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Abstract—This paper studies the unrelated parallel machine 

scheduling problem with three minimization objectives – 

makespan, maximum earliness, and maximum tardiness (MET-

UPMSP). The last two objectives combined are related to just-in-

time (JIT) performance of a solution. Three hybrid algorithms 

are presented to solve the MET-UPMSP: reactive GRASP with 

path relinking, dual-archived memetic algorithm (DAMA), and 

SPEA2. In order to improve the solution quality, min-max 

matching is included in the decoding scheme for each algorithm. 

An experiment is conducted to evaluate the performance of the 

three algorithms, using 100 (jobs) x 3 (machines) and 200 x 5 

problem instances with three combinations of two due date 

factors – tight and range. The numerical results indicate that 

DAMA performs best and GRASP performs second for most 

problem instances in three performance metrics: HVR, GD, and 

Spread. The experimental results also show that incorporating 

min-max matching into decoding scheme significantly improves 

the solution quality for the two population-based algorithms. It is 

worth noting that the solutions produced by DAMA with 

matching decoding can be used as benchmark to evaluate the 

performance of other algorithms. 

Keywords-Greedy randomized adaptive search procedure; memetic 
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I.  INTRODUCTION 

In production scheduling, management concerns are often 
multi-dimensional. In order to reach an acceptable compromise, 
one has to measure the quality of a solution on all important 
criteria. This concern has led to the development of multi-
criterion scheduling [1]. During scheduling, consideration of 
several criteria will provide the decision maker with a more 
practical solution. In production scheduling, objectives under 
considerations often include system utilization or makespan, 
total machining cost or workload, JIT related costs (earliness 
and tardiness penalties), total weighted flow time, and total 
weighted tardiness. The goal of total weighted flow time is to 
lower the work-in-process inventory cost during the production 
process, while the goal of just-in-time is to minimize producer 
and customer dissatisfactions towards delivery due dates. 

Parallel machine models are a generalization of single 
machine scheduling, and a special case of flexible flow shop. 
Parallel machine models can be classified into three cases: 
identical, uniform, and unrelated (UPMSP). In the UPMSP 

case, machine i may finish job 1 quickly but will require much 
longer with job 2; on the other hand, machine j may finish job 2 
quickly but will take much longer with job 1. In practice, 
UPMSPs are often encountered in production environments; 
for instance, injection modeling and LCD manufacturing [2], 
wire bonding workstation in integrated-circuit packaging 
manufacturing [3], etc. Moreover, many manufacturing 
processes are flexible flow shops (FFS) which are composed of 
UPMSP at each stage: PCB assembly and fabrication [4-6], 
ceramic tile manufacturing Ruiz and Maroto [7]. 
Jungwattanakit et al. [8] proposed a genetic algorithm (GA) for 
FFS with unrelated parallel machines and a weighted sum of 
two objectives – makespan and number of tardy jobs. The 
numerical results indicate that the GA outperforms dispatching 
rule-based heuristics. Davoudpour and Ashrafi [9] employed a 
greedy random adaptive search procedure (GRASP) to solve 
the FFS with a weighted sum of four objectives. 

Over the years, UPMSPs with a single objective have been 
widely studied. For a survey of parallel machine scheduling on 
various objectives and solution methods, we refer to Logendran 
et al. [10] and Allahverdi et al. [11]. In contrast, there are 
relatively few studies on UPMSPs considering multiple 
objectives. T’kindt et al. [12] studied an UPMSP glass bottle 
manufacturing, with the aim of simultaneously optimizing 
workload balance and total profit. Cochran et al. [13] 
introduced a two-phase multi-population genetic algorithm to 
solve multi-objective parallel machine scheduling problems. 
Gao [14] proposed an artificial immune system to solve the 
UPMSPs to simultaneously minimizing the makespan, total 
earliness and tardiness penalty. For further references regarding 
multicriteria UMPSPs, refer to Hoogeveen [1]. 

In this paper, we consider a multi-objective unrelated 
parallel machine scheduling problems aiming to simultaneously 
minimize three objectives – makespan, maximum earliness, 
and maximum tardiness. Hereafter we shall refer to this 
problem as MET-UPMSP, where the latter two objectives are 
used to evaluate the just-in-time performance of a schedule. 

This paper is organized as follows: Section 2 describes the 
problem MET-UPMSP; Section 3 presents the algorithms for 
MET-UPMSP; Section 4 introduces several performance 
metrics and analyzes experimental results; Section 5 provides 
concluding remarks. 
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II. PROBLEM DESCRIPTION 

The MET-UPMSP has the following features: (1) the 
problem contains M unrelated parallel machines and J jobs; (2) 
each job has its own due date, and may also have a different 
processing time depending on the machine assigned; (3) each 
machine is allowed to process one job at a time, where the 
processing is non-preemptive; (4) setup times are job sequence- 
and machine-dependent. The following are notations and 
mathematical model for the MET-UPMSP. 

A. Notations: 

m:   machine index, m = 1,…, M 
j:    job index, j = 1,…, J 
pjm:  processing time of job j on machine m 
sijm:  setup time of job j following job i on machine m 
dj:   due date of job j 

B. Decision variables: 

xijm = 1 if both jobs i and j are processed on machine m, and 
job i immediately precedes job j; otherwise, xijm = 0. 

Cj = completion time of job j 
Ej = earliness of job j; Ej = max{0, dj – Cj} 
Tj = tardiness of job j; Tj = max{0, Cj – dj} 
Cmax = production makespan 
Emax = maximum earliness 
Tmax = maximum tardiness 

C. Mathematical model: 
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In the model, equation (1) shows the three objectives. 

Constraint set (2) restricts job sequence and machine 
assignment. Constraint set (3) ensures that each machine has 
the first job. Constraint set (4) specifies the relationships 
between the finish and start times of jobs processed on the 
same machine, where Mbig is a sufficiently large number; the 
inequality is invalid if jobs i and j are not processed on the 
same machine and/or job i does not immediately precede job j. 

Constraint (5) specifies that the production makespan must not 
be smaller than the finish time of any job. Constraint set (6) 
defines the tardiness of a job and the maximum tardiness of all 
jobs. Constraint set (7) defines the earliness of a job and the 
maximum earliness among all jobs. Constraint set The MET-
UPMSP is strongly NP-hard since the single machine 
scheduling problem with the objective of minimizing makespan, 
1 | sjk | Cmax, is strongly NP-hard. 

III. SOLVING MET-UPMSP 

We present three algorithms to solve MET-UPMSP: 
GRASP (greedy randomized adaptive search procedure) [15-
17], dual-archived memetic algorithm (DAMA), and SPEA2 
[18]. To enhance the solution quality, min-max matching is 
included in the decoding scheme for each generated solution. 

A. GRASP 

We present three algorithms to solve MET-UPMSP: 
GRASP (greedy randomized adaptive search procedure) [15-
17], dual-archived memetic algorithm (DAMA), and SPEA2 
[18]. To enhance the solution quality, min-max matching is 
included in the decoding scheme for each generated solution. 
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Where     is the processing time of job j on machine m, dj 

is the due date of job j,  ̅  and  ̅  are the average processing 
time of the remaining jobs if they are processed on machine m, 
k1 is the due-date related scaling parameter and k2 the setup 
time related scaling parameter. D is the estimated makespan 

(   ̅   ̅) , where  is the total number of jobs divided by the 

total number of machines,  ̅ is the mean setup time, and   = 0.4 
+ 10/     . The parameters k1 and k2 can be regarded as 

functions of three factors: (1) the due date tightness factor ; (2) 

the due date range factor R; (3) the setup time severity factor   
=  ̅/ ̅  

k1 = 4.5 + R  for R  0.5  and k1 = 6 - 2R  for R   0.5 

k2 = /(2√ ) 

1) Construction of the RCL 
The greedy functions defined above are the larger the better. 

At any GRASP iteration step, a job j is selected using roulette 
method from the restricted candidate list (RCL), in which each 
element has a greedy function value within the interval, 
[     (   )          ]  where                , 

               .  

2) Reactive GRASP 
In the construction phase, reactive GRASP is used, rather 

than basic GRASP.  Prais and Ribeiro [21] showed that using a 

single fixed value for RCL parameter   often hinders finding a 
high-quality solution, which could be found if another value 
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was used. Another drawback of the basic GRASP is the lack of 
learning from previous searches. In our Reactive GRASP, a set 

of parameter   values {0.05, 0.1, 0.3, 0.5} is chosen. Originally, 

each  i value is used to find constructive solutions for a 
predetermined number of times. Let Nd* be the current largest 

nadir distance, and Ai the current average nadir distance for  i. 

Define qi = Ai /Nd
*
. Then the probability of  i being chosen is 

  =   /∑   
 
   . 

An experimental result indicates that reactive GRASP 

outperforms basic GRASP for any fixed   value in {0.05, 0.1, 
0.3, 0.5}. In the experiment, three instances of problem size 
200 x 5 were generated for each of the three due date 

parameters: (, R) = (0.2, 0.8), (0.5, 0.5), and (0.8, 0.2). Each 
instance has ten replication runs, and each run has 25 restarts, 
each of which performs 30 local search iterations. Afterward, 
the average nadir distance of the ten replication runs for each 
instance is computed, and then the average and standard 
deviation of results. The result shows that the average nadir 
distance of the reactive GRASP is larger than that of basic 
GRASP for MET-UPMSP. 

3) Nadir distance 
The nadir point in the objective space is computed as 

follows: 

    
      {∑ ( (  
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 ( ))          , 
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  ⁄ ,   
 

 is the sequence that ranks all job processing times on 

machine m in decreasing order, p(  
 ( )) is the k-th largest 

processing time for machine m,   
 

 is the sequence that ranks 
all job setup times on machine m in decreasing order, 

 (  
 ( )) is the k-th sequence setup time. 

    
      {  |                  |j = 1,…, J; m = 

1,…, M} – min{    |i, j =1,…, J; m = 1,…, M}, which is the 

maximum job due date less the shortest processing time and 
smallest setup time. 

    
        {  |         , where D is the estimated 

makespan. 

The nadir distance of a solution with objective vector a is 
defined as the Euclidean distance between a and nadir point. 
The neighborhood solution will replace current solution is the 
nadir distance of the former is greater than that of the latter. 

4) Local Search 
Given a current solution (CS), a neighborhood solution 

(NS) is generated as follows: 

In the CS, select the group-machine pair having the smallest 
nadir distance, and randomly select another group from the 
remaining groups. Each group first determines the number of 

jobs based on a random integer from [1, 0.25 J/M]; then 
randomly select a job set from the two groups for swapping. 
For each single-machine scheduling, apply 3-opt local search 
for a number of times. To determine whether NS will replace 
CS, the following rule is used: 

If NS dominates CS, set CS = NS; if CS dominates NS, 

leave CS unchanged; if NS and CS do not dominate each 
other, then set the one with a larger nadir distance to be the 
CS. 

To enhance the local search improvement on solution 
quality, min-max matching is employed. The following 
describes this matching technique for a partition of jobs {Gk: k 
= 1,…, M}. 

Step 0: Set S = . 
Step 1: For each group-machine pair, {Gj, Mk}, apply 3-opt to 

obtain a local optimal solutions with respect to nadir 
distance, and then compute the corresponding three 
objectives. Thus, we can obtain an M by M matrix where 
each element has three objective values (              ). 

Step 2: Apply min-max matching to each individual objective 
in the matrix. Let     

 ,     
 ,     

  be the corresponding 
optimal values; let     

 ,     
 ,         

  be the maximum 
values for the three objectives, respectively. Let SC = {Cmax | 
    

               
                     

         
    

                        
             

      

Step 3: For each configuration of (              )  with 

             SE,        ST, assign a very large value 
to the cells (f1, f2, f3) in the matrix where f1 > Cmax, f2 > Emax, 
and f3 > Tmax. Apply maximum cardinality matching to the 
resulting matrix. If the maximum matrix is equal to M, then 

set S = S  {(              ) . 
Step 4: Compare all elements in S based on Pareto domination. 

Let P be the set of all non-dominated elements in S. Output 
the set P. 

5) Path-Relinking 
The iterative two-phase process of GRASP aims to generate 

a set of diversified Pareto local optimal solutions that will be 
stored in an archive. In the final phase, path relinking is applied 
using these Pareto local optimal solutions to further refine the 
solution quality. At each iteration, an initiating solution and a 
guiding solution are drawn from the current archive to perform 
a PR operation.  

Let   be the number of solutions in the archive. Thus, there 
are Q-1 adjacent solutions. For each pair of adjacent solutions 
(xi, xi+1), backward and forward relinking search procedures 
will be applied. For each relinking path, a sequence of {1/p, 2/p, 
…, p-1/p} is selected and one point crossover operation is 
performed based on the position of the encoding list at 1/p, …, 
p-1/p. Each bi-directional path relinking search will calculate 
2(p-1) solutions. The choice for p will be determined by the 
number of solutions used in performance comparison of the 
three algorithms. In GRASP, p is set to 5. 

An experiment is conducted to determine the parameter 
settings for (number of restarts, number of PRs). The 

experiment tests three problem instances with (, R) = (0.8, 0.2). 
Each instance has four combination levels on (number of 
restarts, number of PRs), and each level is solved with 10 
replications. Each restart and each PR will generate 100 
solutions. The four combination levels will be compared using 
the average nadir distance based on 2,000 solutions for each 
replication. The experimental results indicate that (restart, PR) 
= (15, 5) and (10, 10) yield approximately the same average 
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nadir distance. Thus, policy (15, 5) is selected for our GRASP 
in solving the MET-UPSMP. 

B.  Dual-Archived Memetic Algorithm (DAMA) 

DAMA is a variant of SPEA2. It differs from SPEA2 in 
three aspects: (1) population evolves with two archives – elite 
and inferior, using competitive strategy to produce the 
population of next generation; (2) fuzzy C-means [22] is 
applied to maintain archive size; (3) min-max matching is 
included in decoding scheme. The proposed parallel archived 
evolutionary algorithm is termed memetic algorithm since min-
max matching will serve as an effective local search to improve 
solution quality for decoding scheme. 

1) Encoding and decoding schemes 
DAMA and SPEA2 adopt random key list (RKL) as their 

encoding scheme. For each RKL, the integral value of a cell 
represents the group to which the job is assigned, and the 
decimal value ranks job processing order. Fig. 1 presents an 
example of RKL for 7 jobs on two machines. In the example, 
the initial processing sequence of jobs for the first group G1 = 
{5, 2, 6, 3}, and for G2 = {4, 1, 3} according to their decimal 
values in the RKL. Then the 3-opt local refinement is applied 
to generate a neighborhood solution for each group-machine 
pair using nadir distance to decide the current representative 
solution. The procedure is repeated until a pre-specified 
number of 3-opt operations have been reached. For the 3-opt 
local search process of group Gk with machine m, nadir point is 
defined as follows: 

For             ∑        
 ∑               

    

For              ∑              
 (        )    

  

 For                          
      

job

RKL 2.67 2.882.28 1.681.92 1.251.32

1 2 3 4 5 6 7

 

Figure 1.  Random key list encoding scheme 

Besides maintaining one efficient archive (EAt) at each 
generation t to assist in algorithm convergence, the DAMA 
uses an inefficient archive (IAt) to prevent premature 
convergence, and enable the memetic algorithm to explore 
solutions in an extensive space. At each generation, two 
parallel memetic procedures collectively produce the 
subsequent population: one procedure applies memetic 
operation (recombination followed by min-max matching) on 
the union of GPt and EAt, and the other procedure applies 
memetic operation to the union of GPt and IAt. In the 
recombination operation, each cell of the child will take the 
value from parent 1 if the sum of the two parents’ decimal 
values in the same cells exceeds one; otherwise, it will take the 
value from parent 2. The following illustrates the DAMA 
algorithm. 

Step1 Initialization: Randomly generate initial population 

GP0; decode GP0 and compute respectively the first and 
the last non-dominated front, F1(GP0) and FL(GP0); set 
EA0 = F1(GP0), IA0 = FL(P0), r0; set U1 , U2, and U3 as the 
worst of f1, f2, and f3 in IA0 respectively; set t = 0. 

Step 2 Fitness assignment: Calculate fitness values of 

individuals in (GPt EAt) and (GPtIAt), respectively. 
Step 3 Generate population GPt+1: 

Step 3.1 Perform crossover on (GPtEAt): Produce [r N] 

offspring from (GPtEAt) by crossover operation 
using binary tournament for mating selection. Decode 
each offspring. 

Step 3.2 perform (GPtIAt): Produce N – [r N] offspring 

from (GPtEAt) by the same method in Step 3.1. 
Step 4: Update of EAt+1 and IAt+1 

Step 4.1: Compute F1(GPt+1) and copy into EAt; update 
EAt+1. If |EAt+1| >  ̅, trim EAt+1 to size  ̅ by FCM. 

Step 4.2: Compute FL(GPt+1) and copy it into IAt, update 
IAt+1. If If |IAt+1| >  ̅, trim IAt+1 to size  ̅ by FCM. 

Step 5: Compute rt+1 according to the following equation. 

rt+1 = |(crossover on (GPtEAt)rt  F1(GPt+1)| 

/(|F1(GPt+1)|+) 
Step 6: t = t+1; if t = T, proceed to Step 7; otherwise, return 

to Step 2. 
Step 7: If the number of restarts is not over, proceed to Step 0; 

otherwise, output global non-dominated set A from all 
EAT. 

2) Fitness assignment 

Generally, the fitness assignment for (GPt EAt) follows 
SPEA2 [18] on minimization problems, and the fitness 

assignment for (GPtIAt) follows SPEA2 on maximization 
problems. The fitness assignment considers domination and 
diversity factors. For DAMA, a modification is made on 
diversity measure because the problem under study is discrete. 

IV. NUMERICAL RESULTS 

An experiment was conducted to investigate the 
performance of the proposed algorithms. All algorithms were 
coded in Visual Studio C++.NET 2008, and implemented on a 
computer with Intel (R) core (TM) i5-2400@3.1 GHz and 4 
GB DDR3. 

A. Parameter settings 

Population and archive sizes of DAMA and SPEA2 are N = 
20,  ̅= 20, maximum iterations = 100, no. of restarts = 7. The 
competitive ratio of DAMA is r0 = 0.9. For GRASP, we set 
(no. restart, no. PR) = (15, 5). All algorithms were executed 10 
replications for each instance. The performances of algorithms 
with min-max matching are compared based on the same 
number of matching iterations. Finally, the effect of including 
min-max matching in the decoding scheme will also be 
discussed. 

B. Generating test instances 

Two problem sizes are considered in this experiment: 100 
(jobs) x 3 (machines), and 200 x 5. We shall refer to the former 
as large size and the latter as moderate size. For each problem 
size, three test sets each consisting of three instances, were 
generated according to Lee and Pinedo [19]. Each test instance 
is denoted by four characters: AB0n. The first character A 
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represents problem size: “L” for large and “M” for moderate. 
The second character B represents due date tightness: “L” for 

loose due date factors (, R) = (0.2, 0.8), “M” for moderate (, 

R) = (0.5, 0.5), and “T” for tight (, R) = (0.8, 0.2). Finally, the 
last two characters 0n represent the problem instance index. 
The larger the problem size, the more complex the problem; the 
tighter the due date factors, the more difficult the problem. 
Thus, “LM” problems will be the easiest to solve and “LT” 
problems will be the most difficult. Table 1 shows the data sets. 

TABLE I.  TEST INSTANCES INFORMATION 

Problem

size

test instances with (, R)

(0.2, 0.8) (0.5, 0.5) (0.8, 0.2)

100 x 3

200 x 5

ML01-03

LT01-03LM01-03LL01-03

MT01-03MM01-03

 

C. Performance metrics 

When developing an algorithm to solve multi-objective 
optimization problems, diverse evaluation techniques are 
required to measure algorithm performance. Generally 
speaking, performance metrics are classified into three 
categories: Proximity, Diversity, and both. The following are 
several metrics used in our research. 

1) Proximity 
This metric evaluates the total distance between the local 

Pareto optimal front generated by an algorithm and globally 
Pareto-optimal front. We consider a commonly used proximity 
metric, GD (generational distance). 

GD(A) = ∑         ⁄   where A is the set of non-dominated 
solutions generated by algorithm, |A| is the number of solutions, 
and di is the distance of objective values of solution i to the 
nearest Pareto front point. 

2) Diversity 
Diversity is another important characteristic for measuring 

the quality of a non-dominated set. One popular metric for 
diversity is Spread [23], which calculates a relative minimum 
distance between local Pareto-optimal front elements. This 
metric also considers the extent of the spread and requires a 
reference Pareto front set Pr to be computed. For three-
objective problems, Spread will be computed using minimum 
spanning tree which involves three shortest distances from the 
local Pareto-optimal front elements A to the three planes. 

Spread(A) = (∑   
  

    ∑         ̅ ) (∑   
  

   ⁄ +|A|  ̅)  

where ∑   
  

    is the shortest distance from A to X-Y, X-Z, and 
Y-Z planes, ∑       is the total distance of the minimum 

spanning tree for A, and  ̅ is the mean distance counting all |A| 
+ 2 arcs. 

3) Proximity and diversity 
Zitzler and Thiele [24] introduced a hypervolume (HV) 

metric which can measure both proximity and diversity. A 
nadir point is required to calculate the HV metric. It is clear to 
observe that if point a dominates point b, then the volume of a 
must be greater than that of b. Let A = {a1,…,aq}. The better 
the quality of A in proximity and diversity, the larger the HV of 
A. 

HV = volume (⋃   
   
   ), where hi is the hypercube of    in 

A. 

For three-objective case, the following formula can be 
applied to calculate HV for A. Let v(  ) be the volume of   . 

 V∑  (  )
   
   ∑  (     ⋂  )    (  )      

  (    
   

  ) 

The calculation will be time-consuming if the set A contains 
a large number of elements. In our algorithms, the archive size 
is limited to 20. The computation time is acceptable. 

HVR(A) (hypervolume rate) is defined as   ( )   (  )⁄    
where Pr is the reference Pareto front set obtained by 
comparing the local non-dominated solutions produced by all 
algorithms. 

D. Performance comparisons 

TABLEs II and III present the HVR performance of SPEA2, 
DAMA, and GRASP on medium- and large-sized problem 

instances. In the tables, the symbol “ ” in  () represents the 
performance where the min-max matching technique is not 

used, and “” represents the performance where matching 
technique is applied. For example, the values 37.4(63.8) 
located in ML column and DAMA(M) row of TABLE II 
indicate that HVR is 37.4% for DAMA without matching-
based decoding, and HVR is improved to 63.8% for DAMA 
with matching. From TABLEs II and III, SPEA2 and DAMA 
with matching-based decoding considerably improve solution 
quality. However, GRASP does not reveal much advantage 
when matching is applied. For example, in MT instances, 
SPEA2 improves HVR from 27.5% to 84.9%, DAMA from 
28.2% to 88.6%, but GRASP only from 56.5% to 59.7%. 

GRASP performs best among all algorithms without 
matching, and there is little improvement for GRASP without 
matching. This indicates that GRASP is able to produce high 
quality solutions. However, for SPEA2 and DAMA, the effect 
of matching is significant, particularly for tight due-date 
instances. In summary, DAMA with matching (DAMA_M) is 
superior to the others in terms of HVR metric. 

TABLE II.  HVR (%) OF ALGORITHMS ON 100 X 3 TEST SETS 

SPEA2 (M)

ML MM MT

DAMA (M)

GRASP (M)

37.7 (61.1)

37.4 (63.8)

46.0 (50.0)56.3 (58.0) 56.5 (59.7)

37.5  (71.4) 28.2 (88.6)

35.4 (59.7) 27.5 (84.9)

 

TABLE III.  HVR (%) OF ALGORITHMS ON 200 X 5 TEST SETS 

SPEA2 (M)

LL LM LT

DAMA (M)

GRASP (M)

33.9 (55.3) 31.7 (84.3)

29.3 (60.3)35.8 (60.2) 30.3 (85.2)

71.2  (73.2 66.9 (68.7)52.9 (63.0)

35.3 (56.0)

 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 3, 2012 

12 | P a g e  

www.ijarai.thesai.org 

TABLEs IV-V display GD performance of the 
algorithms. For 100 x 3 instances (TABLE VI), DAMA_M 
performs best for all three types of instances. GRASP_M is 
little better than GRASP, but both perform well for ML. For 
200 x 5 instances, GRASP_M performs best for LL and LM 
instances. However, for LT instances, DAMA_M is superior 
in GD performance. From the entries of TABLE VII, we can 
conclude that SPEA2_M, DAMA_M, GRASP, and 
GRASP_M produce local solutions which are close to the 

reference set. The value behind the sign “” is standard 
deviation. 

TABLE IV.  GD PERFORMANCE OF ALGORITHMS ON 100 X 3 TEST SETS 

SPEA2

ML MM MT

SPEA2_M

DAMA

DAMA_M

GRASP

GRASP_M

3.8E-02 2.6E-02 9.2E-02

2.2E-025.3E-02

1.1E-029.4E-031.1E-02

9.5E-03

5.1E-03*5.3*E-034.5*E-03

7.6E-02

5.0E-021.4E-027.7E-03

7.4E-021.8E-02

 

TABLE V.  GD PERFORMANCE OF ALGORITHMS ON 200 X 5 TEST SETS 

SPEA2

LL LM LT

SPEA2_M

DAMA

DAMA_M

GRASP

GRASP_M

3.6E-02 2.6E-02 3.2E-02

3.2E-025.0E-02

7.0E-03*4.9E-038.4E-03

3.8E-03

1.1E-024.8E-039.6E-03

4.3E-02

1.4E-022.3E-03*2.6*E-03

2.0E-024.3E-03

 

TABLEs VI and VII present the Spread performance of the 
algorithms. Spread measures the diversity of the local solutions 
generated by an algorithm. A small Spread value indicates that 
the local solutions are more uniformly distributed. For 100 x 3 
instances, DAMA_M generates more evenly distributed local 
solutions than the other algorithms. GRASP_M performs 
second best. For 200 x 5 instances, DAMA_M is superior to 
the others. In contrast, SPEA2_M performs next and generates 
Spread values closest to the best for every type of instances. 
From the entries of TABLEs VI and VII, we observe that using 
matching decoding will produce better distributed local 
solutions than not using. The gap of the Spread values is 
significant when problem size increases. 

V. CONCLUSION 

Parallel machine scheduling are often observed in 
production environment, and the goal that production 
management wishes to achieve is often multi-fold. This paper 
studies unrelated parallel machine scheduling problems with 
three minimization objectives: makespan, maximum earliness, 
and maximum tardiness.  

Three algorithms are presented to solve this problem: 
GRASP, DAMA, and SPEA2. Our numerical results indicate 
that GRASP outperforms the other two algorithms without the 

min-max matching technique, but the performance 
improvement is not significant when the min-max matching is 
used. In contrast, the two population-based algorithms, SPEA2 
and DAMA, including min-max matching in the decoding 
scheme will significantly improve the solution quality. 
Although the DAMA with matching-based decoding scheme 
requires more computation time, it will produce high quality 
solutions, which can be used as comparison standard to 
evaluate the performance of other algorithms. 

TABLE VI.  SPREAD OF ALGORITHMS ON 100 X 3 TEST SETS 

SPEA2

ML MM MT

SPEA2_M

DAMA

DAMA_M

GRASP

GRASP_M

0.88 

0.72 

0.56 

0.86 

0.55 

0.82 

0.64 

0.63* 0.73 

0.63* 

0.86 0.91 

0.66  0.69 

0.81 

0.72 

0.50* 

0.64 

 

TABLE VII.  SPREAD OF ALGORITHMS ON 200 X 5 INSTANCES 

SPEA2

LL LM LT

SPEA2_M

DAMA

DAMA_M

GRASP

GRASP_M

1.00 

0.60 

0.68 

0.90 

0.52 

0.97 

0.49* 

0.70 0.83 

0.61* 

0.94 0.96 

0.70  0.81 

0.89 

0.89 

0.79* 

0.84 
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