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Abstract— Context-aware computing is an emerging computing 

paradigm that provides intelligent context-aware application. 

Context reasoning is an important aspect in context awareness, 

by which high level context can be derived from low-level context 

data. In this paper, we focus on the situation in mobile 

workspace, where a worker performs a set of activities to archive 

defined goals. The main part of being aware is to be able to 

answer the question of “what is going on”. Therefore high level 

context we need to derive is current activity and its state. The 

approach we propose is knowledge-driven technique. Temporal 

relations as well as semantic relations are integrated into the 

context model of activity, and the recognition is performed based 

on the model. We first define the context model of activity, and 

then we analyze the characteristics of context change and propose 

a method of context reasoning. 
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I.  INTRODUCTION  

Context-aware computing is an emerging computing 
paradigm that provides intelligent context-aware application. 
According to well-known definition proposed by Dey, context 
is any information that can be used to characterize the 
situation of an entity. An entity is a person, place or object that 
is considered relevant to the interaction between a user and an 
application, including the user and application themselves [1]. 
Context-awareness means exploiting context information to 
provide adaptive information or service, or reducing the 
interaction between user and application. 

Context-awareness is related to the manipulation of context 
information pertaining to certain entities. Information from 
physical sensors are called low-level context. High level 
context, also called situation sometimes, can be derived from 
low-level context by proper interpreting. This process is 
context reasoning, or context interpretation. Situations are 
semantic abstractions from low-level contexts cues. So the 
relationship between low level context and situation must be 
integrated into a context model, which represents human 
knowledge about the world [2]. 

This can either be done by specification, i.e. human defines 
situations and their relationship based on his /her knowledge, 
or the model are learned automatically using machine learning 
techniques [2]. The two approaches are also called knowledge-
driven approach and data-driven approach [3].  

Data-driven techniques are based on the machine learning 
methods and are well suited for recognizing simple activities 
and gestures from raw sensor data or video data [4]. A wide 
range of algorithms and models include Hidden Markov 

Models [5], dynamic and naïve Bayes networks [6], and 
decision trees [7] and so on. Knowledge-driven techniques, 
concerning knowledge representation as well as reasoning 
with them, is closely related with classical topics in artificial 
intelligence [8]. Ontology-based method is one of frequently 
used technique. For example, Chen has proposed a technique 
to recognize activities through ontological reasoning [9]. 
Knowledge-driven techniques can also be used to recognizing 
complex situations based on the recognized simple context 
[10].    

In this paper, we focus on the situation in mobile 
workspace, where a worker performs a set of activities to 
archive defined goals. The main part of being aware is to be 
able to answer the question of “what is going on”. Therefore 
the situation, or high level context, we need to derive is 
activity and its state.  

Determining the activity and its state cannot only be 
completed by observing the context but also need to draw 
conclusion from the observations. Knowledge about the 
relation of context and activity should be integrated into the 
model. Compared with most of knowledge-driven techniques, 
the approach we propose considers the temporal relation 
between activities and contexts. 

Activity is seemed as process with duration, and context 
may change in the process. Each activity context model is a set 
of semantic relations and temporal constraints with respect to 
the activity and the context. If some observed contexts match 
the defined patterns, or if their times of occurrence meet the 
specified constraints, then an instance of this situation occurs.  

We have developed an activity recognition approach taking 
the temporal relation into account in previous work [11]. This 
paper considers more temporal relations. Moreover semantic 
relations are also integrated into the model. By this means, 
more types of situation can be recognized. 

The rest of the paper is organized as follows. Section 2 
provides the context model of activity. Section 3 proposes the 
activity recognition approach. Case study is described in 
section 4 and section 5 concludes the paper.  

II. CONTEXT MODEL OF ACTIVITY 

Suppose the application is related to a set of contexts 
which are denoted as c1,c2,...cn, and the domain of ci is Di. At 

given time t, the value of context ci is denoted as ci(t)(ci(t)Di), 
i=1,2,…n. The values of context c1,c2,...cn at time t is denoted 
as C(t), C(t)=(c1(t),c2(t),…cn(t)). 
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Suppose dj
(i)
Di, (ci,dj

(i)
) is called a context pattern. The 

context pattern(ci, dj
(i)

) holds at time t, if and only if ci(t) dj
(i)

, 

denoted as hold_at((ci,dj
(i)

),t), i.e. hold_at((ci,dj
(i)

),t)ci(t) 
dj

(i)
. 

Apparently hold_at((ci,dj
(i)

),t)hold_at((ci,Di-dj
(i)

),t), 
(ci,Di-dj

(i)
) is called the negative pattern of (ci,dj

(i)
), denoted as 

(ci,dj
(i)

). 

We define a special context pattern time-elapse(ts,T),  

TtttTtelapsetimeathold ss  )),,((_
. ts is the time to 

start timing. The context pattern holds after T. For simplicity, 
we use time-elapse instead of time-elapse(ts,T) .  Initializing 
time-elapse in this paper means setting the time length and 
start timing. 

A. Temporal relations of context pattern and activity 

Context pattern may hold over time interval. We consider 
time as a linearly ordered discrete set of instants, a time 
interval is represented as an ordered pair of time points 
representing starting and ending time. Context pattern may 
hold in one or more time intervals.  

We use I(p) to denote the interval set in which the context 
pattern p holds, i.e. 

I(p)={[ts,te]t[ts,te], hold_at(p,t) and  [tm,tn], 

],,[],[,, esnmensm tttttttt   t[tm,tn], hold_at(p,t) }       

In same way, we can use an ordered pair to represent the 
time interval in which an activity is conducted. The starting 
time and ending time of activity a are denoted as a.start and 
a.end. 

Allen has suggested a well-known temporal model based 
on relationships among intervals [12]. Here we use these 
predicates to model the temporal relations between context 
patterns and activities.  

Let P be a context pattern set and A an activity set. Equal, 
During, Start, Finish, Before, Overlap are predicates 
representing relations between context patterns and activities.  
The meaning of the predicate is defined in TABLE I. 

In TABLE I, we only list the relations usually used in our 
model. Other relations are not difficult to deduce from the 
meaning. 

TABLE I.  TEMPORAL RELATION OF CONTEXT PATTERN AND ACTIVITY 

Relation Definition 

Equal(p,a)  [tps,tpe] I(p), tps= a.start, tpe= a.end 

During(p,a)  [tps,tpe]  I(p), tps≥a.start, tpe≤ a.end 

During(a,p)  [tps,tpe]  I(p), tps ≤a.start, tpe≥a.end 

Start(p,a)  [tps,tpe]  I(p), tps= a.start, tpe< a.end 

Start(a,p)  [tps,tpe]  I(p), tps= a.start, tpe> a.end 

Finish(p,a)  [tps,tpe]  I(p), tps> a.start, tpe=a.end 

Finish(a,p)  [tps,tpe]  I(p), tps< a.start, tpe=a.end 

Overlap(p,a)  [tps,tpe]  I(p), tps< a.start, tpe< a.end 

Overlap(a,p)  [tps,tpe]  I(p), tps> a.start, tpe>a.end 

Before (p,a)  [tps,tpe]  I(p), tps< a.start 

B. Semantic relations of context pattern and activity 

Besides temporal relations, there are also semantic 
relations existing between context patterns and activities. 
COND, CONSEQ, PREM, ACCOMP are semantic relations  

 

defined to illustrate logic connection in context patterns and 
activities.  The meaning and corresponding temporal relations 
are listed in TABLE II. 

TABLE II.  SEMANTIC RELATION CONTEXT PATTERN AND ACTIVITY 

Relation Meaning Corresponding temporal realtion 

COND(p,a) 
Context pattern p is a condition of conducting activity a. If 
it is not satisfied as its corresponding temporal pattern, the 

activity is abnormally conducted. 

Before(p,a), During(a,p), Overlap(p,a) 

PREM(p,a) 
Context pattern p is a premise of conducting activity a. If 
it is not satisfied as its corresponding temporal pattern, the 

activity is not started or interrupted. 

Overlap(p,a), During(a,p), Finish(a,p) 

ACCOMP(p,a) 
Context pattern p will occur as its corresponding temporal 
pattern if the activity a is conducted normally 

Start(p,a), Equal(p,a), During(p,a), Finish(p,a), Overlap(a,p)  

CONSEQ(p,a) Context pattern p is a consequence of activity a.  Overlap(a,p) 

 
If COND(p,a), p is called a condition context pattern of a. 

In same way, for PREM(p,a), ACCOMP(p,a), CONSEQ(p,a),  

 
p are called premise context pattern, accompanying context 
pattern and consequence context pattern respectively. 
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C. Modeling activity with semantic relation and temporal 

relation 

We can model the relation of activity and context pattern 
with semantic relation and temporal relation. These relations 
show the context changing rules when the activity is 
performed normally without interruption.  

For real world problem, some semantic relations are not 
easily to be distinguished. For example, condition and premise 
are very similar. Here the difference between condition 
context pattern and premise context pattern is that the 
condition context pattern can be controlled by human, while 
the premise is objective. That is if a condition context pattern 
does not hold in proper time as defined, the activity can be 
performed but not normally.  However, if a premise context 
pattern does not hold, it can be deduced that the activity has 
not been started.  

  The difference between consequence and accompanying 
context pattern is that the consequence is related with the goal 
of the activity, and the pattern holding means the activity will 
end or has ended, while the accompanying context pattern 
holding may means the activity has been started and if it does 
not occurred as defined, there may be interruption or abnormal 
situation.  

   TABLE II shows the possible temporal relation of every 
type semantic relation. The temporal relation should be 
determined when defining an activity. The different temporal 
relation is used differently.  

    When context interpretation is performed, the occurring 
context is compared with the model, and current high level 
context, i.e. the activity and its state is deduced. 

III. RECOGNIZING ACTIVITY BY CONTEXT REASON 

Generally in context-aware system, sensors (either virtual 
sensors or environmental sensors) are used to acquire the raw 
context. The acquired low-level context data are dealt with by 
many context-aware middleware or infrastructure and higher 
level context information are available and represented in 
formal format. Our work is to derive context in much higher 
level based on these context information, i.e. recognize the 
activity and its current state.  

The input of our work is sequence of context values in 
different time, c(t1),c(t2),…c(tn). Assume that every 
meaningful context change can be detected, and the values are 
omitted if there is no change happening.  So if we have c(ti) 

and c(ti+1), for any t, tit< ti+1, c(t)=c(ti) . We need to identify 
the activity and its state according to these context values and 
activity model. 

There are two opposite strategies of processing context 
data. The first one analyzes previously received context, 
matching them with related temporal pattern on the basis of 
their semantic meanings and give the result. This strategy 
requires less memory but may introduce a higher processing 
delay. The second approach processes data incrementally, 
recognizing and stores partial consequence in the form of 
automata as soon as they are detected. This may need more 
memory (memorizing different state) but speed up the 
processing. We adopt the second strategy. 

A. State and internal state 

In activity models, temporal relations define the rules of 
context pattern occurring. Combined with their semantic 
meanings, these rules can be used to interpret “what is going 
on”.   

Definition 1  Let aA, s-pattern(a) is called start pattern 
of activity a, if and only if: 

  s-pattern(a)={pPREM(p,a)(ACCOMP(p,a)˄ 
(start(p,a) equal(p,a) start(a,p))}                                        

Starting pattern of an activity is a context pattern set, the 
pattern in which should hold when the activity is started. 
Therefore according to generally underlying assumption of 
context reason, it can also be used to determine the start of the 
activity. 

When an activity a ends normally, its consequence context 
pattern should hold. Otherwise, if there is an accompanying or 
premise context pattern p, equal(p,a), or finish(p,a), p should 

cease holding, i.e. p holds, when the activity ends. 

Definition 2  Let aA,  e-pattern(a) is called end pattern 
of activity a, if and only if: 

e-pattern(a)={pCONSEQ(p,a)(PREM(p,a) ˄ finish(a, 
p))(ACCOMP(p,a)˄(finish(p,a) equal(p,a)))}                                                      

Let e-pattern(a,t)={ppe-pattern(a)˄hold_at(p,t)}, 
apparently e-pattern(a,t) is a subset of e-pattern(a), which can 
be used to measure how close to the end for the activity 

process. If e-pattern(a,ti-1) e-pattern(a,ti), the state at time ti 
is closer to activity end than last moment. This is useful when 
the activity is judged to be ended, but meaningless when the 
activity is still proceeding normally. 

When an activity is being conducted without interruption, 
its accompanying context pattern should always hold if its 
temporal relations with the activity is equal, so should the 
premise context pattern if the relation is during (i.e. activity 
during context pattern). If for an accompanying context pattern 
p, finish(p,a), or overlap(a,p), p should be hold once it occurs 
until or after the activity end. Therefore, when the activity is 
being conducted without interruption, the conditions that the 
context should satisfy are changing.  

Definition 3  Let aA, o-pattern(a) is called an on pattern 
of a, if and only if : 

 o-pattern(a) {p (PREM(p,a)˄During(a,p)) 
(ACCOMP(p,a)˄(Equal(p,a)Finish(p,a) Overlap(a,p)))} 

and o-pattern(a){p(PREM(p,a)˄During(a,p)) 
(ACCOMP(p,a)˄Equal(p,a))}                                                  

An activity may have more than one on patterns. Among 
them, if:   

             o-pattern(a)={p(PREM(p,a)˄During(a,p)) 
(ACCOMP(p,a)˄(Equal(p,a)Finish(p,a) Overlap(a,p)))}  

Any on pattern of a is the subset of o-pattern(a), denoted 
as max-on-pattern(a). 

Proposition 1  Let o-pattern(a,t) ={pp max-on-
pattern(a) ˄hold_at(p,t)}, if the activity a is performing at 
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time t, and there is no context change until next moment t+1, 
then the activity a is performing without interruption if and 

only if: o-pattern(a,t+1)  o-pattern(a,t). 

Since the above proposition is easy to be proved according 
to the definitions, proof is omitted here.  

However, context value at t satisfies the start pattern or end 
pattern, i.e. all patterns in s-pattern or e-pattern hold, does not 
mean the activity starts or ends normally. There are other 
condition should be checked. Similarly, if the context values 

over the interval satisfy the on patterns of an activity does not 
mean the activity is performed normally, even if no 
interruption happens. We will illustrate this afterwards. 

There are 4 types of state to be recognized, called output 
state. The states are: waiting (for activity beginning), on (one 
activity is conducted), suspend (one activity is interrupted), 
abnormal. The recognizing result is denoted as 2-
tuple:(activity name, state). The state transition is shown in 
Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1.  Output state transition. 

In addition to above states, we define other 9 states which 
are used for system control, called internal states. The concept 
of internal state is actually state of automate, which has 
process memory itself when it is reached. The states are: 
waiting, starting, on, suspend, ending, end, start abnormal, 
process abnormal, end abnormal.   

Among them, waiting, on, suspend have similar meanings 
with output states of same name. State starting means stage 
that all premise conditions are satisfied and part of 
accompanying context patterns have occurred but the start 
pattern is not satisfied. State ending means consequence 
context has occurred, or for the activity without consequence 

context pattern interruption lasts too long, hypothesis of 
activity ending need to be proved. If end pattern is satisfied, or 
time is longer enough, system converts to end state and check 
the condition to determine if it is normal. Therefore state end 
is actually a checking point without duration and there is no 
corresponding output state. Three abnormal states corresponds 
abnormal output state. Internal state starting is start when 
output. Since mostly there is no a time point in which all the 
start patterns are satisfied at same time, setting an internal state 
starting can avoid taking this situation as abnormal.  Internal 
state transition is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Output state transition. 

Since internal state has more process information, 
analyzing previous context is avoided by this mean. This can 
be shown below. Internal state is related with the recognizing 
process, so we focus on the internal state in this paper and 
waiting (on, suspend) means internal state unless it is 
specifically explained. 

B. Memorizing occurred context 

For some of temporal relation, such as Before and During, 
determining whether they are satisfied depends on the 
previous context information. For example, if During(p,a), and 
p does not hold at time t, we can’t determine whether it is 
normal.  



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  

Vol. 1, No. 8, 2012 

27 | P a g e  

www.ijarai.thesai.org 

Only when the activity ends and p has never occurred, it is 
determined that activity is not performed normally. In order to 
avoid checking previous context which may introduces high 
processing delay, we use some flag to memorize some special 
occurred context.   

We use a set b-COND(a) to record the context patterns 
which need to hold before activity a is started. The initial 

value of b-COND(a) is b-COND(a) ={ppP, before(p,a) and 
COND(p,a)}. From the very beginning, whenever a context 
value input, the patterns in b-COND(a) are checked and 
holding patterns are deleted from the set. Normally the set is 
empty when the activity is stated. So the when activity a is 
recognized to start, it is abnormal if b-COND(a) is not empty. 

Similarly, we use a set d-ACCOMP(a) to record the 
context patterns which need to hold during the time that 

activity a is performed. Let d-ACCOMP(a)={ppP, 
during(p,a) and ACCOMPA(p,a)}. This is the initial value of 
d-ACCOMP(a). When a is recognized to be started, the 
patterns in the set are checked and holding patterns are 
deleted. When activity a is recognized to end, it is determined 
to be an abnormal end if    d-ACCOMP is not empty. 

C. Recognizing activity and its state by state transition 

The recognizing process depends on the state and state 
transition. The basic idea is as following. 

If all the premise conditions are satisfied and 
accompanying context patterns start to hold, it is recognized 
that the activity has started. Considering there may be more 
than one accompanying context should hold at the beginning 
(Equal or Start relation) and there is no real time point that 
these context patterns change to hold, we use state starting to 
solve the problem. When all the premise context patterns hold 
and at least one accompanying pattern hold, the state is 
converted to starting from waiting. When the start pattern is 
satisfied, condition checking is performed and the state is 
converted to on or abnormal start. 

As the activity is conducted, condition is checked when 
any context changes and the state is converted to abnormal 
process when any of them are not satisfied. Moreover, 
comparing current on pattern with last moment can determine 
whether the activity is interrupted. If interruption occurred, the 
state is converted to suspend.  

Activity end can be judged by consequence context. If 
consequence context patterns occurred, the state is converted 
to ending and on pattern is no longer to be checked. If there is 
no consequence context pattern for an activity, activity end 
can be judged by premise and accompanying context pattern. 
If some of premise and accompanying context pattern are not 
satisfied, state will change to suspend and if the state lasts long 
enough, it will be converted to ending for the activity with no 
consequence context pattern, and to abnormal process for 
others. 

In ending state, if e-pattern is satisfied, the state is 
converted to end, or else, e-pattern(a,t)is calculated according 
to the current context c(t). e-pattern(a,t) is compared with e-
pattern(a,t-1) to determine whether the activity is close to end. 
If more context patterns in end pattern occurred, i.e. e-

pattern(a,t-1)e-pattern(a,t), initialize time-elapse context 
pattern to make the state lasting for longer time. If time-elapse 
is true, it means that the state lasts too long and state is 
converted to abnormal process.  

In end state, d-ACCOMP(a) is checked and if the set is 
empty, the state is converted to waiting(for next activity). 
Otherwise there exists not happened context pattern that 
should hold during the activity process, the state is converted 
to abnormal end. 

For three types of abnormal, the state transition rule is 
waiting for a certain time and converted to waiting, on 
respectively.  

TABLE III shows the transition rules in every state. 

IV. CASE STUDY 

We use the approaches presented above in single-crystal 
X-ray diffraction experiment support.  We focus on the 
context reason part, i.e. recognize the activity and its state. 
This is important in support environment, because the reaction 
of the support system, i.e. provide alerting and guiding 
information depends on the correctly recognized the situation. 

The single-crystal X-ray diffraction procedure consists of 
three phases, in which activities are conducted in three places, 
such as Room 101, Room 102 and Room 103 in our example. 
The three phases are: selecting a crystal which is carried out in 
Room 101, analyzing the crystal which are conducted in Room 
103 and structural determination which is accomplished in 
Room 103. There are eight activities in these phases and they 
should be performed as a certain sequence.  

To perform every activity, different tools are needed. The 
location of user, location of tools as well as their states can be 
sensed and detected, which are used to determine the activity. 
There are 19 types of contexts related to the activities in 
experiment. TABLE IV is the context model of every activity. 

Huang et al has designed same kind of system and analyze 
its effect in education [13]. However technology is not an 
important issue in that paper and activity recognition is simply 
realized by rule-based reason, only considering context at one 
time point. 

Our work focuses on the technical aspects. We have 
developed an activity model taking the temporal logic into 
account, as in [11]. However, in [11], there are only equal and 
during relation, and some of abnormal situation cannot be 
recognized. These problems are partly solved in this paper. 

V. CONCLUSION 

Context interpretation in most of research is based on the 
assumption that high level context may result in different 
sensor readings or low level context, where the relation and 
knowledge is integrated into context model. Therefore the 
context interpretation is actually the hypothesis of “cause” 
from “consequence” which is regarded as true unless it is 
denied. The condition of deducing high level context is 
generally not sufficient. Our method is also based on this 
assumption and more complex because of composition of 
temporal relation with semantic relations. The underlying 
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assumption of our approach is consistent with the research in the domain and consistent with intuition. 

TABLE III.  STATE TRANSITION RULES 

State state transition rule 

Waiting 

(for activity a) 

Input:C(t) 

IF { ( , )}, _ ( , ) { ( , )}, _ ( , )i i i ip p PREM p a hold at p t p p ACCOMP p a hold at p t     

 THEN current state is (a,starting) 
ELSE current state is (a,waiting) 

starting 

Input:C(t)  

IF ( ), _ ( , )i ip s pattern a hold at p t    

 THEN IF (b-COND(a)= ) ( { ( , ) ( , )}, _ ( , ))i ip p COND p a Before p a hold at p t     

THEN current state is (a,on) 

ELSE current state is (a, abnormal start ) 

ELSE current state is (a,waiting) 

on 

Input:C(t), on pattern o-pattern(a) in last “on” moment     

 IF { ( , )}, _ ( , )j jp p CONSEQ p a hold at p t   

THEN current state is (a,ending) 

ELSE IF { ( ( , ) ( , ))}, _ ( , )j jp p During a p COND p a hold at p t     

          THEN current state is (a, abnormal process ) 

ELSE  BEGIN set o-pattern(a,t) 

                     IF o-pattern(a,t) o-pattern(a) 
             THEN current state is (a,on) o-pattern(a)= o-pattern(a,t) 

                     ELSE current state is (a,suspend)  

                     END 

suspend 

Input:C(t), on pattern o-pattern(a) in last “on” moment 

IF ( ), _ ( , )i ip o pattern a hold at p t    

THEN current state is (a,on) 

ELSE current state is (a,suspend) 
 

Input: current time t 
IF hold_at(time-elapse,t)

 THEN IF { ( , )}p CONSEQ p a   

current state is (a,ending) 

ELSE current state is (a, abnormal process) 

ending 

Input:C(t), e-pattern(a,ti-1) 
 Set e-pattern(a,t) 

IF e-pattern(a,t)= e-pattern(a) 
THEN current state is (a,end) 

ELSE IF e-pattern(a,t) e-pattern(a,ti-1) 

            Initialize time-elapse  
 

Input: current time t 

IF hold_at(time-elapse,t)
 THEN current state is (a, abnormal process) 

end 

Input:C(t) 

THEN IF (d-ACCOMP(a)= )  

THEN current state is ((next(a),waiting)  // next(a) is next possible activity of a 

ELSE current state is (a, abnormal end ) 

abnormal start 
Input: current time t 
IF hold_at(time-elapse,t)

 THEN current state is (a,waiting) 

abnormal process 

Input: current time t 

IF hold_at(time-elapse,t)
 THEN current state is (a,on) 

abnormal end 

Input: current time t 

IF hold_at(time-elapse,t)
 THEN current state is (a,on) 
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TABLE IV.  CONTEXT MODEL OF ACTIVITY IN SINGLE-CRYSTAL X-RAY DIFFRACTION EXPERIMENT 

symbol Activity Temporal relation Semantic relation 

a1 
Prepare Fiber 

 

 during(a1, (User_Loc,Room 101))
 

start( (Copperbar_Loc,Cuttingmat),a1) 

during((Slicer,On),a1) 

overlap(a1, (Copperbar_Loc,Styrofoam)) 
 
 

PREM((User_Loc,Room 101),a1)
 

ACCOMP ( (Copperbar_Loc,Cuttingmat),a1) 

ACCOMP ((Slicer,On),a1) 

CONSEQ(a1, (Copperbar_Loc,Styrofoam)) 

a2 

Check Crystal 

Transparency 

 

during(a2, (User_Loc,Room 101))
 

during(a2, (Microscope,On)) 

during(a2,(OcularlensI_Loc,Microscope),) 

during( (Adjustmentscrew,On), a2) 

overlap((OcularlensI_Loc,Ocularlensbox), a2) 

PREM((User_Loc,Room 101),a2)
 

PREM((Microscope,On),a2) 

PREM((OcularlensI_Loc,Microscope), a2) 

ACCOMP( (Adjustmentscrew,On), a2) 

CONSEQ((OcularlensI_Loc,Ocularlensbox) a2) 

a3 

Check 

Crystal Size 

 

during(a3, (User_Loc,Room 101))
 

during(a3, (Microscope,On)) 

during(a3 , (OcularlensII_Loc,Microscope)) 

during( (Adjustmentscrew,On), a3) 

overlap((OcularlensI_Loc,Ocularlensbox) a3) 

PREM((User_Loc,Room101),a3) 

PREM((OcularlensII_Loc,Microscope) ,a3) 

PREM((Microscope,On),a2) 

ACCOMP( (Adjustmentscrew,On), a3) 

CONSEQ((OcularlensII_Loc, Ocularlensbox), a3) 

a4 

Place Crystal in 

Diffractometer 

 

during(a4,(User_Loc,Room 102)) 

equal((PCI,On), a4) 

during(a4 , (Temperature,[10,25)) 

during(a4,(Voltage,50KV)) 

equal((Copperbar_Loc,Diffractometer),a4) 

during((Controller,On), a4) 

overlap((Crystalcenter,Screencenter),a4)
  

PREM((User_Loc,Room 102),a4) 

ACCOMP((PCI,On), a4) 

COND((Temperature,[10,25) , a4) 

COND( (Voltage,50KV) , a4) 

ACCOMP ((Copperbar_Loc,Diffractometer),a4) 

ACCOMP((Controller,On), a4) 

CONSEQ((Crystalcenter,Screencenter),a4)
  

a5 

Diffractometer 

Spot Check 

 

during(a5,(Diffractometer,On))
 

during(a5,(User_Loc,Room102)) 

during(a5,(Voltage,50KV)) 

equal((Copperbar_Loc,Diffractometer),a5) 

overlap(a5,SpotResult_Bool,True))
 

PREM((Diffractometer,On),a5)
 

PREM((User_Loc,Room102),a5) 

COND( (Voltage,50KV) , a5) 

ACCOMP ((Copperbar_Loc,Diffractometer),a5) 

CONSEQ(SpotResult_Bool,True),a5)
 

a6 

Lattice 

Constant 

Collection 

during(a6,(Matrix,On)) 

during(a6,(User_Loc,Room102)) 

during(a6,(Voltage,20KV)) 

overlap (a6,(ConstantResult_Bool,True))
 

PREM((Matrix,On),a6) 

PREM((User_Loc,Room102),a6) 

COND((Voltage,20KV),a6) 

CONSEQ((ConstantResult_Bool,True),a6)  

a7 

Crystal Lattice 

Regeneration 

and Revise 

during(a7,(User_Loc,Room102))
 

equal((Saint,On), a7) 

overlap(a7,(RevisedResult_Bool,True),)
 

PREM(User_Loc,Room 102),a7) 

ACCOMP((Saint,On),a7) 

CONSEQ((RevisedResult_Bool,True),a7)  

a8 

Crystal 

Structure 

Analyze 

during(a8,(User_Loc,Room 103))  
equal((Shelxt,On),a8) 

overlap((AnalyzeResult_Bool,True),a8)
 

PREM((User_Loc,Room 103),a8) 

ACCOMP((Shelxt,On),a8) 

CONSEQ((AnalyzeResult_Bool,True),a8)  

 

The approach proposed in this paper is interval-based, 
considering the context change over a time period. This can 
recognized more situation than the method based on the 
context data in time point, but introduce high complexity in 
process. We define 6 temporal relations and 4 semantic 
relations; these are not enough to represent the relation in real 
world. The approach need to be further studied in future 
research work. 
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