
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 8, 2012

23 | P a g e

www.ijarai.thesai.org

An Interval-Based Context Reasoning Approach

Tao Lu, Xiaoling Liu, Xiaogang Liu, Shaokun Zhang

System Engineering Institute

Dalian University of Technology

Dalian, China

Abstract— Context-aware computing is an emerging computing

paradigm that provides intelligent context-aware application.

Context reasoning is an important aspect in context awareness,

by which high level context can be derived from low-level context

data. In this paper, we focus on the situation in mobile

workspace, where a worker performs a set of activities to archive

defined goals. The main part of being aware is to be able to

answer the question of “what is going on”. Therefore high level

context we need to derive is current activity and its state. The

approach we propose is knowledge-driven technique. Temporal

relations as well as semantic relations are integrated into the

context model of activity, and the recognition is performed based

on the model. We first define the context model of activity, and

then we analyze the characteristics of context change and propose

a method of context reasoning.

Keywords- context-aware; context reasoning; interval-based;

activity recognition.

I. INTRODUCTION

Context-aware computing is an emerging computing
paradigm that provides intelligent context-aware application.
According to well-known definition proposed by Dey, context
is any information that can be used to characterize the
situation of an entity. An entity is a person, place or object that
is considered relevant to the interaction between a user and an
application, including the user and application themselves [1].
Context-awareness means exploiting context information to
provide adaptive information or service, or reducing the
interaction between user and application.

Context-awareness is related to the manipulation of context
information pertaining to certain entities. Information from
physical sensors are called low-level context. High level
context, also called situation sometimes, can be derived from
low-level context by proper interpreting. This process is
context reasoning, or context interpretation. Situations are
semantic abstractions from low-level contexts cues. So the
relationship between low level context and situation must be
integrated into a context model, which represents human
knowledge about the world [2].

This can either be done by specification, i.e. human defines
situations and their relationship based on his /her knowledge,
or the model are learned automatically using machine learning
techniques [2]. The two approaches are also called knowledge-
driven approach and data-driven approach [3].

Data-driven techniques are based on the machine learning
methods and are well suited for recognizing simple activities
and gestures from raw sensor data or video data [4]. A wide
range of algorithms and models include Hidden Markov

Models [5], dynamic and naïve Bayes networks [6], and
decision trees [7] and so on. Knowledge-driven techniques,
concerning knowledge representation as well as reasoning
with them, is closely related with classical topics in artificial
intelligence [8]. Ontology-based method is one of frequently
used technique. For example, Chen has proposed a technique
to recognize activities through ontological reasoning [9].
Knowledge-driven techniques can also be used to recognizing
complex situations based on the recognized simple context
[10].

In this paper, we focus on the situation in mobile
workspace, where a worker performs a set of activities to
archive defined goals. The main part of being aware is to be
able to answer the question of “what is going on”. Therefore
the situation, or high level context, we need to derive is
activity and its state.

Determining the activity and its state cannot only be
completed by observing the context but also need to draw
conclusion from the observations. Knowledge about the
relation of context and activity should be integrated into the
model. Compared with most of knowledge-driven techniques,
the approach we propose considers the temporal relation
between activities and contexts.

Activity is seemed as process with duration, and context
may change in the process. Each activity context model is a set
of semantic relations and temporal constraints with respect to
the activity and the context. If some observed contexts match
the defined patterns, or if their times of occurrence meet the
specified constraints, then an instance of this situation occurs.

We have developed an activity recognition approach taking
the temporal relation into account in previous work [11]. This
paper considers more temporal relations. Moreover semantic
relations are also integrated into the model. By this means,
more types of situation can be recognized.

The rest of the paper is organized as follows. Section 2
provides the context model of activity. Section 3 proposes the
activity recognition approach. Case study is described in
section 4 and section 5 concludes the paper.

II. CONTEXT MODEL OF ACTIVITY

Suppose the application is related to a set of contexts
which are denoted as c1,c2,...cn, and the domain of ci is Di. At

given time t, the value of context ci is denoted as ci(t)(ci(t)Di),
i=1,2,…n. The values of context c1,c2,...cn at time t is denoted
as C(t), C(t)=(c1(t),c2(t),…cn(t)).

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 8, 2012

24 | P a g e

www.ijarai.thesai.org

Suppose dj
(i)
Di, (ci,dj

(i)
) is called a context pattern. The

context pattern(ci, dj
(i)

) holds at time t, if and only if ci(t) dj
(i)

,

denoted as hold_at((ci,dj
(i)

),t), i.e. hold_at((ci,dj
(i)

),t)ci(t)
dj

(i)
.

Apparently hold_at((ci,dj
(i)

),t)hold_at((ci,Di-dj
(i)

),t),
(ci,Di-dj

(i)
) is called the negative pattern of (ci,dj

(i)
), denoted as

(ci,dj
(i)

).

We define a special context pattern time-elapse(ts,T),

TtttTtelapsetimeathold ss )),,((_
. ts is the time to

start timing. The context pattern holds after T. For simplicity,
we use time-elapse instead of time-elapse(ts,T) . Initializing
time-elapse in this paper means setting the time length and
start timing.

A. Temporal relations of context pattern and activity

Context pattern may hold over time interval. We consider
time as a linearly ordered discrete set of instants, a time
interval is represented as an ordered pair of time points
representing starting and ending time. Context pattern may
hold in one or more time intervals.

We use I(p) to denote the interval set in which the context
pattern p holds, i.e.

I(p)={[ts,te]t[ts,te], hold_at(p,t) and  [tm,tn],

],,[],[,, esnmensm tttttttt  t[tm,tn], hold_at(p,t) } 

In same way, we can use an ordered pair to represent the
time interval in which an activity is conducted. The starting
time and ending time of activity a are denoted as a.start and
a.end.

Allen has suggested a well-known temporal model based
on relationships among intervals [12]. Here we use these
predicates to model the temporal relations between context
patterns and activities.

Let P be a context pattern set and A an activity set. Equal,
During, Start, Finish, Before, Overlap are predicates
representing relations between context patterns and activities.
The meaning of the predicate is defined in TABLE I.

In TABLE I, we only list the relations usually used in our
model. Other relations are not difficult to deduce from the
meaning.

TABLE I. TEMPORAL RELATION OF CONTEXT PATTERN AND ACTIVITY

Relation Definition

Equal(p,a)  [tps,tpe] I(p), tps= a.start, tpe= a.end

During(p,a)  [tps,tpe]  I(p), tps≥a.start, tpe≤ a.end

During(a,p)  [tps,tpe]  I(p), tps ≤a.start, tpe≥a.end

Start(p,a)  [tps,tpe]  I(p), tps= a.start, tpe< a.end

Start(a,p)  [tps,tpe]  I(p), tps= a.start, tpe> a.end

Finish(p,a)  [tps,tpe]  I(p), tps> a.start, tpe=a.end

Finish(a,p)  [tps,tpe]  I(p), tps< a.start, tpe=a.end

Overlap(p,a)  [tps,tpe]  I(p), tps< a.start, tpe< a.end

Overlap(a,p)  [tps,tpe]  I(p), tps> a.start, tpe>a.end

Before (p,a)  [tps,tpe]  I(p), tps< a.start

B. Semantic relations of context pattern and activity

Besides temporal relations, there are also semantic
relations existing between context patterns and activities.
COND, CONSEQ, PREM, ACCOMP are semantic relations

defined to illustrate logic connection in context patterns and
activities. The meaning and corresponding temporal relations
are listed in TABLE II.

TABLE II. SEMANTIC RELATION CONTEXT PATTERN AND ACTIVITY

Relation Meaning Corresponding temporal realtion

COND(p,a)
Context pattern p is a condition of conducting activity a. If
it is not satisfied as its corresponding temporal pattern, the

activity is abnormally conducted.

Before(p,a), During(a,p), Overlap(p,a)

PREM(p,a)
Context pattern p is a premise of conducting activity a. If
it is not satisfied as its corresponding temporal pattern, the

activity is not started or interrupted.

Overlap(p,a), During(a,p), Finish(a,p)

ACCOMP(p,a)
Context pattern p will occur as its corresponding temporal
pattern if the activity a is conducted normally

Start(p,a), Equal(p,a), During(p,a), Finish(p,a), Overlap(a,p)

CONSEQ(p,a) Context pattern p is a consequence of activity a. Overlap(a,p)

If COND(p,a), p is called a condition context pattern of a.

In same way, for PREM(p,a), ACCOMP(p,a), CONSEQ(p,a),

p are called premise context pattern, accompanying context
pattern and consequence context pattern respectively.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 8, 2012

25 | P a g e

www.ijarai.thesai.org

C. Modeling activity with semantic relation and temporal

relation

We can model the relation of activity and context pattern
with semantic relation and temporal relation. These relations
show the context changing rules when the activity is
performed normally without interruption.

For real world problem, some semantic relations are not
easily to be distinguished. For example, condition and premise
are very similar. Here the difference between condition
context pattern and premise context pattern is that the
condition context pattern can be controlled by human, while
the premise is objective. That is if a condition context pattern
does not hold in proper time as defined, the activity can be
performed but not normally. However, if a premise context
pattern does not hold, it can be deduced that the activity has
not been started.

 The difference between consequence and accompanying
context pattern is that the consequence is related with the goal
of the activity, and the pattern holding means the activity will
end or has ended, while the accompanying context pattern
holding may means the activity has been started and if it does
not occurred as defined, there may be interruption or abnormal
situation.

 TABLE II shows the possible temporal relation of every
type semantic relation. The temporal relation should be
determined when defining an activity. The different temporal
relation is used differently.

 When context interpretation is performed, the occurring
context is compared with the model, and current high level
context, i.e. the activity and its state is deduced.

III. RECOGNIZING ACTIVITY BY CONTEXT REASON

Generally in context-aware system, sensors (either virtual
sensors or environmental sensors) are used to acquire the raw
context. The acquired low-level context data are dealt with by
many context-aware middleware or infrastructure and higher
level context information are available and represented in
formal format. Our work is to derive context in much higher
level based on these context information, i.e. recognize the
activity and its current state.

The input of our work is sequence of context values in
different time, c(t1),c(t2),…c(tn). Assume that every
meaningful context change can be detected, and the values are
omitted if there is no change happening. So if we have c(ti)

and c(ti+1), for any t, tit< ti+1, c(t)=c(ti) . We need to identify
the activity and its state according to these context values and
activity model.

There are two opposite strategies of processing context
data. The first one analyzes previously received context,
matching them with related temporal pattern on the basis of
their semantic meanings and give the result. This strategy
requires less memory but may introduce a higher processing
delay. The second approach processes data incrementally,
recognizing and stores partial consequence in the form of
automata as soon as they are detected. This may need more
memory (memorizing different state) but speed up the
processing. We adopt the second strategy.

A. State and internal state

In activity models, temporal relations define the rules of
context pattern occurring. Combined with their semantic
meanings, these rules can be used to interpret “what is going
on”.

Definition 1 Let aA, s-pattern(a) is called start pattern
of activity a, if and only if:

 s-pattern(a)={pPREM(p,a)(ACCOMP(p,a)˄
(start(p,a) equal(p,a) start(a,p))} 

Starting pattern of an activity is a context pattern set, the
pattern in which should hold when the activity is started.
Therefore according to generally underlying assumption of
context reason, it can also be used to determine the start of the
activity.

When an activity a ends normally, its consequence context
pattern should hold. Otherwise, if there is an accompanying or
premise context pattern p, equal(p,a), or finish(p,a), p should

cease holding, i.e. p holds, when the activity ends.

Definition 2 Let aA, e-pattern(a) is called end pattern
of activity a, if and only if:

e-pattern(a)={pCONSEQ(p,a)(PREM(p,a) ˄ finish(a,
p))(ACCOMP(p,a)˄(finish(p,a) equal(p,a)))} 

Let e-pattern(a,t)={ppe-pattern(a)˄hold_at(p,t)},
apparently e-pattern(a,t) is a subset of e-pattern(a), which can
be used to measure how close to the end for the activity

process. If e-pattern(a,ti-1) e-pattern(a,ti), the state at time ti
is closer to activity end than last moment. This is useful when
the activity is judged to be ended, but meaningless when the
activity is still proceeding normally.

When an activity is being conducted without interruption,
its accompanying context pattern should always hold if its
temporal relations with the activity is equal, so should the
premise context pattern if the relation is during (i.e. activity
during context pattern). If for an accompanying context pattern
p, finish(p,a), or overlap(a,p), p should be hold once it occurs
until or after the activity end. Therefore, when the activity is
being conducted without interruption, the conditions that the
context should satisfy are changing.

Definition 3 Let aA, o-pattern(a) is called an on pattern
of a, if and only if :

 o-pattern(a) {p (PREM(p,a)˄During(a,p))
(ACCOMP(p,a)˄(Equal(p,a)Finish(p,a) Overlap(a,p)))}

and o-pattern(a){p(PREM(p,a)˄During(a,p))
(ACCOMP(p,a)˄Equal(p,a))} 

An activity may have more than one on patterns. Among
them, if:

 o-pattern(a)={p(PREM(p,a)˄During(a,p))
(ACCOMP(p,a)˄(Equal(p,a)Finish(p,a) Overlap(a,p)))} 

Any on pattern of a is the subset of o-pattern(a), denoted
as max-on-pattern(a).

Proposition 1 Let o-pattern(a,t) ={pp max-on-
pattern(a) ˄hold_at(p,t)}, if the activity a is performing at

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 8, 2012

26 | P a g e

www.ijarai.thesai.org

waiting

on abnormal

suspend

waiting

ending

Abnormal

process

suspend

starting end

Abnormal start

Abnormal

end

on

time t, and there is no context change until next moment t+1,
then the activity a is performing without interruption if and

only if: o-pattern(a,t+1)  o-pattern(a,t).

Since the above proposition is easy to be proved according
to the definitions, proof is omitted here.

However, context value at t satisfies the start pattern or end
pattern, i.e. all patterns in s-pattern or e-pattern hold, does not
mean the activity starts or ends normally. There are other
condition should be checked. Similarly, if the context values

over the interval satisfy the on patterns of an activity does not
mean the activity is performed normally, even if no
interruption happens. We will illustrate this afterwards.

There are 4 types of state to be recognized, called output
state. The states are: waiting (for activity beginning), on (one
activity is conducted), suspend (one activity is interrupted),
abnormal. The recognizing result is denoted as 2-
tuple:(activity name, state). The state transition is shown in
Figure 1.

Figure 1. Output state transition.

In addition to above states, we define other 9 states which
are used for system control, called internal states. The concept
of internal state is actually state of automate, which has
process memory itself when it is reached. The states are:
waiting, starting, on, suspend, ending, end, start abnormal,
process abnormal, end abnormal.

Among them, waiting, on, suspend have similar meanings
with output states of same name. State starting means stage
that all premise conditions are satisfied and part of
accompanying context patterns have occurred but the start
pattern is not satisfied. State ending means consequence
context has occurred, or for the activity without consequence

context pattern interruption lasts too long, hypothesis of
activity ending need to be proved. If end pattern is satisfied, or
time is longer enough, system converts to end state and check
the condition to determine if it is normal. Therefore state end
is actually a checking point without duration and there is no
corresponding output state. Three abnormal states corresponds
abnormal output state. Internal state starting is start when
output. Since mostly there is no a time point in which all the
start patterns are satisfied at same time, setting an internal state
starting can avoid taking this situation as abnormal. Internal
state transition is shown in Figure 2.

Figure 2. Output state transition.

Since internal state has more process information,
analyzing previous context is avoided by this mean. This can
be shown below. Internal state is related with the recognizing
process, so we focus on the internal state in this paper and
waiting (on, suspend) means internal state unless it is
specifically explained.

B. Memorizing occurred context

For some of temporal relation, such as Before and During,
determining whether they are satisfied depends on the
previous context information. For example, if During(p,a), and
p does not hold at time t, we can’t determine whether it is
normal.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 8, 2012

27 | P a g e

www.ijarai.thesai.org

Only when the activity ends and p has never occurred, it is
determined that activity is not performed normally. In order to
avoid checking previous context which may introduces high
processing delay, we use some flag to memorize some special
occurred context.

We use a set b-COND(a) to record the context patterns
which need to hold before activity a is started. The initial

value of b-COND(a) is b-COND(a) ={ppP, before(p,a) and
COND(p,a)}. From the very beginning, whenever a context
value input, the patterns in b-COND(a) are checked and
holding patterns are deleted from the set. Normally the set is
empty when the activity is stated. So the when activity a is
recognized to start, it is abnormal if b-COND(a) is not empty.

Similarly, we use a set d-ACCOMP(a) to record the
context patterns which need to hold during the time that

activity a is performed. Let d-ACCOMP(a)={ppP,
during(p,a) and ACCOMPA(p,a)}. This is the initial value of
d-ACCOMP(a). When a is recognized to be started, the
patterns in the set are checked and holding patterns are
deleted. When activity a is recognized to end, it is determined
to be an abnormal end if d-ACCOMP is not empty.

C. Recognizing activity and its state by state transition

The recognizing process depends on the state and state
transition. The basic idea is as following.

If all the premise conditions are satisfied and
accompanying context patterns start to hold, it is recognized
that the activity has started. Considering there may be more
than one accompanying context should hold at the beginning
(Equal or Start relation) and there is no real time point that
these context patterns change to hold, we use state starting to
solve the problem. When all the premise context patterns hold
and at least one accompanying pattern hold, the state is
converted to starting from waiting. When the start pattern is
satisfied, condition checking is performed and the state is
converted to on or abnormal start.

As the activity is conducted, condition is checked when
any context changes and the state is converted to abnormal
process when any of them are not satisfied. Moreover,
comparing current on pattern with last moment can determine
whether the activity is interrupted. If interruption occurred, the
state is converted to suspend.

Activity end can be judged by consequence context. If
consequence context patterns occurred, the state is converted
to ending and on pattern is no longer to be checked. If there is
no consequence context pattern for an activity, activity end
can be judged by premise and accompanying context pattern.
If some of premise and accompanying context pattern are not
satisfied, state will change to suspend and if the state lasts long
enough, it will be converted to ending for the activity with no
consequence context pattern, and to abnormal process for
others.

In ending state, if e-pattern is satisfied, the state is
converted to end, or else, e-pattern(a,t)is calculated according
to the current context c(t). e-pattern(a,t) is compared with e-
pattern(a,t-1) to determine whether the activity is close to end.
If more context patterns in end pattern occurred, i.e. e-

pattern(a,t-1)e-pattern(a,t), initialize time-elapse context
pattern to make the state lasting for longer time. If time-elapse
is true, it means that the state lasts too long and state is
converted to abnormal process.

In end state, d-ACCOMP(a) is checked and if the set is
empty, the state is converted to waiting(for next activity).
Otherwise there exists not happened context pattern that
should hold during the activity process, the state is converted
to abnormal end.

For three types of abnormal, the state transition rule is
waiting for a certain time and converted to waiting, on
respectively.

TABLE III shows the transition rules in every state.

IV. CASE STUDY

We use the approaches presented above in single-crystal
X-ray diffraction experiment support. We focus on the
context reason part, i.e. recognize the activity and its state.
This is important in support environment, because the reaction
of the support system, i.e. provide alerting and guiding
information depends on the correctly recognized the situation.

The single-crystal X-ray diffraction procedure consists of
three phases, in which activities are conducted in three places,
such as Room 101, Room 102 and Room 103 in our example.
The three phases are: selecting a crystal which is carried out in
Room 101, analyzing the crystal which are conducted in Room
103 and structural determination which is accomplished in
Room 103. There are eight activities in these phases and they
should be performed as a certain sequence.

To perform every activity, different tools are needed. The
location of user, location of tools as well as their states can be
sensed and detected, which are used to determine the activity.
There are 19 types of contexts related to the activities in
experiment. TABLE IV is the context model of every activity.

Huang et al has designed same kind of system and analyze
its effect in education [13]. However technology is not an
important issue in that paper and activity recognition is simply
realized by rule-based reason, only considering context at one
time point.

Our work focuses on the technical aspects. We have
developed an activity model taking the temporal logic into
account, as in [11]. However, in [11], there are only equal and
during relation, and some of abnormal situation cannot be
recognized. These problems are partly solved in this paper.

V. CONCLUSION

Context interpretation in most of research is based on the
assumption that high level context may result in different
sensor readings or low level context, where the relation and
knowledge is integrated into context model. Therefore the
context interpretation is actually the hypothesis of “cause”
from “consequence” which is regarded as true unless it is
denied. The condition of deducing high level context is
generally not sufficient. Our method is also based on this
assumption and more complex because of composition of
temporal relation with semantic relations. The underlying

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 8, 2012

28 | P a g e

www.ijarai.thesai.org

assumption of our approach is consistent with the research in the domain and consistent with intuition.

TABLE III. STATE TRANSITION RULES

State state transition rule

Waiting

(for activity a)

Input:C(t)

IF { (,)}, _ (,) { (,)}, _ (,)i i i ip p PREM p a hold at p t p p ACCOMP p a hold at p t   

 THEN current state is (a,starting)
ELSE current state is (a,waiting)

starting

Input:C(t)

IF (), _ (,)i ip s pattern a hold at p t  

 THEN IF (b-COND(a)=) ({ (,) (,)}, _ (,))i ip p COND p a Before p a hold at p t   

THEN current state is (a,on)

ELSE current state is (a, abnormal start)

ELSE current state is (a,waiting)

on

Input:C(t), on pattern o-pattern(a) in last “on” moment

 IF { (,)}, _ (,)j jp p CONSEQ p a hold at p t 

THEN current state is (a,ending)

ELSE IF { ((,) (,))}, _ (,)j jp p During a p COND p a hold at p t   

 THEN current state is (a, abnormal process)

ELSE BEGIN set o-pattern(a,t)

 IF o-pattern(a,t) o-pattern(a)
 THEN current state is (a,on) o-pattern(a)= o-pattern(a,t)

 ELSE current state is (a,suspend)

 END

suspend

Input:C(t), on pattern o-pattern(a) in last “on” moment

IF (), _ (,)i ip o pattern a hold at p t  

THEN current state is (a,on)

ELSE current state is (a,suspend)

Input: current time t
IF hold_at(time-elapse,t)

 THEN IF { (,)}p CONSEQ p a 

current state is (a,ending)

ELSE current state is (a, abnormal process)

ending

Input:C(t), e-pattern(a,ti-1)
 Set e-pattern(a,t)

IF e-pattern(a,t)= e-pattern(a)
THEN current state is (a,end)

ELSE IF e-pattern(a,t) e-pattern(a,ti-1)

 Initialize time-elapse

Input: current time t

IF hold_at(time-elapse,t)
 THEN current state is (a, abnormal process)

end

Input:C(t)

THEN IF (d-ACCOMP(a)=)

THEN current state is ((next(a),waiting) // next(a) is next possible activity of a

ELSE current state is (a, abnormal end)

abnormal start
Input: current time t
IF hold_at(time-elapse,t)

 THEN current state is (a,waiting)

abnormal process

Input: current time t

IF hold_at(time-elapse,t)
 THEN current state is (a,on)

abnormal end

Input: current time t

IF hold_at(time-elapse,t)
 THEN current state is (a,on)

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 8, 2012

29 | P a g e

www.ijarai.thesai.org

TABLE IV. CONTEXT MODEL OF ACTIVITY IN SINGLE-CRYSTAL X-RAY DIFFRACTION EXPERIMENT

symbol Activity Temporal relation Semantic relation

a1
Prepare Fiber

 during(a1, (User_Loc,Room 101))

start((Copperbar_Loc,Cuttingmat),a1)

during((Slicer,On),a1)

overlap(a1, (Copperbar_Loc,Styrofoam))

PREM((User_Loc,Room 101),a1)

ACCOMP ((Copperbar_Loc,Cuttingmat),a1)

ACCOMP ((Slicer,On),a1)

CONSEQ(a1, (Copperbar_Loc,Styrofoam))

a2

Check Crystal

Transparency

during(a2, (User_Loc,Room 101))

during(a2, (Microscope,On))

during(a2,(OcularlensI_Loc,Microscope),)

during((Adjustmentscrew,On), a2)

overlap((OcularlensI_Loc,Ocularlensbox), a2)

PREM((User_Loc,Room 101),a2)

PREM((Microscope,On),a2)

PREM((OcularlensI_Loc,Microscope), a2)

ACCOMP((Adjustmentscrew,On), a2)

CONSEQ((OcularlensI_Loc,Ocularlensbox) a2)

a3

Check

Crystal Size

during(a3, (User_Loc,Room 101))

during(a3, (Microscope,On))

during(a3 , (OcularlensII_Loc,Microscope))

during((Adjustmentscrew,On), a3)

overlap((OcularlensI_Loc,Ocularlensbox) a3)

PREM((User_Loc,Room101),a3)

PREM((OcularlensII_Loc,Microscope) ,a3)

PREM((Microscope,On),a2)

ACCOMP((Adjustmentscrew,On), a3)

CONSEQ((OcularlensII_Loc, Ocularlensbox), a3)

a4

Place Crystal in

Diffractometer

during(a4,(User_Loc,Room 102))

equal((PCI,On), a4)

during(a4 , (Temperature,[10,25))

during(a4,(Voltage,50KV))

equal((Copperbar_Loc,Diffractometer),a4)

during((Controller,On), a4)

overlap((Crystalcenter,Screencenter),a4)

PREM((User_Loc,Room 102),a4)

ACCOMP((PCI,On), a4)

COND((Temperature,[10,25) , a4)

COND((Voltage,50KV) , a4)

ACCOMP ((Copperbar_Loc,Diffractometer),a4)

ACCOMP((Controller,On), a4)

CONSEQ((Crystalcenter,Screencenter),a4)

a5

Diffractometer

Spot Check

during(a5,(Diffractometer,On))

during(a5,(User_Loc,Room102))

during(a5,(Voltage,50KV))

equal((Copperbar_Loc,Diffractometer),a5)

overlap(a5,SpotResult_Bool,True))

PREM((Diffractometer,On),a5)

PREM((User_Loc,Room102),a5)

COND((Voltage,50KV) , a5)

ACCOMP ((Copperbar_Loc,Diffractometer),a5)

CONSEQ(SpotResult_Bool,True),a5)

a6

Lattice

Constant

Collection

during(a6,(Matrix,On))

during(a6,(User_Loc,Room102))

during(a6,(Voltage,20KV))

overlap (a6,(ConstantResult_Bool,True))

PREM((Matrix,On),a6)

PREM((User_Loc,Room102),a6)

COND((Voltage,20KV),a6)

CONSEQ((ConstantResult_Bool,True),a6)

a7

Crystal Lattice

Regeneration

and Revise

during(a7,(User_Loc,Room102))

equal((Saint,On), a7)

overlap(a7,(RevisedResult_Bool,True),)

PREM(User_Loc,Room 102),a7)

ACCOMP((Saint,On),a7)

CONSEQ((RevisedResult_Bool,True),a7)

a8

Crystal

Structure

Analyze

during(a8,(User_Loc,Room 103))
equal((Shelxt,On),a8)

overlap((AnalyzeResult_Bool,True),a8)

PREM((User_Loc,Room 103),a8)

ACCOMP((Shelxt,On),a8)

CONSEQ((AnalyzeResult_Bool,True),a8)

The approach proposed in this paper is interval-based,
considering the context change over a time period. This can
recognized more situation than the method based on the
context data in time point, but introduce high complexity in
process. We define 6 temporal relations and 4 semantic
relations; these are not enough to represent the relation in real
world. The approach need to be further studied in future
research work.

ACKNOWLEDGMENT

This research work was supported by the National Natural
Science Foundation of China (Grant No. 70771017).

REFERENCES

[1] K. Dey Anind, D. Abowd Gregory and S. Daniel, “A conceptual
framework and a toolkit for supporting the rapid prototyping of context-
aware applications”, Human-Computer Interaction, vol.16, no.2, pp.97-
166, 2001.

[2] W.Loke Seng, “Representing and reasoning with situations for context-
aware pervasive computing: a logic programming perspective”, The
Knowledge Engineering Review vol.19, no.3, pp.213–233, 2005.

[3] D. Riboni, and C. Bettini, “OWL 2 modeling and reasoning with
complex human activities,” Pervasive and Mobile Computing, vol.7,
no.3, pp.379-395, 2011.

[4] J. Lester, T. Choudhury, and N. Kern, “A hybrid discriminative
/generative approach for modeling human activities,” In Proceedings of
the 19th International Joint Conference on Artificial Intelligence,
Professional Book Center, Acapulco,Mexico, pp. 766-772, 2005.

[5] L. Liao, D. Fox, and H. Kautz, “Location-based activity recognition
using relational Markov networks,” In Proceedings of the 19th
International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, pp.773-778, 2005.

[6] D.W Albrecht, and I. Zukerman, “Bayesian Models for Keyhole Plan
Recognition in an Adventure Game,” User Modeling and User-Adapted
Interaction, vol.8, pp.5–47,1998.

[7] E.M Tapia, and S. Instille, “Real-time recognition of physical activities
and their intensities using wireless accelerometers and a heart rate

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 8, 2012

30 | P a g e

www.ijarai.thesai.org

monitor,” the 11th IEEE International Symposium on Wearable
Computers, Boston,USA, pp. 37-40, October 2007.

[8] M.S. Ryoo, and J.K. Aggarwal, “Recognition of composite human
activities through context-free grammar based representation,” IEEE
Conference on Computer Vision and Pattern Recognition, New York,
USA, pp.1709-1718, June 2006.

[9] L. Chen, and C.D. Nugent, “Ontology-based activity recognition in
intelligent pervasive environments,” International Journal of Web
Information Systems, vol.5, no.4, pp.410-430, 2009.

[10] L. Chen, C. Nugent, M. Mulvenna, D. Finaly, X. Hong, and M. Poland,
“Using event calculus for behaviour reasoning and assistance in a smart
home,” in Proceedings of the 6th International Conference on Smart
Homes and Health Telematics, IA, USA, vol. 5120, pp. 81–89, June
2008.

[11] T. Lu, S.K. Zhang and Q. Hao, “Activity Recognition in Ubiquitous
Learning Environment,” Journal of Advances in Information
Technology, vol. 3,no.1, pp29-35, 2012.

[12] J.F. Allen, “Towards a general theory of action and time”, Artificial
Intelligence, vol.23, pp123-154,1984.

[13] G.J. Hwang, T.C. Yang, and C.C. Tsa, “A context-aware ubiquitous
learning environment for conducting complex science experiments,”
Computers and Education, vol.53, no.2 , pp.402-413, 2009.

[14] M. Weiser, “The computer for 21st century,” Scientific American,
vol.261, no.30, pp.94-104, 1991.

[15] H.C. Chu, G.J. Hwang, S.X. Huang, and T.T. Wu, “A knowledge
engineering approach to developing e-libraries for mobile learning,”
Electronic Library, vol.26, no.3,pp.303-317, 2008.

[16] C. Zhu, and W.H. Sheng, “Motion- and location-based online human
daily activity recognition,” Pervasive and Mobile Computing, vol.7,
no.2, pp.256-269, 2011.

[17] H. Kautz, “A Formal Theory of Plan Recognition and its
Implementation,” Reasoning About Plans, San Francisco: Morgan
Kaufmann, 1991, pp.69-125.

[18] R. Kowalski, and M. Sergot, “A logic-based calculus of events,” New
Generation Computing, vol.4, no.1, pp.67-95, 1986.

[19] O. Brdiczka, J.L. Crowley, and P. Reignier, “Learning situation models
for providing context-aware services,” Ambient Interaction 4th
International Conference on Universal Access in Human-Computer
Interaction, Beijing,China, pp.23-32, July 2007.

[20] T. Springer and A.Y. Turhan, “Employing Description Logics in
Ambient Intelligence for Modeling and Reasoning about Complex
Situations,” Journal of Ambient Intelligence and Smart Environments,
vol.1, no.3, pp.235-259, 2009.

[21] D.Q. Zhang, M.Y. Guo and J.Y. Zhou, “Context Reasoning Using
Extended Evidence Theory in Pervasive Computing Environments,”
Future Generation Computer Systems, vol.26, no.2, pp.207-216,2010.

[22] A. Mannini and A.M. Sabatini, “Machine Learning Methods for
Classifying Human Physical Activity from On-Body Accelerometers,”
Sensors, vol.10, no.2, pp.1154-1175, 2010.

[23] T. Gu, Z. Wu, X.P. Tao and H.K Pung, “An Emerging Patterns based
Approach to Sequential, Interleaved and Concurrent Activity
Recognition,” In Proceeding of the 7th Annual IEEE International
Conference on Pervasive Computing and Communications, Galveston,
TX, pp.1-9, March 2009.

AUTHORS PROFILE

Tao Lu

She is currently an associate professor in School of Management Science
and Engineering, Dalian University of Technology, China. Her main research
interest is information system, knowledge-based system and pervasive
computing. Email: lutao@dlut.edu.cn

Xiaoling Liu

She is currently a graduate in School of Management Science and
Engineering, Dalian University of Technology, China. Her main research
interest is pervasive computing. Email: liuxiaoling@mail.dlut.edu.cn

