
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

555 | P a g e

A Green Programming Model for Cloud Software
Efficiency

Ah-Lian Kor, Colin Pattinson
School of Computing, Creative Technologies, and Engineering,

Leeds Beckett University, Leeds, UK
E-mail: {A.Kor, C.Pattinson}@leedsbeckett.ac.uk

Abstract — Cloud computing aims to deliver more energy
efficient computing provision. The potential advantages are
primarily based on the opportunities to achieve economies of
scale through resource sharing: in particular, by concentrating
data storage and processing within data centres, where energy
efficiency and measurement are well-established activities.
However, this addresses only a part of the overall energy cost of
the totality of the cloud because energy is also required to power
the networking connections and the end user systems through
which access to the data centre is provided. The impact of
application software behaviour on the overall system’s energy
use within a cloud is less understood. This is of particular
concern when one considers the current trend towards “off the
shelf” applications accessed from application stores. This mass
market for complete applications, or code segments which are
included within other applications, creates a very real need for
that code to be as efficient as possible, since even small
inefficiencies when massively duplicated will result in significant
energy loss. This position paper identifies this problem and
proposes a supporting tool which will indicate to software
developers the energy efficiency of their software as it is
developed. Fundamental to the delivery of any workable solution
is the measurement and selection of suitable metrics, we propose
appropriate metrics and indicate how they may be derived and
applied within our proposed system. Addressing the potential
cost of application development is fundamental to achieving
energy saving within the cloud – particularly as the application
store model gains acceptance.

Keywords—Energy efficiency; green computing; programming
model; energy efficient cloud

I. INTRODUCTION

This is a position paper which is concerned with the
topical issue of Green Computing, specifically focusing on
environmentally aware software development for Open
Computing Environments (OCEs). The proposed research
looks into novel software energy efficiency methods and
development of tools to support software developers in
monitoring, minimising the carbon footprint and optimising
energy efficiency resulting from developing and deploying
software in such environments. This proposed research is
timely because it addresses the need for continued
development of infrastructure support for OCEs in order to
optimise, monitor and reduce carbon footprint and costs for
OCE providers and end-users. The major contribution to the
carbon footprint of OCE software is energy consumed in its
operation, thus the primary aim of this proposed project is to
link software design to energy use. Although energy use is of

relevance across all software design and implementation, for
this project, we will make specific reference to cloud-based
services operations: the emergence of cloud computing with
its emphasis on shared software components which are likely
to be used and reused many times in many different
applications make it imperative that developed software be as
energy efficient as possible.

A. Background

The primary output of this proposed research is the
derivation of explicit measures of energy requirements for
inclusion into software design and development process which
can be executed on any processing platform. However, the
delivery context of this proposed project will be a cloud
environment, because cloud computing is a popular paradigm
for business computing with a significant potential impact of
cloud-based software. Cloud Computing aims to streamline
the on-demand provisioning of software, hardware, and data to
provide flexibility and agility, and economies of scale in IT
resource management. Although building, deploying and
operating applications on a cloud can help to achieve speed1,
scalability, and maintain a flexible infrastructure, it brings
about a variety of challenges due to its massive scalability,
complexity, as well as dynamic and evolving environments.
The provision of cloud programming environments for
applications and services is currently dominated by several
large commercial providers such as Amazon2, Google3,
Rackspace4, Microsoft5, and IBM6.

II. LITERATURE REVIEW

A. Cloud Application Platforms

A brief survey of various popular application platforms has
been conducted. Microsoft has proposed Azure7 as an
application platform for the Cloud based on the Windows
Azure Operating System. Common Microsoft programming
tools employed to develop Azure basic services such as SQL
Azure8 (to build, host and scale applications in Microsoft data

 Note: throughout this document, our focus is on the energy requirements of software
development.
1 http://www.ibm.com/developerworks/cloud/
2 http://aws.amazon.com/what-is-aws/
3 http://code.google.com/appengine/
4 http://tools.rackspacecloud.com/category/applications/tools-for-developers/
5 http://www.microsoft.com/windowsazure/windowsazure/
6 http://www.internet.com/IBM_Cloud/Door/42153
7 http://www.microsoft.com/windowsazure/
8 Ibid.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

556 | P a g e

centres) or Windows Live9 do not offer specific programming
models. Although Microsoft .NET10 claims to offer a
comprehensive and consistent programming model, it has not
addressed the issue of energy efficiency. Manjrasoft Aneka11
platform is oriented on enabled .NET-based enterprise Grid
and Cloud platform. It provides services for
authentication/authorisation, dynamic resource allocation,
accounting, etc. Aneka considers multiple programming
models: Thread Programming Model (to adopt multi-threaded
application on a distributed system); Task Programming
Model (to implement independent bag of tasks applications);
and MapReduce Programming Model12 (proposed by Google
as a programming model for developing distributed data
intensive applications in data centres). Hadoop13 is an open
source software platform that permits the processing of vast
amounts of data. Hadoop MapReduce is a programming
model and software framework for writing applications that
facilitates parallel processing of vast amounts of data on large
clusters of compute nodes. MapReduce divides applications
into many small blocks of work. The Hadoop Distributed File
System (HDFS) creates multiple replicas of data blocks for
reliability, placing them on compute nodes around the cluster
so that MapReduce can then process the data where it is
located. The Google App Engine14 provides facility to develop
and run web applications on proven Google’s infrastructure.
The current supported languages are Python and Java. Google
App Engine makes it easy to build an application that runs
reliably, even under heavy load and with large amounts of
data. The Amazon Elastic Compute Cloud (Amazon EC215)
offers a web service that allows businesses to run their
application programs in the Amazon.com web-based and
virtual computing environment. Here, EC2 practically serves
as an unlimited set of virtual machines. On the other hand,
OASIS provides an open standard executable language, Web
Services Business Process Execution Language (WS-
BPEL16,17) for the formal specification of business processes
(based on Web Services) and business interaction protocols.
The interactions included in the standard are of two different
types: executable business processes, and abstract business
processes. Executable business processes model actual
behaviour of a participant in a business interaction while
abstract business processes are partially specified processes
that are not intended to be executed (they have a descriptive
role).

In this proposed research, the main program will only have
invocations to services, nothing is related to the middleware
that is responsible for running services and composition of
applications will be based on general Web Services. The
programming model itself is an innovation in the field of
Cloud Computing. Thus far, only MapReduce has been
proposed as programming models in this environment.

9 http://explore.live.com/
10 http://www.microsoft.com/net/overview.aspx
11 http://www.manjrasoft.com/products.html
12 http://code.google.com/edu/parallel/mapreduce-tutorial.html
13 http://hadoop.apache.org/
14 http://code.google.com/appengine/
15 http://aws.amazon.com/ec2/
16 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
17 http://www.oasis-open.org/committees/download.php/14616/wsbpel-specification-
draft.htm

Though BPEL (Business process Execution Language) has a
more general approach and allows description of service
workflows, it does not focus on the Cloud as the execution
infrastructure. Our proposed Programming Model covers a
broader set of applications than MapReduce, since
MapReduce applications require the programmer to open and
close parallel regions in the code. Our other proposed
innovation is the co-existence of specific application code
parts and published services that will be orchestrated by the
proposed Programming Model run-time (known as core
elements of the application in this proposed research). Some
service compositions may require the following actions:
performing some appropriate calculations or checking some
data in order to inform decision making on how to proceed.
These calculations are not intended to be a service but rather, a
piece of code to support the overall process. The proposed
Programming model run-time will be able to dynamically
schedule the core elements of an application and allocate the
resources from infrastructure providers where the core
elements are to be executed, according to energy efficiency
terms (more discussion in the remaining part of this paper).
The Programming Model run-time will exchange messages
with decision modules that will consider many different
parameters of the Cloud (e.g. Quality of Service, QoS) in
order to decide the best location for scheduling the
Programming Model core element.

B. Cloud and Energy Efficiency

The outcomes of this proposed work are equally applicable
to any of the “as a service” options (Software, Platform, and
Infrastructure), all three are affected by the performance of the
software which is run which is the energy requirements of
software (i.e. the focus of this work). According to Gartner
Inc.18, the adoption of cloud applications and services by
enterprises is rapidly increasing. Consequently, experts warn
of a dramatic increase in energy consumption for cloud
computing. A Greenpeace report19 predicts that the global
energy consumption for cloud computing will increase from
632 billion kWh in 2007 to 1,963 billion kWh by 2020 and the
associated CO2 equivalent emissions will reach 1,034 mega
tonnes. In order for cloud providers to implement a “green
cloud”, it is essential to promote energy efficiency awareness
among all its stakeholders, and produce metrics to
demonstrate energy gains. Though some work has been
undertaken on the development of energy metrics, most
published measurements can be characterised as “hardware-
related”, and do not address the impact of software
performance on the overall energy efficiency of an IT system.
Currently, available metrics focus on relative measures of data
centre operations (e.g. Power Usage Effectiveness (PUE) and
Data Centre Infrastructure Efficiency (DCiE))20. Energy
efficiency metrics for a programming environment are yet to
be developed.

Work at the CLOUDS Laboratory (in University of
Melbourne [2]) focuses on the deployment of virtual machines
and their interconnection and migration, with a Service Level

18 http://www.gartner.com/it/page.jsp?id=1389313
19 http://www.greenpeace.org/international/Global/international/planet-
2/report/2010/3/make-it-green-cloud-computing.pdf
20 http://www.microsoft.com/environment/our_commitment/articles/green_grid.aspx

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

557 | P a g e

Agreement process to allow the customer to specify their
energy demands. Srikantaiah et al. [5] have also approached
the issue of energy-efficient cloud computing through
(virtualised) resource consolidation. Mittinen and Nurminen
[4] have addressed the use of mobile clients to access cloud
provision, and described the split of energy use as a client-
server (or local-remote) relationship indicating that energy
efficiency is highly sensitive to workload, data communication
and technology in use. The SPECS “Power and Performance
Benchmark Methodology” (SPECS, 2010)21 uses an
incremental series of benchmark loads to determine the
power/performance behaviour of a server under load,
expressing the result in terms of “performance per Watt”.
However, in both these cases, the “performance” or
“throughput” is derived from benchmark-type processing
activity, which may not be easily related to specific tasks.

The relevant aspect of this proposed project is the “Green
Tracker” being developed by Amsel et al. (2010) [8] which
assesses the energy consumption at the CPU level of complete
software applications, and aims at allowing users to select
between alternatives at run-time. Whilst an interesting
development (and evidence of the timeliness and suitability of
this proposed project, the focus on CPU use; on extant
software and on a user-level presentation mean that it does not
address the totality of software energy; and does not lend itself
to a tool which can directly assist software developers in
building applications. PAS 205022 provides a benchmark and
standard assessment method to determine the carbon footprint
across the entire lifecycle of a product. In the context of our
research, we shall adapt the principles of PAS 2050, where
appropriate for calculating the energy requirements of
software. For scoping purposes, our focus will only be on the
calculation of energy costs relating to the developing and
running of code (as illustrated in Fig. 1). While the projects
noted in the previous paragraph represent significant
contributions to the area, we believe that the energy
requirements of the software applications which run on
hardware units (virtual or real) must be incorporated into the
overall development and deployment process. The total
characterisation of software energy with respect to the impact
of the software structure on energy use is not incorporated into
any current models. It is this gap which this project will
address. Determining the relationship between software
structure and its energy use will allow us to define a set of
software energy metrics similar in concept to those for
hardware. By associating those metrics (via tags) with existing
component libraries, and by creating the tags during the
production of new software components, we will be able to
populate a software development toolkit with information to
predict the energy requirements of applications, thereby
allowing alternative selections of both existing (reused) and
newly-created code components to be made, using energy as a
selection criterion.

21 http://www.spec.org/power/docs/SPECpower-
Power_and_Performance_Methodology.pdf
22 BSI (2008). Guide to PAS 2050 How to assess the carbon footprint of goods and
services
http://www.footprintexpert.com/PCFKB/Lists/kbdocuments/Guide%20to%20PAS%2020
50.pdf

Fig. 1. Energy Efficiency Embedded Cloud Service Lifecycle (EEECSL).

Fig. 2. Cloud services ecosystem.

III. PROGRAMME

A. Research Aim and Objectives

The proposed project’s goal is to understand and
characterise the factors which affect energy efficiency in
software development, deployment and operations. Our main
novel contribution is the incorporation of a holistic approach
to references to both hardware and software energy efficiency
in the lifecycle (as shown in Fig. 1 and 2). We will
demonstrate the outputs of this characterisation through the
development of an integrated development environment (IDE)
for the deployment of services, the target users being
programmers. We envisage this taking the form of a
dashboard with drag and drop components including identified
energy efficiency and performance measures. Users can
program and choose from alternative service compositions
through a user friendly interface. In particular, the research
objectives for this project are to:

1) Elicit requirements for the Programming IDE and
Runtime Environment with the following primary
components: programming models; service composition;
service deployment; service operations; energy efficiency;

2) Develop and evaluate the description of the services
ecosystem components (depicted in Fig. 2);

3) Develop and evaluate a framework with identified
energy efficiency parameters and metrics for services;

4) Develop, verify, and validate programming models for
particular applications and services;

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

558 | P a g e

5) Develop methods for measuring, analysing, and
evaluating energy use for software development;

6) Integrate energy efficiency (measures, analysis, and
evaluation) into service composition, deployment, and
operations;

7) Develop, implement, and evaluate the Programming
IDE and Runtime Environment in Research Objective 1.

IV. METHODOLOGY

Typical components in existing Service Oriented
Architecture (SOA) service lifecycles are: identification,
modelling, composition, provisioning, deployment,
management, and evaluation (ORACLE)23; or modelling,
assembly, deployment, and management (IBM)24. These
lifecycles primarily focus on the software aspect. However,
IBM recently extended such a typical service lifecycle which
is referred to as Service Lifecycle Management25. IBM’s
Service Lifecycle Management is socio-technical centric and
includes novel as well as existing integrations of software. The
integrations afforded in the extended model are as follows:
enhanced hardware and software connection to streamline the
resolution of infrastructure-related problems; service desk and
development connection to effect efficient cooperation
between service desk and operation tools; operations and
test/development connection to simplify and automate
information handoffs between the two faculties by:
streamlining dataflow between them; minimizing response
time to data requests; facilitate efficient data analysis. In this
project, we have adapted IBM’s SOA Service Lifecycle and
its extended model (Service Lifecycle Management), calling it
the Energy Efficiency Embedded Service Lifecycle (acronym,
EEESL; see Fig. 1) which contains functional blocks and
addresses questions (shown as arrows in Fig. 1). The novelty
of our model is that it has energy efficiency as its pivotal
anchor. The main goal of this model is to create a service
ecosystem whose components (see Fig. 2) work efficiently
and seamlessly together.

V. UNDERLYING COMPONENTS FOR THE PROPOSED CLOUD

SERVICE ECOSYSTEM

A. Energy Software

Intuitively, there is a relationship between software design
and energy consumed by that software: at a very basic level,
code fragments (in whatever programming language is used)
convert into a sequence of machine code instructions, and
since each instruction can be associated with a number of CPU
operations, the total number of such operations can be
determined, and, if we know the energy use per cycle, the
overall energy “cost” can be identified. It is not difficult to
envisage a formalisation of this intuitive relationship.
However, in practice, outside the specialist implementations
where resources are at a premium, such considerations do not
seem to designers’ priority. Further complexity is caused by
overall energy use being affected by factors such as the

23http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/concepts/introduction.ht
ml
24 http://www.ibm.com/developerworks/rational/library/mar07/mcbride/
25 http://ptaknoel.com/wp-content/uploads/2009/12/IBM-Service-Lifecycle-Management-
FINAL.pdf

sequence in which a test-branch operation is carried out, the
order in which incoming data is presented and the final output
requirements of any process. Furthermore, energy is not
consumed only by CPU cycles. However, other parts of the
system (such as those involved in data storage and transfer)
are of increasing significance as the data and processing
environment becomes more disparate. Extrapolating this to
take account of a large piece of software, potentially
implemented across a number of different platforms and
comprising software components from a range of sources,
indicates the possible complexity involved, and suggests that
an automated approach is required. Such a solution is possible,
making use of a combination of theoretical analysis of
software code, measurement of existing components,
modelling tools for a complex situation (e.g. AHP–Analytic
Hierarchical Process26), and simulation. We will associate
energy with processor activity and other resource use, and use
that association to derive the energy requirements of
sequences of operations, and hence of identifiable program
segments. Our analysis will permit us to create a knowledge
base of the energy use of specific code segment. Through a
combination of measurement (of existing code) and simulation
(of newly developed code), we will extend this knowledge
base to support a generic energy estimation tool. We envisage
this tool being used by program designers and developers to
guide selection of new and reused code fragments, to make
deployment choices between alternative platforms, and to
allow informed negotiations around service level agreements.
Information–referred to from here on as metrics-derived from
this knowledge base will be associated (via tags) with
software components, allowing users to understand the effect
of design choices on overall energy requirements.

A. Programming Model, Program Construction, and
Incorporation of Energy Metrics

Software will be constructed based on a programming
model (shown in Fig. 1) specifically developed for open
computing environments including but not restricted to the
cloud. Our project confers equal importance to the
development of new software, the adaptation and combination
of legacy software, and the composition of software services
within a larger context. As noted earlier, we base our proposal
on earlier work by IBM27. The two types of programming
models introduced by IBM are: Service Programming Model
and Process Programming Model. IBM (2000, 2004)28 views
the service programming model as one that defines/describes
what a service is and how it is developed while a process
programming model defines/describes what a process is and
how it is developed. Description or semantics annotation of
services is facilitated by service modelling languages (e.g.
WSDL, Web Services Description Language). The dimensions
in a service programming model are as follows: data; service
interface (a mechanism for logical grouping of business
operations); and service implementations (description of how
services are implemented and executed by an endpoint such as
a business application system). The development of a service

26 IBM(2009). How much energy do your IT devices use? A guide to comparing their
efficiency and cutting their carbon footprint, supported by the UK Government’s Green
CIO, http://www-935.ibm.com/services/uk/cio/pdf/howmuchenergy_lr.pdf
27 http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/
28 Ibid.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

559 | P a g e

programming model entails the following steps: the creation
of service definition based on an existing implementation (e.g.
a Java class, or IS function, etc.) or creation of a service
implementation from an existing service interface (e.g. a Java
class skeleton); generating deploy code for the services to be
deployed so that services of an integrated application are
accessible via different protocols and easily tested within a
test environment (e.g. IDE); creating service proxy which
involves the creation of the client side proxy for a service29
offered by an integration application. As for the Process
Programming Model, it defines/describes what a process is
and how it is developed30. The development of a process
could either be a top-down or bottom-up approach
encompassing process interfaces that are synchronous or
asynchronous and process implementation. In our project, we
envisage the adoption and adaptation of IBM’s notion
programming models. Our novel contribution to the
development of programming models for an open computing
environment (e.g. cloud) is the incorporation of energy
efficiency metrics into the service and process programming
models as described in the previous section.

C. Service Composition, Deployment, Operation, and
Evaluation

As previously mentioned, a service in this project is
formed by the integration of new code, existing services (not
necessary traditional Web Services), and the
adaptation/combination of legacy software. We envisage the
building/reuse of these platform-independent software
components and we shall call them service components. An
application could be assembled from a set of appropriate
service components and this process is called a service
composition. A hybrid mechanism (manual, automated or
semi-automated) will be developed for assembling the
services. Each service component will be described by either a
semantic annotation (of what it does) and by a functional
annotation (of how it behaves) [6]. The novelty of our
contribution is to incorporate an associated energy efficiency
measure into the functional annotation of each service
component (the energy metrics “tags” referred to above) so as
to promote the development of energy efficiency aware
service compositions (note: users who are software developers
will be able to view the calculated total possible energy
efficiency for each type of chosen service composition). One
of the critical issues to address in service provisioning is a
Service Level Agreement (SLA) where service consumers and
providers effectively achieve agreements on non-functional
aspects such as the Quality of Service (QoS) [7]. As a result
of the association of energy requirements with created
software, our service compositions are QoS aware (in respect
of the likely resource demands of a service instance) and thus,
resource allocation can be consistent with the SLA [3]
description of service quality related content according to SLA
parameters; enabling the service provider to apply QoS values
for invoked services. In order to facilitate wide adoption and

29 http://msdn.microsoft.com/en-us/library/dd815336(VS.85).aspx
30 http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/

reach the critical mass of software services required to support
open computing environments such as clouds, it is imperative
to avoid ad-hoc and manual processes in the remaining steps
of the service lifecycle. This project will offer a set of tools to
automate and standardize service deployment and operation,
with energy efficiency as the basis for the decisions taken at
each stage. In the deployment phase, a service is placed on an
Infrastructure Provider (IP) for operation. Some of the
activities in this phase are31: testing and debugging of a
service (to test whether it works properly)32; modification of a
service according to an environment; selecting a suitable IP to
host the service; deploy a service package to a deployment slot
within a new hosted service. Other activities include the
negotiation of SLA terms between Service Providers (SP) and
Internet providers (IP), and the propagation of contextual
information necessary for instantiating the service once when
it has been deployed. Service deployment tools will facilitate
the packaging of services and their complete software stacks
as well as the addition of security capabilities to images prior
to deployment and execution. However, services testing tools
will provoke a reflection on service integration, autonomy,
stability, performance, etc…33. This project aims to provide
an integrated approach for deploying services, including
functionality for a careful evaluation of resource providers in
respect of their energy requirements. To achieve this, the
energy consumption requirements of the software components
are specified during the programming construction phase and
the integration is carried out during service operation (or
execution). The former is the result of our development of
software energy metrics, as described above. The latter is
achieved through dynamic allocation of resources according to
the energy consumption requirements of each element within
the context of the service. The result is that, without the
intervention of a software developer, the execution of the
service evolves according to the infrastructure requirements of
each core element and the status of the available
infrastructure. As previously mentioned, the AHP (Analytical
Hierarchical process) 34modelling technique would also be
implemented in the service lifecycle because it takes into
account the different parameters and metrics for energy
efficiency for each phase, sets out the relevant information
clearly and succinctly so as to support the software
developer’s decision making with regard to the choice of
software components for a particular service. The three main
aspects that will be considered in the operations phase are:
result, energy efficiency and performance. The project will
aim to improve the execution of services by utilising a
governance process to define energy efficiency policies for
harmonising all management activities throughout the service
lifecycle. These policies will integrate disparate software
management requirements, from high-level Business Level
Objectives (BLOs) to resource requirements, into a unifying
view to verify that the services are executing as expected.

31 http://msdn.microsoft.com/en-us/library/ff683668.aspx
32 http://www.infoworld.com/t/architecture/soa-services-deployment-putting-theory-
practice-232
33 http://www.infoworld.com/t/architecture/soa-services-deployment-putting-theory-
practice-232
34 IBM(2009). How much energy do your IT devices use? A guide to comparing their
efficiency and cutting their carbon footprint, supported by the UK Government’s Green
CIO, http://www-935.ibm.com/services/uk/cio/pdf/howmuchenergy_lr.pdf

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

560 | P a g e

D. Integrated Development Environment (IDE) and Runtime
Environment

In this proposed project, an integrated environment for the
programming, composition, deployment and execution of
services and applications will be developed. The IDE will
have available a friendly GUI with several sets of tools:
creation tools for creating services and processes; composition
tools for integrating services and services, services and
processes, processes and processes; tools for testing,
debugging, and running the services and processes;
deployment tools for deploying the services (to put the service
into an application server); invocation tools for clients to
invoke deployed services. This interface will include also
tools for easily publishing and un-publishing services to make
them available to third parties. The tools developed for this
phase will be operating system independent and codes
generated for the services and processes will conform to
industry standards and open-source specifications (e.g. Web
Service Invocation Framework, WSIF35). Many traditional
approaches for Web Services Composition rely on applying
static planning techniques to deploy and execute the
compositions [1]. In contrast, the Programming Model
runtime developed in this project will be able to dynamically
schedule the core elements of an application and dynamically
allocate resources from infrastructure providers where the core
elements are to be executed, according to energy efficiency
considerations. Messages will be exchanged with decision
modules regarding different parameters of the potential
deployment environment (e.g. QoS) in order to decide the best
location to schedule the Programming Model core element.

E. Environmental Impact

The proposed project will focus on a particular type of
OCE - cloud computing - to develop and demonstrate the
research outcomes. Cloud computing gives users seamless
access to a wide range of computational, storage and network
resources, enabling them to execute tasks far beyond the
capabilities of their own resources/infrastructures. Usage of
OCEs in general was initially driven by the e-Science
community (in particular their use of Grid computing).
However, developments of recent years, especially those
addressing key issues such as transparency, security, data
transfer, resource brokering, workflow and risk management36
have driven larger scale commercial uptake of the technology
and seen the emergence of cloud computing as a way of
offering mass data processing and storage without the cost of
purchase and maintenance. Many organisations which stand to
benefit from such environments, especially those within the
commercial sector have policies relating to energy and
sustainability, including the consumption of ICT resources and
services. These policies are being increasingly shaped by a
social awareness of green issues and a wish to conduct
business with the least possible impact on the environment.
Therefore, not only does this research seek to reduce the
environmental impact of such infrastructures; it has the
potential to drive commercial uptake further by bridging the
gap between organizational green policy and practice, and

35 http://ws.apache.org/wsif/ ; http://ws.apache.org/wsif/ ,
http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html
36 http://www.ggf.org

drawing attention to green issues within OCEs. Increasing
discussion of environmentally friendly ICT at both
government and European Commission level are further
evidence of the importance with which the subject is viewed.
At UK level, the government has published an 18 step carbon
emissions reduction plan37 with a focus on reducing the
carbon impact of government ICT operations throughout its
entire operation. Most recently, an EU-supported code of
conduct38 for data centers has further emphasised the
significance of the ICT sector in the delivery of climate-saving
policies.

VI. CONCLUSIONS

Our novel EEESL incorporates aspects of software
efficiency as a fundamental component in all steps of the
service lifecycle. In order to deliver this vision, appropriate
measures of efficiency for this context will be identified:
measures which must be accurate, usable and repeatable. With
these definitions of software efficiency, we will be able to
construct a model to estimate the relative performance of
different design approaches. An important element of our
work will be that the methods derived from it will be
applicable both to new and pre-existing software, thus a
measurement methodology will be developed to assess energy
efficiency at a number of activities in the service lifecycle:
design; coding; compilation; machine readable (executable).
To reiterate, no workable and comprehensive methodology for
the measurement of energy use of software processes currently
exists, so it is envisaged that the creation of such a
methodology, and its verification and validation, will itself
offer a major contribution to the field. Decision support will
be provided for the deployment phase of the resulting
software, since the platform(s) on which the resulting code is
run will also have a major impact on the overall efficiency.
Therefore, a list of the following will be investigated on: the
relationship between energy use and hardware and network
design, deriving a model of the efficiency structures. Once
again, this work is novel, we are not aware of any existing
models which effectively describe the relationships among all
the components in a Services Ecosystem depicted in Fig. 2
with the main emphasis on the trade-offs between
performance and energy efficiency.

REFERENCES

[1] Agarwal, V., Chafle, G., Mittal, S., and Srivastava, B. (2008).
Understanding approaches for web service composition and execution,
In Proceedings of the 1st Bangalore Annual Compute Conference
(Bangalore, India, January 18 - 20, 2008); COMPUTE '08. ACM, New
York, NY.

[2] Beloglazov, A., and Buyya, R. (2010). Energy Efficient Allocation of
Virtual Machines in Cloud Data Centers. Proceedings of the 10th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2010), Melbourne, Australia, May 17-20, 2010.

[3] Dong, W. L., and Jiao, L. (2008). QoS-Aware Web Service Composition
Based on SLA, Proceedings of the Fourth International Conference on
Natural Computation,Vol.5,pp.247-251.

[4] Mittinen, A. P., and Nurminen, J. K. (2010.). Energy efficiency of
mobile clients in cloud computing, Proceedings of HotCloud'10,
USENIX Association Berkeley, CA, USA.

37 http://www.gartner.com/DisplayDocument?id=730607.
38 Commission Joint Research Centre Code of Conduct on Data Centres Energy
Efficiency. 2008, European Commission: Brussels.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

561 | P a g e

[5] Srikantaiah, S., Kansal, A., and Zhao, F. (2008). Energy Aware
Consolidation for Cloud Computing, Proceedings of the 2008
Conference on Power Aware Computing and Systems (HotPower’08).
Berkeley, CA, USA.

[6] Srivastava, B., and Koehler, J. (2003). Web Service Composition -
Current Solutions and Open Problems, ICAPS 2003 Workshop on
Planning for Web Services, pp. 28-35.

[7] Yan, J., et. al (2007). Autonomous service level agreement negotiation
for service composition provision, Future Generation Computer
Systems, Volume 23, Issue 6, pp.748-759.

[8] N. Amsel, B. Tomlinson. 2010. "Green Tracker: A Tool for Estimating
the Energy Consumption of Software." In: ACM Conference On Human
Factors In Computing Systems (CHI 2010), Work in Progress. Atlanta,
GA.

