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Abstract—  Keeping in mind that existing problems of 
conventional quantum mechanics could happen due of a wrong 
mathematical structure, I suggest an alternative basic structure. 
The critical part of it is modifying commonly used terms “state”, 
“observable”, “measurement” and giving them a clear 
unambiguous definition. This concrete definition, along with the 
use of a variable complex plane, is quite natural in geometric 
algebra terms and helps establish a feasible language for 
quantum computing. The suggested approach is then used in a 
fiber optics quantum information transferring/processing 
scenario. 
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I. INTRODUCTION 

B. Hiley’s believed [1] that unresolved problems of 
conventional quantum mechanics could be the result of a 
wrong mathematical structure. The common wisdom of 
conventional quantum mechanics reads something like “The 
particles making up our universe are inherently uncertain 
creatures, able to simultaneously exist in more than one place 
or in more than one state”.  Further, “The reality of small 
scales creates this weirdness.” 

The weirdness has nothing to do with the scales. Wave-
particle mysterious dualism follows from the lack of a clear 
distinction between operators and operands. 

A lot of confusion comes from the lack of precision in 
using terms like “state”, “observable”, “measurement of 
observable in a state”, etc. This terminology creates ambiguity 
because the meaning of the words differs between prevailing 
quantum mechanics and what is logically and naturally 
assumed by the human mind in scientific researches and 
generally used in areas of physics other than quantum 
mechanics. Nevertheless, I will try adhering to the 
terminology from the commonly accepted quantum mechanics 
lingo, paying respects to generations of physicists 
brainwashed by Bohr [4] into thinking that the question of 
quantum mechanics has been solved. 

In classical computation scheme states are generally 
identified by (sets of) numbers. Every number has a binary 
expansion of 0’s and 1’s, so we can encode any input data by 
bit strings. Thus with a fixed length of the strings, some n , we 

deal with vectors in nZ2 . Then, in its most general form [5], 
classical computation can be thought of as 

1) The initial input 
nZx 2  encoded onto some physical 

system. 
2) The evolution of x  processed in the physical system. 
3) Reading out of the computational result  xf  through 

some measurement of the system. 

In conventional quantum mechanics the steps become [6]: 

1) Initialize system in some known state 0 . 
2) Unitary evolve the system until it is in some final state 
  0tU . 
3) Measure the state of the system at the end of evolution. 

In the above scheme, instead of the bit   21,0 Z  we have 

qubit – a quantum two-level system with two basis states 0  

and 1 . Qubit is formally an element of two dimensional 

complex Hilbert space 
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. 

The state 0  is then an element of  nC2  [5], if the same 

assumption of a fixed length of qubit strings is made. 

In the suggested approach a qubit state will be lifted to g-
qubit, element of 

3G  - even geometric subalgebra of the 

geometric algebra 3G  in three dimensions. The lift 
particularly uses the generalization of a formal imaginary 
plane to explicitly defined planes in three dimensions [2], [3]. 
The g-qubit states are interpreted strictly as operators acting 
on observables, also elements of geometric algebra, in the 
process of measurement. That follows Dirac’s seminal idea [7] 
to remove the distinction between an element of the operator 
algebra and the wave function (state) without losing any 
information about the content of what is carried by the wave 
function. 

Thus, the suggested computational scheme becomes: 

1) Initialize system in some known state  3

n
G  which is 

a set of operators acting on observables composed 
from elements of 3G . 

2) Evolve the system until it is in some final state. 
3) Identify the state of the system at the end of evolution 

by acting with the operators comprising the final state on 
observables. 
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Since the degrees of freedom of just one g-qubit give 
infinite number of available values, implementation of the 
simplest case 1n  would be of great importance. 

In the case of electromagnetic field its state, considered as 
element of geometric algebra, acts (operates) on other physical 
entities which can also be electromagnetic fields. 

II. QUBIT STATES IN GEOMETRIC ALGEBRA 

The Dirac’s idea is exactly and accurately implemented in 
the case of a g-qubit when the action of a state on observable 
is non-commutative operation: 

               SOSOOOS def 1,  ,    (2) 

where  S  are elements of even sub-algebra 
3G  of 

geometric (Clifford) algebra 3G  over three dimensional 

Euclidean space [3] and  O ,  O  are generally elements 

of 3G . 

The even sub-algebra 
3G , in the fiber bundle terms, can be 

taken as total space for base space 2C  and any 2C  qubit 
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3G . The construction is as follows: 

Let  321 ,, BBB  be an arbitrary triple of unit value 
mutually orthogonal bivectors in three dimensions satisfying, 
in the assumption of a right-hand screw orientation, the 
identity 1321 BBB 1 and multiplication rules: 

132231321 ,, BBBBBBBBB         (3) 

The elements of the fiber are g-qubits2 defined by the map: 
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  312211132312111 BByxByxBxBByByx   (4) 

The fiber reference frame  321 ,, BBB  can be arbitrary 
rotated in three dimensions. In that sense we have principal 
fiber bundle 2

3 CG   with the standard fiber as a group of 
rotations which is also effectively identified by elements of


3G . 

Fiber element 

   31221113222111 BByxByxBxByByx          (5) 

                                                                 
1  The reference frame  321 ,, BBB  can be chosen as left-hand screw 

oriented, 1321 BBB . It is just a reference frame and has nothing to do 

with the physical nature of three dimensional space. 

2 The element of fiber depends on which basis bivector is chosen to define 
“complex plane”. Cyclic permutation of the reference frame bivectors delivers 
different elements. 

is the geometric algebra sum of two items, 111 Byx   and

  3122 BByx  : the first is the fiber element corresponding to 

conventional quantum mechanical state 0 , in usual Dirac 

notations, and the second one – corresponding to 1 . 

State 111 Byx   when acting on a 
3G  observable does not 

change the 1B  component of an observable and only rotates 
other two components of the bivector part belonging to the 
subspace spanned by 2B  and 3B  [3], [8]. 

State   3122 BByx   structurally differs from 111 Byx   by 

factor 3B , which makes flip of the result of the action of 

122 Byx   on observable over the plane 1B , changing the sign 

of the 1B  component. 

Thus the actual geometrical sense of the 
3G  fiber states 

corresponding to conventional quantum mechanical basis 
states 0  and 1  is that the first one only rotates observable 

around an axis orthogonal to some arbitrary given plane in 
three dimensions, while the second one additionally flips the 
result, after rotation, over that plane. 

III. EVOLUTION OF THE G-QUBIT STATES 

It is plausible to retrieve how the Hamiltonian action on 
states in conventional quantum mechanics is generalized in the 
current context. 

Any conventional quantum mechanics (CQM) 2C  state 

lift to 
3G  can be written as exponent: 
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   SIeBbBbBb  sincos 332211         (6) 

where 1cos x , 2
11sin x , 
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Hamiltonian in CQM is a self-adjoint matrix of general 
form: 
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It acts on two-dimensional complex vectors according to 
the usual rules of linear algebra,  H . 
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The Hamiltonian matrix geometric algebra lift3 is not an 

element of 
3G , since it has the form

 3322113 BBBI   . We can forget about   as it may 
only affect final multiplication by a scalar. Then 
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Thus we see that multiplication of a complex two-
dimensional vector by matrix H  corresponds, if mapped 
directly to multiplication in 3G , to the operation: 




SGH II

G eeHI 2
3      (10)

 

It does not look good since the result does not belong to

3G , our space of states. This means that the action of 

Hamiltonians, as matrices, on the 2C  states using linear 
algebra multiplication, cannot be equivalent to multiplication 
of results of lifts in 3G . 

Due to that we need to look for other options of lifting the 

operation 










22

11

iyx

iyx
H  to 

3G . Actually, we have the two: 

1) Rotation of a 
3G  element, particularly a state, in the 

plane of the Hamiltonian lift by the angle defined by 
the Hamiltonian value. 

2) Clifford translation of a 
3G  element, particularly a 

state, along the big circle of the 3S  sphere. The circle is an 
intersection of the sphere with the plane of the Hamiltonian 
lift. 

Let’s initially consider the second option. 

Instead of unitary transformations acting on the Hilbert 
space vector states of 2C  transforming them into new states, 

  0tU , the corresponding transformations acting in the 

fiber bundle with total space 
3G  over base space 2C  are 

given, if the Hamiltonian depends on time, as sequences of 
infinitesimal Clifford translations [3]4: 

                                                                 
3 See the Hamiltonian lift calculation in [3]. 

4 I will use H  instead of GH  since only the geometric algebra meaning of 

a Hamiltonian will be used . 
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where 3I  is unit value oriented volume in the three 

dimensions and  tH  - the Hamiltonian expanded in basis

 332313 ,, BIBIBI . Unit value bivector 
)(

)(
3 tH

tH
I  is a 

generalization of an imaginary unit explicitly defining the 
plane of the 3S  sphere big circle. 

Remark 3.1: If the Hamiltonian does not depend on time a 
finite Clifford translation gives: 
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The geometric algebra framework with an arbitrary 
variable plane of state bivector (VPSB) generalizes 
geometrically unspecified complex plane of CQM. Thus, it 
follows that the CQM Schrodinger equation 

)()(ˆ t
t

itH 



  in the VPSB framework takes the form: 
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with generally varying bivector )(3 tHI . It follows that the 

arbitrary state transformation is the holonomy 

 S

lH

I
L

dllHI
se

,,

)()(

   where the integral is taken along the 

Hamiltonian vector curve trace on the surface of unit sphere 
3S  [3]. 

The critical thing to remember: Schrodinger equation in 
geometric algebra terms is an equation defining evolution of 
states, operators. The states act on other states either via the 

Clifford translations producing new states, or on 
3G elements, 

interpreted as observables, when executing measurements, 
which are rotations. 

In Section V, will be discussed the options for rotation in 

the plane of the Hamiltonian 
3G  lift by the angle defined by 

Hamiltonian value. 

IV. ELECTRIC FIELD POLARIZATION 

To deal with the guided light beams as physical processes 
carrying information about the states in the geometric algebra 
sense I start with the electromagnetic fields and their 

polarizations in the 
3G  terms [9], [10]. 

What is different in the current approach to the light 
propagation in a beam guide is the fact that formally used 
imaginary unit is replaced with a unit bivector in a three 
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dimensional space not necessary orthogonal to the  z  
direction, default beam guide axis.5 The electric fields should 
naturally be considered as states, up to the magnitude factor, 

that’s the 
3G operators acting on other states or on 

observables. 

Assume we deal with a detectable polarization in the xy  
plane: circular, elliptic or linear one, which means that the 
electric field vector end point moves along the corresponding 
trajectory. The following result emerges: 

Theorem 4.1. Any type of polarization in the xy  plane is 
a projection of circular polarization in some plane S . 

Proof: 

Since the plane of rotation/oscillation of electric field 
vector may be any plane in three dimensions, the plane of 
polarization should be explicitly defined6. 

Electric field can evolve in a plane of some unit bivector 

SI  being in the state of circular polarization in that plane. 

Suppose polarization is measured in xy  plane and is an 
ellipse of a general parametric form: 

   ytbtaxtbta ˆsincoscossinˆsinsincoscos    

   20  t ,      (14) 

where   is an angle of the ellipse ytbxta ˆsinˆcos  , 

20  t , rotation in xy  plane relative to the x  direction; 
a  is the value of the ellipse semi axis along the direction of 
the x  axis; b  is semi axis along the orthogonal direction, x̂  
and ŷ  are unit vectors along corresponding axes. 

Remark 4.1: In pure geometric algebra terms the rotation 
of ellipse with semi axes parallel to coordinate axes by angle 

  is   yxeytbxta ˆˆˆsinˆcos   (multiplication from the right!). 

Remark 4.2: If ba   (circle) the rotation gives the same 
circle. If one of semi axes, say b , is zero, we get vector 
oscillating with the amplitude a  along the line 
   yx ˆsinˆcos    (or with the amplitude b  along the line 

   yx ˆcosˆsin    if 0a ). This is the case of a linear 
polarization. 

Assume the normal to SI  is received from the normal to 

xy  plane ( z  direction) by rotation by angle   in a plane RS  
passing through the major semi axis of the ellipse (14). Define 

angle of rotation by  
),max(

),min(
cos

ba

ba
 .  The plane of rotation 

                                                                 
5 Interest to the transverse light beam spin models is growing intensively, see, 
for example [14]. 

6 Similar definitions of polarization are used in different contexts, see, for 
example [13]. 

is defined by a unit bivector dual to unit vector along minor 
semi axis. If major semi axes has value a  then 

yIxII
RS ˆ)(cosˆ)(sin 33  

   (15)
 

If major semi axes has value b , 

yIxII
RS ˆ)(sinˆ)(cos 33  

   (16)
 

Thus, the two unit bivectors for the xy  plane and S  plane 
are received from each other as: 

22


RSRS I

xy

I

S eIeI
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 ,  22
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RSRS I

S

I

xy eIeI

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The projection of the SI  polarization circle, expanded to 

radius ),max( ba , onto xy  plane is exactly the original ellipse 
(14). QED. 

The circular polarized electromagnetic wave states actually 
comprise the basis for all other types of polarizations because 
they are the only type of waves that come from the solution of 
Maxwell equations in free space when done accurately in 
geometric algebra terms. 

Let’s take the electromagnetic field in the form 

  rktIFF S

 exp0   (18) 

with the only requirement being that it satisfies the Maxwell 
system of equations in free space, which in geometrical 
algebra terms takes the form of one equation: 

  0 Ft      (19) 

using geometric algebra multiplication. 

Element 0F  in (18) is a constant element of geometric 

algebra 3G , undefined yet, and SI  is a unit value bivector of 
plane S  in three dimensions, a generalization of an imaginary 
unit in the current approach. 

Electromagnetic field can be identified by geometric 
algebra sum of a vector E , the electric field, and bivector BI3 , 
the magnetic field. That means that to retrieve the structure of 
the element 0F  we need to compare the right hand side of (18) 

with the geometric algebra element BIE 3 . 

The exponent in (15) is a unit value element of 
3G  with 

the SI  bivector plane:     sincos S
I Ie S  , rkt


  . 

Since no assumptions about 0F  exist, we will generally write: 

       PBVs FFFFF 00000  . 

The geometric algebra product 

              sincos00000 SPBVs
I IFFFFeF S 

(20)
 

should give BIE 3 , which is the sum of a vector and 
bivector. 
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First, it follows that  sF0  and  PF0  must be zeros. 

Second, the product   SV IF0  is sum of a vector and 

pseudoscalar (see [3], Sec.1.3).The pseudoscalar must be zero, 
which is only possible when  VF0  lies in the plane of SI . The 

remaining vector part of the product is equal to the cross 
product of  VF0  and vector dual to SI , that’s   SV IIF 30   

which is the vector  VF0  rotated by 
2


 in the positive 

direction in plane S . 

Finally, the product of two bivectors   SB IF0  is the sum of 

the scalar, equal to the scalar product of two vectors, which 
are dual correspondingly to  BF0  and SI , and the bivector 

dual to vector   SB IIFI 303  . The scalar part must be zero 

which means that the bivector planes are orthogonal. Then the 
remaining bivector   SB IIFII 3033   is the  BF0  rotated by 

2


 around the axis orthogonal to the plane S . 

Thus, the geometric algebra element F  is geometric 
algebra sum of a vector in plane S  and bivector orthogonal to 
that plane. Both rotate synchronically with the angle 

rkt

   around the axis orthogonal to plane S  and lying 

in the plane of the bivector. 

This rotation defines circular polarization in plane S , thus 
justifying the practical applicability of the earlier results that 
any polarization in the xy  plane can be received as a 
projection of circular polarization in some plane. 

V. HAMILTONIAN ACTION AS ROTATION 

An electric field defined by a vector rotating in plane S  is 
obviously a state (up to a real constant multiplier, amplitude) 

in the 
3G  terms. 

Below we consider the situation that is usually defined as 
spin and orbital angular momenta, or alternatively, chirality. 

An arbitrary spin angular momentum is defined by the 
result of the inclination of the electric field vector rotating in 
the xy  plane. The orbital angular momentum appears when 
the inclined plane rotates around the z axis. Thus we have 
composition of inclination of unit bivector, 

22


RSRS I

xy

I

S eIeI


 , and further rotation. 

The plane of the initial inclination 
yIxII

RS ˆ)(cosˆ)(sin 33    can be taken with 0  

because the projection polarization ellipse rotates, 
permanently by default, in the xy  plane. So we assume

zxS IyIyIxII
R




ˆˆ)(cosˆ)(sin 30330 
 . With the 

typical identification of basis bivectors: zyB ˆˆ1  , xzB ˆˆ2  , 

yxB ˆˆ3  , we get7 2
3

2 22


BB

S eBeI


 : 

The rotation of the inclined polarization state around the 
z axis produces the result: 

2

)(
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3

22

)(
3223

t
BBB

t
B

eeBee

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   (21) 

where )(t  varies with time angle of rotation around the z
axis. 

The inclination gives  cossin 31 BB  . Then the 
subsequent result of the state rotation around the z axis has an 
explicit bivector form: 

 



 cossin

cossinsincossin,

31
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VI. ROTATION OF THE CIRCULAR POLARIZATION PLANE 

AND LINEAR POLARIZATION IN THE PROJECTION PLANE 

Consider the case 
2

   which results in linear 

polarization along the line rotated by  angle relative to x  
axis in the xy  plane. The circular polarization plane contains 
the z  axis and is rotated around it with the second (external) 
rotation in the transformation, measurement of 3B  in the state

24 32


BB
ee : 

24
3

42 3223
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BBBB
eeBee












 

    (23)

 

Assume we have physical mechanism of rotating circular 
polarized electric field, state, in the xy  plane, in other words a 
mechanism sufficient to executing the measurements: 





sincos 21

2
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224
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42 333223
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eBeeeBee
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













 

 (24) 

The result has a zero value bivector component in the 
plane of 3B , as it should, although geometrically the 
projection of the circle onto xy  plane is a degenerated ellipse  
- a straight segment of unit length centered at 0 of the line 
along the vector yx ˆ)(sinˆ)(cos   . Obviously, this linear 
polarization line rotates together with angle  . The 

                                                                 
7 For convenience we ignore that the inclined bivector does not have a unit 

value and more accurately should be 2
3

2 22


BB
eBeE



.
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information about circular polarization sense is, by the way, 
lost. 

Generally we have two circular polarization states, left-
hand and right-hand, and the above formula for the opposite 
circular polarization sense is: 

 

  




sincos 21
2

1
2
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eeBee
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












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 (25) 

Thus, the line of linear polarization in the xy  plane 
remains the same. This fact raises a separate question as 
distinguishing between two circular polarizations. Both can be 
the origin of the same linear polarization and this is critically 
important for a basic algorithm of function value calculations, 
which will be demonstrated in next section. Thus, we are 
making the assumption that there is only one circularly 
polarized mode of the spin angular momentum, for example in 
the 1B  sense. 

VII. EVOLVING STATES VIA TRANSFORMATIONS OF 

CIRCULAR POLARIZATION STATES 

Now assume that transformation of the state 1B , spin 
angular momentum, is made by the Clifford translation with a 
Hamiltonian )(tH  as formulated earlier: 
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  (26)

 

To keep up with the orbital angular momenta 
corresponding to the external transformation of the 

polarization plane the plane of bivector 
)(

)(
3 tH

tH
I  is supposed 

to be constant and equal to 3B . Physically, such Hamiltonian 
action can be implemented via a magnetic field parallel to the 
light guide, for example as an electric current coil around the 
light guide. 

The core of quantum computing should not be in 
entanglement, which in conventional quantum mechanics 
comes from the representation of the many particle states as 
tensor products of individual particle states. The core of the 
quantum computing scheme should be in the manipulation and 
transferring of quantum states as operators decomposed in 
geometrical algebra variant of qubits (g-qubits), or 
alternatively four dimensional unit sphere points. This way the 
quantum computer is, as it should be, an analog computer 
keeping information in sets of objects with infinite number of 
degrees of freedom, contrary to the two-value bits or two-
dimensional Hilbert space elements, qubits. 

In the suggested computational scheme, defined in 

Section 1, we write the initial state  nG
3  as






 nnSSS III

eee


,...,, 2211 . As such, similar to the traditional 

Turing machine scheme, one can schematically represent a 

 nG
3  state evolution as 

 

States kkTIe


 realizing evolution, act on the components 
kkSI

e


 of the initial state as Clifford translations: 

kkSkkTkkS III
eee

 
  (27) 

If a continuous sequence of such translations takes place 
we get the holonomy formulated in Section 3: 

 
 )(

)(

),(sin),(cos lS
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Ill
L

ldI
se 


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   (28)
 

If the transformation (27) is taken as an infinitesimal one 

(or with a stable plane kT ), the state kkSI
e


 is rotated in the 

plane kT  by the angle k  and synchronically rotated by the 

same angle in two planes orthogonal to kT  in three dimensions 
[3]. 

Suppose we have a light guide with the input of series of 

length n  time bins bearing states kkSI
e

 8. Time bin items are 
transformed according to rules (27). The output state, final 
state in terms of the suggested scheme, acts on n  copies of the 
observable 1B . The result is a series of length n  of linear 
polarizations in the xy  plane. 

That is all true in our simple case of the spin angular 
momentum orthogonal to the z  axis. Other arbitrary 
directions will produce more sophisticated options. 

The suggested computational scheme is applicable, for 
example, to function calculations. 

The light guide single mode input, discrete in time, of the 
calculated function argument is identified by the time step 
number (index, time stamp kt ) and the time bin state item 

plane and angle. In the current case the latter two are 3B  and 

the angle of rotation of polarization 1B  around the z  axis. 

Clifford translations acting on the state items all have the 
same plane - 3BTk  , and angles of rotations are defined by 

Hamiltonian values  ktH . In the output we have a sequence 

                                                                 
8  Similar time bins scheme, though with much simpler bin items, was 
considered, for example, in [11] . 
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of length n  of the final state items kBkB tItHI
ee 33

)(
, 

nk 1 . 

The measurement phase (the last item of our 
computational scheme defined in Section 1) is the set of 
measurements: 

   )(
1

)( 33 kkBkkB tHtItHtI
eBe



   (29) 

The sequence of length n  of linear polarizations in the 
xy  plane as defined by (6.1): 

     )(2sin)(2cos 21 kkkk tHtBtHtB  , nk 1 9
(30) 

VIII. CONCLUSIONS 

Two seminal ideas – variable and explicitly defined 

complex plane in three dimensions, and the 
3G  states10  as 

operators acting on observables – allow to put forth 
comprehensive and much more detailed formalism appropriate 
for quantum mechanics in general and particularly for 
quantum computing schemes. Based on this new mathematical 
structure, the suggested computational scheme is implemented 
in terms of the guided light polarization variant of geometric 
algebra g-qubits. The approach may be thought of, for 
example, as a far-reaching geometric algebra generalization of 
some proposals for quantum computing formulated in terms of 
light beam time bins, see [11], [12], but offering much more 
strength and flexibility in practical implementation. 

                                                                 
9 Default right hand screw circular polarization in the spin angular momentum 
plane is taken. The ambiguities in the values of function arguments and 
function values due to the fact that both have ranges in finite intervals can be 

removed via   2modkk tt   and       2modkk tHtH  . 

10 Good to remember that state and wave function are actually (at least should 
be) synonyms in conventional quantum mechanics.  
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