , (2)

and the channel capacity of the MIMO channel is defined
as C = sup

p
I (x; y), where I (x;y) is the mutual information

between channel input and output.

I (x; y) =

∫∫
p(y|Hx) log2

p(y|Hx)
p(y|H)

dhdy and

p(y|H) =
∑

xi∈X16-QAM

p(xi) p(y|Hx).

Now, let us define the marginal output density of y cor-
responding to the input distribution Q(x) as p

(
y ;Q(x)

)
=∫

p(y|Hx) dQ(x). Then

C = sup
Q∈Q

E[xHx]≤P

∫∫
p(y|Hx) log2

p(y|Hx)
p(y ;Q(x))

dy dQ(x) (3)

with Q is the set of all satisfied distributions [1], [2], i.e., Q =

Q :

∫ ∞
−∞

x2 dQ(x) ≤ P. Calculus may not easily solve the

supremum of the last equation. Instead, convex optimization
theory is able to show that a unique variable x∗ with its input
distribution CDF Q(x∗) attains the capacity C [3]. The required
conditions are as the following

C ≥ λ(P − ||x||2) +
∫∫

p(y|Hx) log2
p(y|Hx)
p(y ;Q(x))

dy dQ(x),

(4)
for all x, then

C = I(Q(x∗))

= λ∗ (P − ||x∗||2) +
∫

p(y|Hx) log2
p(y|Hx)

p(y ;Q(x∗))
dy,

(5)

where λ∗ = λ(P ) ≥ 0 denotes the optimal Lagrange multi-
plier.

III. THE PROBLEM

A. Capacity-Achieving Distribution Characterization

It is necessary to point out here some properties of

I(Q(x∗)) =

∫
p(y|Hx) log2

p(y|Hx)
p(y ; Q(x∗)) dy.

Lemma 1. For a Rayleigh fading channel giving
in (1) with input distribution Q(x), the integration∫
p(y|Hx) log2

p(y|Hx)
p(y ; Q(x∗)) dy satisfies the following

properties

a) lim
x→∞

∫
p(y|Hx) log2

p(y|Hx)
p(y ;Q(x∗))

dy

≈ − log2
[
p(y ;Q(x∗))

]
. (6)

b)

∫
p(y|Hx) log2

p(y|Hx)
p(y ;Q(x∗))

dy < − log2
[
p(y ;Q(x∗))

]
.

(7)

Proof : For any finite noise variance σ2, as x −→ ∞ the
conditional pdf p(y|Hx) tends to unity. This leads to

lim
x→∞

∫
p(y|Hx) log2

p(y|Hx)
p(y ;Q(x∗))

dy

≈ 0 − log2
[
p(y ;Q(x∗))

]
= − log2

[
p(y ;Q(x∗))

]
.

To prove part b, and by Jensen’s inequality∫
p(y|Hx) log2

p(y|Hx)
p(y ;Q(x∗))

dy

≥ − log2

∫
p(y|Hx) p(y ;Q(x∗))

p(y|Hx)
dy

= − log2

∫
p(y|Hx) p(y ;Q(x∗)) dy = 0

=⇒
∫

p(y|Hx) log2
p(y|Hx)

p(y ;Q(x∗))
dy ≥ 0

Or

∫
p(y|Hx) log2 p(y|Hx) dy

︸ ︷︷ ︸
< 0

< −
∫

p(y|Hx) log2 p(y ;Q(x∗)) dy.
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Since the entropy is bounded by the logarithm of the alphabet

size
(
|Q(x∗)| <∞

)
[4]

=⇒
∫

p(y|Hx) log2 p(y|Hx) dy < − log2
[
p(y ;Q(x∗))

]
=⇒
∫

p(y|Hx) log2

p(y|Hx)
p(y ;Q(x∗))

dy < −log2
[
p(y ;Q(x∗))

]
.

Now

C = λ∗ (P − ||x∗||2)

+
( 1√

2πσ2
n

)R
∫

e
−||y−hx||2

2σ2n log2

(
1√
2πσ2

n

)R
e
−||y−hx||2

2σ2n

p(y ;Q(x∗))
dy

= λ∗ (P − ||x∗||2)− R log2
√

2π e σ2
n

−
( 1√

2πσ2
n

)R
∫
e
−||y−hx||2

2σ2n log2 p(y ;Q(x∗)) dy. (8)

The using of Hermite polynomials combination can help in
expanding the last integration [5].

B. The Optimal Input

Let p(y) = p(y ;Q(x∗)) and by assuming that σn = 1
without losing the generality

C =λ∗ (P − ||x∗||2)− R log2
√
2π e

−
( 1√

2π

)R
∫

e
−||y||2

2 e
−||hx∗||2

2 + ||hx∗|| yH
log2 p(y) dy.

According to Hermite polynomial properties [6], the generating

function is e
−||hx∗||2

2 + ||hx∗|| yH
=
∑∞
n=0 Hn(y)

||hx∗||n
n! ,

and since p(y) is a continuous function of y, so is log2 p(y).
Then the piecewise continuous function log2 p(y) can be
written as log2 p(y) =

∑∞
n=0 cn Hn(y).

By substitution, we get( 1√
2π

)R
∫
e
−||y||2

2 e
−||hx∗||2

2 + ||hx∗|| yH
log2 p(y) dy

=
(

1√
2π

)R−1
∫

1√
2π
e
−||y||2

2

∑∞
n=0 Hn(y)

||hx∗||n
n! log2 p(y) dy

=
(

1√
2π

)R−1 ∑∞
n=0

[
1√
2π n!

∫
e
−||y||2

2 log2 p(y)Hn(y) dy
]
||hx∗||n

=
( 1√

2π

)R−1
∞∑
n=0

cn ||hx∗||n .

Therefore
C =λ∗ (P − ||x∗||2) − R log2

√
2π e

−
( 1√

2π

)R−1
∞∑
n=0

cn ||hx∗||n .

Or
∞∑
n=0

cn ||hx∗||n =
(√

2π
)R−1 [

λ∗ (P − ||x∗||2) − C

− R log2
√
2π e

]
.

Which yields

c0 =
(√

2π
)R−1 [

λ∗ P − C − R log2
√
2π e

]
, c1 = 0 ,

c2 ≤ −
(√

2π
)R−1 λ∗

||h||2
, and cn = 0 for n ≥ 3 .

Consequently,

log2 p(y) =
∞∑
n=0

cn Hn(y) = c0 H0(y) + c2 H2(y)

= c0 + c2(||y||2 − 1) = (c0 − c2) + c2||y||2

and hence p(y) = e ln 2
[
(c0− c2)+ c2 ||y||2

]
= ke c2 ln 2 ||y||2 , k = e (c0− c2) ln 2.

(9)

Finally, the appropriate input probability law p(x∗) that in-
duces such output Gaussian distribution could be found as

p(y|Hx) = (
1√
2π

)R e
−||y−hx||2

2 (σn = 1)

= (
1√
2π

)R e
−||y||2

2 e
−||hx∗||2

2 + ||hx∗|| yH

= (
1√
2π

)R e
−||y||2

2

∞∑
n=0

Hn(y)
||hx∗||n

n!
,

then

p
(
y ;Q(x∗)

)
=

∫
p(y|Hx) dQ(x∗)

=

∫
( 1√

2π
)R e

−||y||2
2

∑∞
n=0 Hn(y)

||hx∗||n
n! dQ(x∗)

= p(y) = ke c2 ln 2 ||y||2 .

Hence
ke c2 ln 2 ||y||2 =

(
1√
2π

)R-1
∞∑
n=0

1√
2π n!

∫
e
−||y||2

2 ||hx∗||n dQ(x∗) Hn(y).

Multiplying by Hn(y) gives[
ke c2 ln 2 ||y||2

]
Hn(y) = (

1√
2π

)R-1

×
∞∑
n=0

[ 1√
2π n!

∫
e
−||y||2

2 ||hx∗||n dQ(x∗) Hn(y)
]

Hn(y).

The last result could be manipulate as the following:∫ [
k e c2 ln 2 ||y||2

]
Hn(y) dy = (

1√
2π

)R-1

∫
||hx∗||n dQ(x∗).

The integration on the left hand side could be consider as the
expectation operation of Hn(z) where z is a complex random
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variable with normal distribution of zero mean and σz standard
deviation. Therefore,∫ [

ke c2 ln 2 ||z||2
]

Hn(z) dz

= k
√
2πσ2

z

∫
Hn(z)

e
−||z||2

2σ2z√
2πσ2

z

dz = k
√
2πσ2

z E [Hn(z)]

= k
√

2πσ2
z µ

n Hn(0) ,
µ is the expectation of
Hn(z) [6]

= k
√

2πσ2
z

(√
E(z2)− σ2

z

)n
Hn(0)

= k
√

2πσ2
z

(√
(2− 1)!!− σ2

z

)n
Hn(0)

= k
√
2πσ2

z

(√
1− σ2

z

)n
Hn(0)

=

{
0 if n is odd
k
√
2πσ2

z

(√
1− σ2

z

)n
Hn(0) if n is even ,

(10)

where σ2
z <

||h||2

(
√
2π)R-1 λ∗ ln 4

. Hence∫
||hx∗||n dQ(x∗) = k

√
(2π)R σ2

z

(√
1− σ2

z

)n
Hn(0).

(11)

The last integral is kind of Riemann-Stieltjes integral
applies to probability theory. It represents the n-th moment
of the probability distribution. Here, the moment generating
function (mgf), Mx∗ (t), is

Mx∗(t) =

∫
||hx∗||n dQ(x∗) = E

[
e t ||hx

∗||
]

=
∑
x∗

e t ||hx
∗|| k

√
(2π)R σ2

z

(√
1− σ2

z

)n
Hn(0)

=
∑
x∗

∞∑
n=0

(t ||hx∗||)n

n!
k
√
(2π)R σ2

z

(√
1− σ2

z

)n
Hn(0)

= k
√
(2π)R σ2

z

∞∑
n=0

[
Hn(0)

(
√
1− σ2

z t )
n

n!

∑
x∗

||hx∗||︸ ︷︷ ︸
= 1 for n = 0

]

= k
√
(2π)R σ2

z e
− 1−σ2z

2 t2
. (12)

Consequently, we can recognize that the pdf of the continuous

input x∗ is p(x∗) = k
√
(2π)R σ2

z e
− 1−σ2z

2 ||x∗||2 , which is

valid whenever σ2
z ≤ 1 or λ∗ ≥ ||h||2

(2π)R−1 ln 4 .

IV. CAPACITY COMPUTATION

A. Capacity under Amplitude-Limited Inputs

We now need to maximize I (x; y) for all s > 0. To do
this, we must find the largest s, referred to s∗, such that the
code still converges to zero error rate. Such s∗ could be found
through binary search, noting that it is possible to limit the

search space to smin ≤ s ≤ smax , where smin and smax are
the minimum and maximum, respectively.

Lemma 2. There exists a bounded range for M-QAM signal
constellation gains (s) such that√

P
2(
√

M−1)2 T
= smin ≤ s ≤ smax =

√
P
2T ,

where P is transmitting power over T antennas.

At the beginning, it is necessary to show how could the
power constraint given by s2 E[||xi||2] ≤ P, ∀ xi ∈ M-QAM
be replaced with equality (without loss of optimality). For the
two scaling factors s1 > 0 and s2 > 0, assume that ∀ xi ∈
M-QAM

s1
2 E[||xi||2] ≤ P and s2

2 E[||xi||2] = P.

It is being adequate to say that I (x; y1) ≥ I (x; y2) with y1 and
y2 are the corresponding output random variables. Thus,

I (x; y1) = h(x)− h(x|y1)

conditioning on an extra variable can only decrease entropy
≤ h(x)− h(x|y2, y1)

= h(x)− h(x|y2) px|yz(x|y, z) = px|y(x|y)
= I (x; y2).

Hence, s2
∑

xi∈XM-QAM

||xi||2 = P .

Secondly, in many XM-QAM constellations, the power requires
to transmit the highest-amplitude symbol is Pmax = 2(

√
M −

1)2, and for T transmit antennas it is Pmax = 2(
√

M− 1)2 T ,
where M = 2m. While the peak needs power approximately
tends to vary with the number of m as P ∝ 2m, hence the
minimum transmitted power over T antennas is Pmin = 2T .

Algorithms 1 and 2 present in details an iterative procedure
to perform the M-QAM capacity computation problem.

B. Factorizing the Optimal QAM Distribution

The system with (MT−1) optimized variables over XM-QAM
constellation gets extremely high complexity and needs a
solution that simplifies such presented algorithm (Algorithm
1). This solution focuses on the idea that QAM constellation
could be performed of signal points placed symmetrically in (I-
Q) plane and gives an amplitude-modulation of two orthogonal
waveforms. Thus,

x = (x1i , x1q , x2i , x2q , . . . , xMi , xMq) ∈ X 2√
M-PAM . (13)

We will denote q(x) to be any valid probability function de-
fined over X√M-PAM . If all of the elements in (13) are supposed
to be i.i.d. with q(x), this means we are actually looking up
for the distribution q(x∗) that maximizes C. Accordingly, we
make the following important conjectures.

Conjecture 1. The input distribution p(x∗) that could maxi-
mize C over XM-QAM realizes as

p(x∗) =
∏

m∈{i,q}

T∏
n=1

q(x∗mn) ∀ x∗mn ∈ X√M -PAM (14)
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Algorithm 1 s∗, p(x∗), and CM-QAM Calculations.
1: Set s = smin .
2: For all x ∈ XM-QAM , compute

• C = sup
Q∈Q

∫∫
p(y|Hx) log2

p(y|Hx)
p(y ;Q(x)) dy dQ(x) ,

• p
(
y ;Q(x)

)
= ke c2 ln 2 ||y||2 .

• p(x) = k
√
(2π)R σ2

z e−
1−σ2z

2 ||sx||2 ,

k = e (c0− c2) ln 2, c2 ≤ −
(√

2π
)R−1 λ

||h||2 ,

c0 =
(√

2π
)R−1 [

λP − C − R log2
√
2π e

]
and

σ2
z <

||h||2

(
√
2π)R-1 λ ln 4

.

3: λ is chosen to satisfy

• λ >
−log2 [p(y ;Q(x))]−C

||sx||2−P and λ ≥
||h||2

(2π)R−1 ln 4 .

4: Repeat steps 2&3. When p(x) does converge, call it
p(x∗).

5: Set s = snew (as in Algorithm 2). Go to step 2.

6: Compute CM-QAM =

∫
p(y|Hx) log2

p(y|Hx)
p(y ;Q(x∗)) dy .

Algorithm 2 Calculating the optimum value of (s) by binary
search optimization method.

1: Sweep s ∈ [smin, smax] .
2: Set s1 = smin , and s2 = smax .
3: Do Algorithm 1 so that the probability functions converge

using s1 and do not using s2 .
4: If s1 − s2 < δ (the search accuracy), put snew = s1.

Stop.

5: Calculate s3 =
s1 + s2

2
. Do Algorithm 1 with snew = s3.

If it converges, let s1 = snew. Otherwise, let s2 = s3 .

6: Go to step 4.

Conjecture 2. If x = (x1i , x1q , x2i , x2q , . . . , xMi , xMq)
and p(x) has the form of (14), then

E[x2mn] ≤
P

2T
(15)

Algorithm 3 presents the procedure for accomplishing this
optimization task.

Finally, to examine the results, CM-QAM is compared with
the capacity determined according to independent and uni-
formly distributed signalling (CM-QAM-i.u.d.). We consider all
signal points are equiprobable and therefore the constellation

Algorithm 3 s∗, q(x∗), p(x∗), and CM-QAM Calculations.
1: Set s = smin .
2: For all x ∈ X√M-PAM = (x1, x2, . . . , x√M) and

(m,n) ∈ {1, 2, . . . ,T} × (i, q) , compute

• C =

sup
Q∈Q

∫∫
py|Hxmn(y|Hx) log2

py|Hxmn(y|Hx)
p(y ;Q(x))

dy dQ(x),

where due Baye’s law

py|Hxmn(y|Hx) =
∑

xi∈XM-QAM

p(y|Hx) and

Q = Q :

∫ ∞
−∞

(sxmn)
2 dQ(x) ≤ P

2T .

• q(x) = k
√
(2π)R σ2

z e−
1−σ2z

2 (sxmn)
2

,

k = e (c0− c2) ln 2, c2 ≤ −
(√

2π
)R−1 λ

||h||2 ,

c0 =
(√

2π
)R−1 [

λ P
2T − C − R log2

√
2π e

]
and

σ2
z <

||h||2

(
√
2π)R-1 λ ln 4

.

3: λ is chosen to satisfy

• λ >
−log2 [q(y ;Q(x))]−C

(sxmn)2− P
2T

and λ ≥
||h||2

(2π)R−1 ln 4 .

4: Repeat steps 2&3. When q(x) does converge, call it

q(x∗).

5: Compute p(x∗) as in (21).
6: Set s = snew (as in Algorithm 2). Go to step 2.

7: Compute CM-QAM =

∫
py|Hxmn(y|Hx) log2

py|Hxmn (y|Hx)
p(y ;Q(x∗)) dy.

gain s sets to

√
P

M2−1
12

and p(xi) =
1

MT , i ∈ {1, 2, . . . ,M
T}.

V. NUMERICAL RESULTS

We employ Algorithm 3 to compute the achievable rate
under Rayleigh fading channel with successive cancellation
(SC) polar codes of 1024 code length and rate of 1

2 coded the
16-QAM input signal constellation for a (2 × 2) system. For
example, in Fig. 2 we can see that a rate of 1.3 bit per channel
used is achieved at 9.298 dB when XM-QAM constellation is
transmitted over each antenna. By using X 2√

16-PAM
constella-

tion, this rate could be achieved at 9.357 dB by utilizing an
optimum constellation gain of s∗ = 0.5825. Thus, CM-QAM
is within 0.059 dB from channel capacity limit at 1.3 bit per
channel used; while CM-QAM-i.u.d. is about 0.349 dB from the
limit, displaying a gap of 0.29 dB with CM-QAM.

Now, according to Algorithm 1 there are 162 − 1 = 255
variables required to fulfill the optimization task; compared
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Fig. 2. Achieved capacities under different transmission scenarios. The SC
polar codes has code length of 1024 with half rate.

with
√
16− 1 = 3 carried out according to Algorithm 3.

Fig. 3. Achieved capacities under different transmission scenarios. The SC
polar codes has code length of 1024 with half rate.

Fig. 3 presents the numerically computed rates when Gaus-
sian distribution is employed. It is shown that the use of the
continuous optimal input can performs better than the Gaussian
one with the fading channel. Also it is observed the cumulative
detrimental effect of such channels linearity yields a rate lower
that Shannon limit by 60% at 16.7 dB. Such rates degradation
is found to be for low dBs as 4% in maximum.

VI. CONCLUSION

An optimization method is introduced in this work for ap-
proaching the capacity of fading channel with multi-antennas.
Under 16-QAM modulation with the condition E [xHx] ≤ P
and the aid of Hermite polynomials, an optimum Gaussian dis-
tribution with its correction factor are determined. Moreover,
we have proved that the complexity of the proposed algorithm
could be much reduced by factoring the determined Gaussian
distribution into a couple of 4-PAM signals.
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