
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 3, 2012

7 | P a g e

www.ijarai.thesai.org

Hybrid Metaheuristics for the Unrelated Parallel

Machine Scheduling to Minimize Makespan and

Maximum Just-in-Time Deviations

Chiuh-Cheng Chyu
*
, Wei-Shung Chang

Department of Industrial Engineering and Management,

Yuan-Ze University, Jongli 320, Taiwan

Abstract—This paper studies the unrelated parallel machine

scheduling problem with three minimization objectives –

makespan, maximum earliness, and maximum tardiness (MET-

UPMSP). The last two objectives combined are related to just-in-

time (JIT) performance of a solution. Three hybrid algorithms

are presented to solve the MET-UPMSP: reactive GRASP with

path relinking, dual-archived memetic algorithm (DAMA), and

SPEA2. In order to improve the solution quality, min-max

matching is included in the decoding scheme for each algorithm.

An experiment is conducted to evaluate the performance of the

three algorithms, using 100 (jobs) x 3 (machines) and 200 x 5

problem instances with three combinations of two due date

factors – tight and range. The numerical results indicate that

DAMA performs best and GRASP performs second for most

problem instances in three performance metrics: HVR, GD, and

Spread. The experimental results also show that incorporating

min-max matching into decoding scheme significantly improves

the solution quality for the two population-based algorithms. It is

worth noting that the solutions produced by DAMA with

matching decoding can be used as benchmark to evaluate the

performance of other algorithms.

Keywords-Greedy randomized adaptive search procedure; memetic

algorithms; multi-objective combinatorial optimization; unrelated

parallel machine scheduling; min-max matching

I. INTRODUCTION

In production scheduling, management concerns are often
multi-dimensional. In order to reach an acceptable compromise,
one has to measure the quality of a solution on all important
criteria. This concern has led to the development of multi-
criterion scheduling [1]. During scheduling, consideration of
several criteria will provide the decision maker with a more
practical solution. In production scheduling, objectives under
considerations often include system utilization or makespan,
total machining cost or workload, JIT related costs (earliness
and tardiness penalties), total weighted flow time, and total
weighted tardiness. The goal of total weighted flow time is to
lower the work-in-process inventory cost during the production
process, while the goal of just-in-time is to minimize producer
and customer dissatisfactions towards delivery due dates.

Parallel machine models are a generalization of single
machine scheduling, and a special case of flexible flow shop.
Parallel machine models can be classified into three cases:
identical, uniform, and unrelated (UPMSP). In the UPMSP

case, machine i may finish job 1 quickly but will require much
longer with job 2; on the other hand, machine j may finish job 2
quickly but will take much longer with job 1. In practice,
UPMSPs are often encountered in production environments;
for instance, injection modeling and LCD manufacturing [2],
wire bonding workstation in integrated-circuit packaging
manufacturing [3], etc. Moreover, many manufacturing
processes are flexible flow shops (FFS) which are composed of
UPMSP at each stage: PCB assembly and fabrication [4-6],
ceramic tile manufacturing Ruiz and Maroto [7].
Jungwattanakit et al. [8] proposed a genetic algorithm (GA) for
FFS with unrelated parallel machines and a weighted sum of
two objectives – makespan and number of tardy jobs. The
numerical results indicate that the GA outperforms dispatching
rule-based heuristics. Davoudpour and Ashrafi [9] employed a
greedy random adaptive search procedure (GRASP) to solve
the FFS with a weighted sum of four objectives.

Over the years, UPMSPs with a single objective have been
widely studied. For a survey of parallel machine scheduling on
various objectives and solution methods, we refer to Logendran
et al. [10] and Allahverdi et al. [11]. In contrast, there are
relatively few studies on UPMSPs considering multiple
objectives. T’kindt et al. [12] studied an UPMSP glass bottle
manufacturing, with the aim of simultaneously optimizing
workload balance and total profit. Cochran et al. [13]
introduced a two-phase multi-population genetic algorithm to
solve multi-objective parallel machine scheduling problems.
Gao [14] proposed an artificial immune system to solve the
UPMSPs to simultaneously minimizing the makespan, total
earliness and tardiness penalty. For further references regarding
multicriteria UMPSPs, refer to Hoogeveen [1].

In this paper, we consider a multi-objective unrelated
parallel machine scheduling problems aiming to simultaneously
minimize three objectives – makespan, maximum earliness,
and maximum tardiness. Hereafter we shall refer to this
problem as MET-UPMSP, where the latter two objectives are
used to evaluate the just-in-time performance of a schedule.

This paper is organized as follows: Section 2 describes the
problem MET-UPMSP; Section 3 presents the algorithms for
MET-UPMSP; Section 4 introduces several performance
metrics and analyzes experimental results; Section 5 provides
concluding remarks.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 3, 2012

8 | P a g e

www.ijarai.thesai.org

II. PROBLEM DESCRIPTION

The MET-UPMSP has the following features: (1) the
problem contains M unrelated parallel machines and J jobs; (2)
each job has its own due date, and may also have a different
processing time depending on the machine assigned; (3) each
machine is allowed to process one job at a time, where the
processing is non-preemptive; (4) setup times are job sequence-
and machine-dependent. The following are notations and
mathematical model for the MET-UPMSP.

A. Notations:

m: machine index, m = 1,…, M
j: job index, j = 1,…, J
pjm: processing time of job j on machine m
sijm: setup time of job j following job i on machine m
dj: due date of job j

B. Decision variables:

xijm = 1 if both jobs i and j are processed on machine m, and
job i immediately precedes job j; otherwise, xijm = 0.

Cj = completion time of job j
Ej = earliness of job j; Ej = max{0, dj – Cj}
Tj = tardiness of job j; Tj = max{0, Cj – dj}
Cmax = production makespan
Emax = maximum earliness
Tmax = maximum tardiness

C. Mathematical model:

 () ()

s.t.

 ∑ ∑

 ∑

 () ()

 ijJj i

 jJ

 jJ

 jJ

 ijJi j

In the model, equation (1) shows the three objectives.

Constraint set (2) restricts job sequence and machine
assignment. Constraint set (3) ensures that each machine has
the first job. Constraint set (4) specifies the relationships
between the finish and start times of jobs processed on the
same machine, where Mbig is a sufficiently large number; the
inequality is invalid if jobs i and j are not processed on the
same machine and/or job i does not immediately precede job j.

Constraint (5) specifies that the production makespan must not
be smaller than the finish time of any job. Constraint set (6)
defines the tardiness of a job and the maximum tardiness of all
jobs. Constraint set (7) defines the earliness of a job and the
maximum earliness among all jobs. Constraint set The MET-
UPMSP is strongly NP-hard since the single machine
scheduling problem with the objective of minimizing makespan,
1 | sjk | Cmax, is strongly NP-hard.

III. SOLVING MET-UPMSP

We present three algorithms to solve MET-UPMSP:
GRASP (greedy randomized adaptive search procedure) [15-
17], dual-archived memetic algorithm (DAMA), and SPEA2
[18]. To enhance the solution quality, min-max matching is
included in the decoding scheme for each generated solution.

A. GRASP

We present three algorithms to solve MET-UPMSP:
GRASP (greedy randomized adaptive search procedure) [15-
17], dual-archived memetic algorithm (DAMA), and SPEA2
[18]. To enhance the solution quality, min-max matching is
included in the decoding scheme for each generated solution.

 () (

 ̅
)

 (

 ̅
)

 ̅

 (

 ̅
)

Where is the processing time of job j on machine m, dj

is the due date of job j, ̅ and ̅ are the average processing
time of the remaining jobs if they are processed on machine m,
k1 is the due-date related scaling parameter and k2 the setup
time related scaling parameter. D is the estimated makespan

(̅ ̅) , where is the total number of jobs divided by the

total number of machines, ̅ is the mean setup time, and = 0.4
+ 10/ . The parameters k1 and k2 can be regarded as

functions of three factors: (1) the due date tightness factor ; (2)

the due date range factor R; (3) the setup time severity factor
= ̅/ ̅

k1 = 4.5 + R for R 0.5 and k1 = 6 - 2R for R 0.5

k2 = /(2√)

1) Construction of the RCL
The greedy functions defined above are the larger the better.

At any GRASP iteration step, a job j is selected using roulette
method from the restricted candidate list (RCL), in which each
element has a greedy function value within the interval,
[()] where ,

 .

2) Reactive GRASP
In the construction phase, reactive GRASP is used, rather

than basic GRASP. Prais and Ribeiro [21] showed that using a

single fixed value for RCL parameter often hinders finding a
high-quality solution, which could be found if another value

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 3, 2012

9 | P a g e

www.ijarai.thesai.org

was used. Another drawback of the basic GRASP is the lack of
learning from previous searches. In our Reactive GRASP, a set

of parameter values {0.05, 0.1, 0.3, 0.5} is chosen. Originally,

each i value is used to find constructive solutions for a
predetermined number of times. Let Nd* be the current largest

nadir distance, and Ai the current average nadir distance for i.

Define qi = Ai /Nd
*
. Then the probability of i being chosen is

 = /∑

 .

An experimental result indicates that reactive GRASP

outperforms basic GRASP for any fixed value in {0.05, 0.1,
0.3, 0.5}. In the experiment, three instances of problem size
200 x 5 were generated for each of the three due date

parameters: (, R) = (0.2, 0.8), (0.5, 0.5), and (0.8, 0.2). Each
instance has ten replication runs, and each run has 25 restarts,
each of which performs 30 local search iterations. Afterward,
the average nadir distance of the ten replication runs for each
instance is computed, and then the average and standard
deviation of results. The result shows that the average nadir
distance of the reactive GRASP is larger than that of basic
GRASP for MET-UPMSP.

3) Nadir distance
The nadir point in the objective space is computed as

follows:

 {∑ ((

 []⁄
 ()) (

 ()) ,

where [⁄] is the smallest integer which is not smaller than

 ⁄ ,

 is the sequence that ranks all job processing times on

machine m in decreasing order, p(
 ()) is the k-th largest

processing time for machine m,

 is the sequence that ranks
all job setup times on machine m in decreasing order,

 (
 ()) is the k-th sequence setup time.

 { | |j = 1,…, J; m =

1,…, M} – min{ |i, j =1,…, J; m = 1,…, M}, which is the

maximum job due date less the shortest processing time and
smallest setup time.

 { | , where D is the estimated

makespan.

The nadir distance of a solution with objective vector a is
defined as the Euclidean distance between a and nadir point.
The neighborhood solution will replace current solution is the
nadir distance of the former is greater than that of the latter.

4) Local Search
Given a current solution (CS), a neighborhood solution

(NS) is generated as follows:

In the CS, select the group-machine pair having the smallest
nadir distance, and randomly select another group from the
remaining groups. Each group first determines the number of

jobs based on a random integer from [1, 0.25 J/M]; then
randomly select a job set from the two groups for swapping.
For each single-machine scheduling, apply 3-opt local search
for a number of times. To determine whether NS will replace
CS, the following rule is used:

If NS dominates CS, set CS = NS; if CS dominates NS,

leave CS unchanged; if NS and CS do not dominate each
other, then set the one with a larger nadir distance to be the
CS.

To enhance the local search improvement on solution
quality, min-max matching is employed. The following
describes this matching technique for a partition of jobs {Gk: k
= 1,…, M}.

Step 0: Set S = .
Step 1: For each group-machine pair, {Gj, Mk}, apply 3-opt to

obtain a local optimal solutions with respect to nadir
distance, and then compute the corresponding three
objectives. Thus, we can obtain an M by M matrix where
each element has three objective values ().

Step 2: Apply min-max matching to each individual objective
in the matrix. Let

 ,
 ,

 be the corresponding
optimal values; let

 ,
 ,

 be the maximum
values for the three objectives, respectively. Let SC = {Cmax |

Step 3: For each configuration of () with

 SE, ST, assign a very large value
to the cells (f1, f2, f3) in the matrix where f1 > Cmax, f2 > Emax,
and f3 > Tmax. Apply maximum cardinality matching to the
resulting matrix. If the maximum matrix is equal to M, then

set S = S {() .
Step 4: Compare all elements in S based on Pareto domination.

Let P be the set of all non-dominated elements in S. Output
the set P.

5) Path-Relinking
The iterative two-phase process of GRASP aims to generate

a set of diversified Pareto local optimal solutions that will be
stored in an archive. In the final phase, path relinking is applied
using these Pareto local optimal solutions to further refine the
solution quality. At each iteration, an initiating solution and a
guiding solution are drawn from the current archive to perform
a PR operation.

Let be the number of solutions in the archive. Thus, there
are Q-1 adjacent solutions. For each pair of adjacent solutions
(xi, xi+1), backward and forward relinking search procedures
will be applied. For each relinking path, a sequence of {1/p, 2/p,
…, p-1/p} is selected and one point crossover operation is
performed based on the position of the encoding list at 1/p, …,
p-1/p. Each bi-directional path relinking search will calculate
2(p-1) solutions. The choice for p will be determined by the
number of solutions used in performance comparison of the
three algorithms. In GRASP, p is set to 5.

An experiment is conducted to determine the parameter
settings for (number of restarts, number of PRs). The

experiment tests three problem instances with (, R) = (0.8, 0.2).
Each instance has four combination levels on (number of
restarts, number of PRs), and each level is solved with 10
replications. Each restart and each PR will generate 100
solutions. The four combination levels will be compared using
the average nadir distance based on 2,000 solutions for each
replication. The experimental results indicate that (restart, PR)
= (15, 5) and (10, 10) yield approximately the same average

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 3, 2012

10 | P a g e

www.ijarai.thesai.org

nadir distance. Thus, policy (15, 5) is selected for our GRASP
in solving the MET-UPSMP.

B. Dual-Archived Memetic Algorithm (DAMA)

DAMA is a variant of SPEA2. It differs from SPEA2 in
three aspects: (1) population evolves with two archives – elite
and inferior, using competitive strategy to produce the
population of next generation; (2) fuzzy C-means [22] is
applied to maintain archive size; (3) min-max matching is
included in decoding scheme. The proposed parallel archived
evolutionary algorithm is termed memetic algorithm since min-
max matching will serve as an effective local search to improve
solution quality for decoding scheme.

1) Encoding and decoding schemes
DAMA and SPEA2 adopt random key list (RKL) as their

encoding scheme. For each RKL, the integral value of a cell
represents the group to which the job is assigned, and the
decimal value ranks job processing order. Fig. 1 presents an
example of RKL for 7 jobs on two machines. In the example,
the initial processing sequence of jobs for the first group G1 =
{5, 2, 6, 3}, and for G2 = {4, 1, 3} according to their decimal
values in the RKL. Then the 3-opt local refinement is applied
to generate a neighborhood solution for each group-machine
pair using nadir distance to decide the current representative
solution. The procedure is repeated until a pre-specified
number of 3-opt operations have been reached. For the 3-opt
local search process of group Gk with machine m, nadir point is
defined as follows:

For ∑
 ∑

For ∑
 ()

 For

job

RKL 2.67 2.882.28 1.681.92 1.251.32

1 2 3 4 5 6 7

Figure 1. Random key list encoding scheme

Besides maintaining one efficient archive (EAt) at each
generation t to assist in algorithm convergence, the DAMA
uses an inefficient archive (IAt) to prevent premature
convergence, and enable the memetic algorithm to explore
solutions in an extensive space. At each generation, two
parallel memetic procedures collectively produce the
subsequent population: one procedure applies memetic
operation (recombination followed by min-max matching) on
the union of GPt and EAt, and the other procedure applies
memetic operation to the union of GPt and IAt. In the
recombination operation, each cell of the child will take the
value from parent 1 if the sum of the two parents’ decimal
values in the same cells exceeds one; otherwise, it will take the
value from parent 2. The following illustrates the DAMA
algorithm.

Step1 Initialization: Randomly generate initial population

GP0; decode GP0 and compute respectively the first and
the last non-dominated front, F1(GP0) and FL(GP0); set
EA0 = F1(GP0), IA0 = FL(P0), r0; set U1 , U2, and U3 as the
worst of f1, f2, and f3 in IA0 respectively; set t = 0.

Step 2 Fitness assignment: Calculate fitness values of

individuals in (GPt EAt) and (GPtIAt), respectively.
Step 3 Generate population GPt+1:

Step 3.1 Perform crossover on (GPtEAt): Produce [r N]

offspring from (GPtEAt) by crossover operation
using binary tournament for mating selection. Decode
each offspring.

Step 3.2 perform (GPtIAt): Produce N – [r N] offspring

from (GPtEAt) by the same method in Step 3.1.
Step 4: Update of EAt+1 and IAt+1

Step 4.1: Compute F1(GPt+1) and copy into EAt; update
EAt+1. If |EAt+1| > ̅, trim EAt+1 to size ̅ by FCM.

Step 4.2: Compute FL(GPt+1) and copy it into IAt, update
IAt+1. If If |IAt+1| > ̅, trim IAt+1 to size ̅ by FCM.

Step 5: Compute rt+1 according to the following equation.

rt+1 = |(crossover on (GPtEAt)rt F1(GPt+1)|

/(|F1(GPt+1)|+)
Step 6: t = t+1; if t = T, proceed to Step 7; otherwise, return

to Step 2.
Step 7: If the number of restarts is not over, proceed to Step 0;

otherwise, output global non-dominated set A from all
EAT.

2) Fitness assignment

Generally, the fitness assignment for (GPt EAt) follows
SPEA2 [18] on minimization problems, and the fitness

assignment for (GPtIAt) follows SPEA2 on maximization
problems. The fitness assignment considers domination and
diversity factors. For DAMA, a modification is made on
diversity measure because the problem under study is discrete.

IV. NUMERICAL RESULTS

An experiment was conducted to investigate the
performance of the proposed algorithms. All algorithms were
coded in Visual Studio C++.NET 2008, and implemented on a
computer with Intel (R) core (TM) i5-2400@3.1 GHz and 4
GB DDR3.

A. Parameter settings

Population and archive sizes of DAMA and SPEA2 are N =
20, ̅= 20, maximum iterations = 100, no. of restarts = 7. The
competitive ratio of DAMA is r0 = 0.9. For GRASP, we set
(no. restart, no. PR) = (15, 5). All algorithms were executed 10
replications for each instance. The performances of algorithms
with min-max matching are compared based on the same
number of matching iterations. Finally, the effect of including
min-max matching in the decoding scheme will also be
discussed.

B. Generating test instances

Two problem sizes are considered in this experiment: 100
(jobs) x 3 (machines), and 200 x 5. We shall refer to the former
as large size and the latter as moderate size. For each problem
size, three test sets each consisting of three instances, were
generated according to Lee and Pinedo [19]. Each test instance
is denoted by four characters: AB0n. The first character A

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 3, 2012

11 | P a g e

www.ijarai.thesai.org

represents problem size: “L” for large and “M” for moderate.
The second character B represents due date tightness: “L” for

loose due date factors (, R) = (0.2, 0.8), “M” for moderate (,

R) = (0.5, 0.5), and “T” for tight (, R) = (0.8, 0.2). Finally, the
last two characters 0n represent the problem instance index.
The larger the problem size, the more complex the problem; the
tighter the due date factors, the more difficult the problem.
Thus, “LM” problems will be the easiest to solve and “LT”
problems will be the most difficult. Table 1 shows the data sets.

TABLE I. TEST INSTANCES INFORMATION

Problem

size

test instances with (, R)

(0.2, 0.8) (0.5, 0.5) (0.8, 0.2)

100 x 3

200 x 5

ML01-03

LT01-03LM01-03LL01-03

MT01-03MM01-03

C. Performance metrics

When developing an algorithm to solve multi-objective
optimization problems, diverse evaluation techniques are
required to measure algorithm performance. Generally
speaking, performance metrics are classified into three
categories: Proximity, Diversity, and both. The following are
several metrics used in our research.

1) Proximity
This metric evaluates the total distance between the local

Pareto optimal front generated by an algorithm and globally
Pareto-optimal front. We consider a commonly used proximity
metric, GD (generational distance).

GD(A) = ∑ ⁄ where A is the set of non-dominated
solutions generated by algorithm, |A| is the number of solutions,
and di is the distance of objective values of solution i to the
nearest Pareto front point.

2) Diversity
Diversity is another important characteristic for measuring

the quality of a non-dominated set. One popular metric for
diversity is Spread [23], which calculates a relative minimum
distance between local Pareto-optimal front elements. This
metric also considers the extent of the spread and requires a
reference Pareto front set Pr to be computed. For three-
objective problems, Spread will be computed using minimum
spanning tree which involves three shortest distances from the
local Pareto-optimal front elements A to the three planes.

Spread(A) = (∑

 ∑ ̅) (∑

 ⁄ +|A| ̅)

where ∑

 is the shortest distance from A to X-Y, X-Z, and
Y-Z planes, ∑ is the total distance of the minimum

spanning tree for A, and ̅ is the mean distance counting all |A|
+ 2 arcs.

3) Proximity and diversity
Zitzler and Thiele [24] introduced a hypervolume (HV)

metric which can measure both proximity and diversity. A
nadir point is required to calculate the HV metric. It is clear to
observe that if point a dominates point b, then the volume of a
must be greater than that of b. Let A = {a1,…,aq}. The better
the quality of A in proximity and diversity, the larger the HV of
A.

HV = volume (⋃

), where hi is the hypercube of in

A.

For three-objective case, the following formula can be
applied to calculate HV for A. Let v() be the volume of .

 V∑ ()

 ∑ (⋂) ()

 (

)

The calculation will be time-consuming if the set A contains
a large number of elements. In our algorithms, the archive size
is limited to 20. The computation time is acceptable.

HVR(A) (hypervolume rate) is defined as () ()⁄
where Pr is the reference Pareto front set obtained by
comparing the local non-dominated solutions produced by all
algorithms.

D. Performance comparisons

TABLEs II and III present the HVR performance of SPEA2,
DAMA, and GRASP on medium- and large-sized problem

instances. In the tables, the symbol “ ” in () represents the
performance where the min-max matching technique is not

used, and “” represents the performance where matching
technique is applied. For example, the values 37.4(63.8)
located in ML column and DAMA(M) row of TABLE II
indicate that HVR is 37.4% for DAMA without matching-
based decoding, and HVR is improved to 63.8% for DAMA
with matching. From TABLEs II and III, SPEA2 and DAMA
with matching-based decoding considerably improve solution
quality. However, GRASP does not reveal much advantage
when matching is applied. For example, in MT instances,
SPEA2 improves HVR from 27.5% to 84.9%, DAMA from
28.2% to 88.6%, but GRASP only from 56.5% to 59.7%.

GRASP performs best among all algorithms without
matching, and there is little improvement for GRASP without
matching. This indicates that GRASP is able to produce high
quality solutions. However, for SPEA2 and DAMA, the effect
of matching is significant, particularly for tight due-date
instances. In summary, DAMA with matching (DAMA_M) is
superior to the others in terms of HVR metric.

TABLE II. HVR (%) OF ALGORITHMS ON 100 X 3 TEST SETS

SPEA2 (M)

ML MM MT

DAMA (M)

GRASP (M)

37.7 (61.1)

37.4 (63.8)

46.0 (50.0)56.3 (58.0) 56.5 (59.7)

37.5 (71.4) 28.2 (88.6)

35.4 (59.7) 27.5 (84.9)

TABLE III. HVR (%) OF ALGORITHMS ON 200 X 5 TEST SETS

SPEA2 (M)

LL LM LT

DAMA (M)

GRASP (M)

33.9 (55.3) 31.7 (84.3)

29.3 (60.3)35.8 (60.2) 30.3 (85.2)

71.2 (73.2 66.9 (68.7)52.9 (63.0)

35.3 (56.0)

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 3, 2012

12 | P a g e

www.ijarai.thesai.org

TABLEs IV-V display GD performance of the
algorithms. For 100 x 3 instances (TABLE VI), DAMA_M
performs best for all three types of instances. GRASP_M is
little better than GRASP, but both perform well for ML. For
200 x 5 instances, GRASP_M performs best for LL and LM
instances. However, for LT instances, DAMA_M is superior
in GD performance. From the entries of TABLE VII, we can
conclude that SPEA2_M, DAMA_M, GRASP, and
GRASP_M produce local solutions which are close to the

reference set. The value behind the sign “” is standard
deviation.

TABLE IV. GD PERFORMANCE OF ALGORITHMS ON 100 X 3 TEST SETS

SPEA2

ML MM MT

SPEA2_M

DAMA

DAMA_M

GRASP

GRASP_M

3.8E-02 2.6E-02 9.2E-02

2.2E-025.3E-02

1.1E-029.4E-031.1E-02

9.5E-03

5.1E-03*5.3*E-034.5*E-03

7.6E-02

5.0E-021.4E-027.7E-03

7.4E-021.8E-02

TABLE V. GD PERFORMANCE OF ALGORITHMS ON 200 X 5 TEST SETS

SPEA2

LL LM LT

SPEA2_M

DAMA

DAMA_M

GRASP

GRASP_M

3.6E-02 2.6E-02 3.2E-02

3.2E-025.0E-02

7.0E-03*4.9E-038.4E-03

3.8E-03

1.1E-024.8E-039.6E-03

4.3E-02

1.4E-022.3E-03*2.6*E-03

2.0E-024.3E-03

TABLEs VI and VII present the Spread performance of the
algorithms. Spread measures the diversity of the local solutions
generated by an algorithm. A small Spread value indicates that
the local solutions are more uniformly distributed. For 100 x 3
instances, DAMA_M generates more evenly distributed local
solutions than the other algorithms. GRASP_M performs
second best. For 200 x 5 instances, DAMA_M is superior to
the others. In contrast, SPEA2_M performs next and generates
Spread values closest to the best for every type of instances.
From the entries of TABLEs VI and VII, we observe that using
matching decoding will produce better distributed local
solutions than not using. The gap of the Spread values is
significant when problem size increases.

V. CONCLUSION

Parallel machine scheduling are often observed in
production environment, and the goal that production
management wishes to achieve is often multi-fold. This paper
studies unrelated parallel machine scheduling problems with
three minimization objectives: makespan, maximum earliness,
and maximum tardiness.

Three algorithms are presented to solve this problem:
GRASP, DAMA, and SPEA2. Our numerical results indicate
that GRASP outperforms the other two algorithms without the

min-max matching technique, but the performance
improvement is not significant when the min-max matching is
used. In contrast, the two population-based algorithms, SPEA2
and DAMA, including min-max matching in the decoding
scheme will significantly improve the solution quality.
Although the DAMA with matching-based decoding scheme
requires more computation time, it will produce high quality
solutions, which can be used as comparison standard to
evaluate the performance of other algorithms.

TABLE VI. SPREAD OF ALGORITHMS ON 100 X 3 TEST SETS

SPEA2

ML MM MT

SPEA2_M

DAMA

DAMA_M

GRASP

GRASP_M

0.88

0.72

0.56

0.86

0.55

0.82

0.64

0.63* 0.73

0.63*

0.86 0.91

0.66 0.69

0.81

0.72

0.50*

0.64

TABLE VII. SPREAD OF ALGORITHMS ON 200 X 5 INSTANCES

SPEA2

LL LM LT

SPEA2_M

DAMA

DAMA_M

GRASP

GRASP_M

1.00

0.60

0.68

0.90

0.52

0.97

0.49*

0.70 0.83

0.61*

0.94 0.96

0.70 0.81

0.89

0.89

0.79*

0.84

ACKNOWLEDGMENT

This work was supported by the National Science Council
of Taiwan under grant NSC 99-2221-E-155-029.

REFERENCES

[1] H. Hoogeveen, “Multicriteria scheduling,” Eur. J. Oper. Res., vol. 167,
iss.3, pp. 592-623, 2005.

[2] J. F. Chen, “Scheduling on unrelated parallel machines with sequence-
and machine-dependent setup times and due-date constraints,” Int. J.
Adv. Manuf. Technol., vol.44, iss.11-12, pp. 1204-1212, 2009.

[3] D. Yang, “An evolutionary simulation-optimization approach in solving
parallel-machine scheduling problem – A case study,” Comput. Ind.
Eng., vol.56, iss.3, pp. 1126-1136, 2009.

[4] D. Alisantoso, L. P. Khoo, and P. Y. Jiang, “An immune algorithm
approach to the scheduling of a flexible PCB flow shop,” Int. J. Adv.
Manuf. Technol., vol.22, iss.11-12, pp. 819-827, 2003.

[5] J. C. Hsieh, P. C. Chang, and L. C. Hsu, “Scheduling of drilling
operations in printed circuit board factory,” Comput. Ind. Eng., vol.44,
iss.3, pp. 461-473, 2003.

[6] L. Yu, H. M. Shih, M. Pfund, W. M. Carlyle, and J. W. Fowler,
“Scheduling of unrelated parallel machines- An application to PWB
manufacturing,” IIE Trans., vol.34, iss.11, pp. 921-931, 2004.

[7] R. Ruiz, and C. Maroto, “A genetic algorithm for hybrid flowshops with
sequence dependent setup times and machine eligibility,” Eur. J. Oper.
Res., vol.169, iss.3, pp. 781-800, 2006.

[8] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, and F. Werner,
“Algorithms for flexible flow shop problems with unrelated parallel
machines, setup times, and dual criteria,” Int. J. Adv. Manuf. Technol.,
vol.37, iss.3-4, pp. 354-370, 2008.

http://www.scopus.com/scopus/search/submit/author.url?author=Yu%2c+L.&origin=resultslist&authorId=7404164832&src=s
http://www.scopus.com/scopus/search/submit/author.url?author=Pfund%2c+M.&origin=resultslist&authorId=6602238397&src=s
http://www.scopus.com/scopus/search/submit/author.url?author=Carlyle%2c+W.M.&origin=resultslist&authorId=17339916800&src=s

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 3, 2012

13 | P a g e

www.ijarai.thesai.org

[9] H. Davoudpour, and M. Ashrafi, “Solving multi-objective SDST flexible
flow shop using GRASP algorithm,” Int. J. Adv. Manuf. Technol.,
vol.44, iss.7-8, pp. 737-747, 2009.

[10] R. Logendran, B. McDonell, and B. Smucker, “Scheduling unrelated
parallel machines with sequence-dependent setups,” Comput. Oper. Res.,
vol.34, iss.11, pp. 3420-3438, 2007.

[11] C. T. N. Allahverdi, T. C. E. Ceng, and M. Y. Kovalyov, “A survey of
scheduling problems with setup times or costs,” Eur. J. Oper. Res.,
vol.187, iss.3, pp. 985-1032, 2008.

[12] V. T’kindt, J. C. Billaut, and C. Prouse, “Solving a bicriteria scheduling
problem on unrelated parallel machines occurring in the glass bottle
industry,” Eur. J. Oper. Res., vol.135, iss.1, pp. 42-49, 2001.

[13] J. K. Cochran, S. M. Horng, and J. W. Fowler, “A multi-population
genetic algorithm to solve multi-objective scheduling problems for
parallel machines,” Comput. Oper. Res., vol.30, iss.7, pp. 1087-1102,
2003.

[14] J. Q. Gao, “A novel artificial immune system for solving multiobjective
scheduling problems subject to special process constraint,” Comput. Ind.
Eng., vol.58, iss.4, pp. 602-609, 2010.

[15] T. A. Feo, and M. G. C. Resende, “Greedy randomized adaptive search
procedures,” J. Global. Optim., vol.6, iss.2, pp. 109-134, 1995.

[16] M. G. C. Resende, and C. C. Ribeiro, “Greedy randomized adaptive
search procedures,” in: F. Glover, G. Kochenberger (Eds.), Handbook of
Metaheuristics, Kluwer, pp. 219-249, 2003.

[17] V. A. Armentano, and M. F. de Franca Filho “Minimizing total tardiness
in parallel machine scheduling with setup times: An adaptive memory-
based GRASP approach,” Eur. J. Oper. Res., vol.183, iss.1, pp. 100-114,
2007.

[18] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
pareto evolutionary algorithm, Technical report,” Comput. Eng. Netw.
Lab. (TIK), Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, 2001.

[19] Y. H. Lee, and M. Pinedo, “Scheduling jobs on parallel machines with
sequence-dependent setup times,” Eur. J. Oper. Res., vol.100, iss.3, pp.
464-474, 1997.

[20] M. Pinedo, Scheduling Theory, Algorithms and Systems (2nd edition),
Prentice-Hall, Inc., A Simon & Schuster Company Englewood Cliffs,
New Jersey, p 36, 2008.

[21] M. Prais, and C. C. Ribeiro, “Reactive GRASP: an application to a
matrix decomposition problem in TDMA traffic assignment,”
INFORMS J. Comput., vol.12, iss.3, pp. 164-176, 2000.

[22] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York, 1981.

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multi-objective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol.6, iss.2, pp. 182-197, 2002.

[24] E. Zitzler, and L. Thiele, “Multiobjective optimization using
evolutionary algorithms—A comparative case study,” 5th Int. Conf.
Parallel Problem Solving from Nature (PPSN-V), In: A. E. Eiben, T.
B¨ack, M. Schoenauer, H. P. Schwefel (Eds). Berlin, Germany:
Springer-Verlag, Lecture Notes in Computer Science, vol.1498, pp. 292–
301, 1998.

AUTHORS PROFILE

Chiuh-Cheng Chyu is currently an associate professor of the department of
Industrial Engineering and Management at Yuan-Ze University. His
current research interests are in the areas of applied operations research,
multiple criteria decision-making, scheduling, and meta-heuristics for
combinatorial optimization problems.

Wei-Shung Chang obtained his PhD degree from the Department of Industrial
Engineering and Management at Yuan-Ze University, Chung-Li,
Taiwan. His research interests include meta-heuristics for production
scheduling and combinatorial optimization problems.

