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Abstract—This paper presents some of the results of our 

probabilistic cellular automaton (PCA) based epidemic model. It 

is shown that PCA performs better than deterministic ones. We 

consider two possible ways of  interaction that relies on a two-

way split rules either horizontal or vertical interaction with 2 

different probabilities causing more of the best possible choices 

for the behavior of the disease. Our results are a generalization of  
that Hawkins et al done. 
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I.  INTRODUCTION  

Because of the spread of diseases, a technical innovative 
model should be made to recover their time regions. Many 
researches tried to solve this problem based on medical dis-
ease feature, which suffer from unpredictable ones. Whilst a 
single infected host might not be significant, a disease that 
spreads through a large population yields serious health and 
economic threats. In this sense, mathematical epidemiology is 
concerned with modeling the spread of infectious disease in a 
population [see 2]. The aim is generally to understand the time 
course of the disease with the goal of controlling its spread. 
Traditionally, the majority of existing mathematical models to 
simulate epidemics are based on ordinary differential equa-
tions. These models have serious drawbacks in that they ne-
glect the local characteristics of the spreading process and 
they do not include variable susceptibility of individuals. Spe-
cifically, they fail to simulate in a proper way (1) the individ-
ual contact processes, (2) the effects of individual behavior, 
(3) the spatial aspects of the epidemic spreading, and (4) the 
effects of mixing patterns of the individuals. 

Mathematical modeling in epidemiology was pioneered by 
Bernoulli in 1760. Nevertheless, the work due to Kermack-
McKendrick [7] can be considered as the starting point for the 
design of modern mathematical models. It consists of a SIR 
model (Susceptible-Infected-Recovered, SIR) which is a set of 
Ordinary Differential Equations. 

Optimization methods have been developed for determin-
istic simulation models. However, they have not been done 
with more complex stochastic simulation models. For more 
details look in [2, 4, 5, 12].  Influenza is transmitted in a com-
plex way from person to person. In addition, given an intro-
duction of influenza into a population, the probability of a 
major epidemic and the possible size of an epidemic are high-

ly variable. Thus, the mathematical models for influenza epi-
demics should have a detailed contact structure and be sto-
chastic. Besides, the epidemic process is non-linear since the 
incidence of new infections depends on the current number of 
both infectives and susceptibles in the population at a particu-
lar time. All of these factors make optimization based on tradi-
tional gradient methods, such as the Newton–Raphson meth-
od, difficult or even prohibitive. [8] Developed a stochastic 
approximation method whose convergence is guaranteed un-
der mild conditions. The method, however, requires 
knowledge of the analytic gradient of the considered objective 
function [11]. However, in terms of simulation optimization, 
the drawback of these methods remains the unavailability of 
gradients. When trying to devise more realistic models we 
incorporate spatial parameters to better reflect the heterogene-
ous environment found in nature. An alternative to using de-
terministic differential equations is to use a two-dimensional 
cellular automaton (CA) to model location specific character-
istics of the susceptible population together with stochastic 
parameters which captures the probabilistic nature of disease 
transmission. Cellular Automata model should be treated as a 
dynamical system that involves a random variable. As a result, 
the suggested model should be a stochastic dynamical model 
called probabilistic Cellular Automata model (PCA) which is 
an extension of CA. The state space remains the same as well 
as the local and synchronous character of the dynamic. The 
novelty is that each site updates its value randomly according 
to a probability distribution which depends on the neighboring 
sites. Also, we will apply non-uniform cellular automata 
where each cell satisfies the same or different rules according 
to which cell states are updated in a synchronous and local 
manner. 

Usually, when a CA-based model is considered to simulate 
an epidemic spreading, individuals are assumed to be distrib-
uted in the cellular space such that each cell stands for an in-
dividual of the population as in our case.    

In the case of our stochastic two-dimensional non uniform 
cellular automata model, we consider two possible ways  of 
interaction so, we have two directions to get infected from 
other cells either horizontal or vertical interaction as each cell 
stands for an individual. This will reduce the possibility to get 
infection from others as in every direction there are only  two 
neighbors affecting the central cell in every direction as seen 
in following sections.  Stochastic optimization methods will 
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be used to model parameters for infectious diseases and popu-
lation structures. Also, we append every rule with two factors 
namely certainty and coverage factors to show the non-
uniform way where each cell affects another in it's neighbor-
hood and vice versa. This method of  two-way split rules pave 
the way for more good choices of solutions as seen in 
sectionIV part B . 

In this work we consider how we can model the spread of 
an epidemic using a two-dimensional cellular automaton using 
programming features of the matrix algebra package 
MATLAB to develop an implementation that simulates a sim-
ple model. By adding our new probabilities of getting infec-
tion either from horizontal or vertical motion to the program 
mentioned in [3]. Also, the effect of population vaccination 
can be considered in this model. A vaccination parameter

]1,0[V  must be considered in the objective function of the 

model. Such parameter stands for the portion of susceptible 
infected individuals at each time step which are vaccinated. 
But in the program , the user have the ability to vaccinate spe-
cific regions of the environment. This takes input from the 
user while the simulation is running, allowing vaccination 
strategies to be tested.  

II. PRELIMINARIES 

A.  The Probabilistic Cellular Automata Model (PCA) 

In this section, we describe the overall design of our au-
tomaton. The model is a two-dimensional grid of cells, each 
cell containing the same or different rules due to the fact that 
each epidemic can be in any one of four stages as in the SEIR 
model we introduced later (i.e.  Susceptible, Exposed, Infected 
and Recovered). The susceptible individuals are those capable 
of contracting the disease; For many infections there is a peri-
od of time during which the individual has been infected but is 
not yet infectious himself; during this latent peiod the individ-
ual is said to be exposed. In this case we have the SEIR model 
in which the new class of exposed individuals (E) must be 
considered. The infectious individuals are those capable of 
spreading the disease; and the recovered individuals are those 
immune from the disease, either died from the disase, or hav-
ing recovered, are definitely immune to it. So, different diag-
nosis of disease has different rules. The neighbors of any cell 
in the grid are the cell itself plus the four orthogonal adjacent 
cells (fig. 1) according to von Neumann.  

 

 

 

 

 
Fig. 1. The two-dimensional cellular automata cell's neighbors 

  Once the automaton was embedded in the grid, the cell as an  

individual finite state machine, began to follow the rule that is  
applied to it. A single cell cannot do much without interacting 
with other cells. The lattice starts out with an initial 
configuraion of cells in which the following hold. 

Each cell can take on one of the 4 different states:  

1) Susceptible (i.e. healthy; designated as 0) 

2) Exposed (designated as 1) 

3) Infected (designated as -1)  

4) Recovered (includes both survivors and deaths; desig-

nated as 2)  

 It is supposed that the way of infection is the contact 
between the infected individual and the healthy indi-
vidual. 

 Once the healthy individuals have contracted the infec-
tion and have recovered from it, they acquire tempo-
rary immunity. 

B. Mathematical Formulation Of The PCA 

Two-dimensional CA are discrete dynamical systems 
formed by a finite number of identical objects called cells, 
which are arranged uniformly in a two-dimensional space. 
Each cell is endowed with a state, belonging to a finite state 
set, that changes at every discrete step of time according to a 
rule, called local transition function. More precisely, a CA can 
be defined as a 4-uplet, A = (C, S, N, f), where C is the cellu-

lar space formed by a two-dimensional array of r × c cells 

,where r stands for rows and c for columns   (see Fig. 2-(a)): C 

= {(a, b) , 1 ≤ a ≤ r, 1 ≤ b ≤ c}. The state of each cell is an ele-
ment of a finite set, S, in such a way that the state of the cell 

(a, b) at time t is denoted by   StbaS ;,  . The matrix 

 tjiStC ;,)(   is called configuration of the CA at time t. 

Moreover, )0(C  is the  

Fig. 2. (a) Cellular space (b) Von Neumann neighborhood (c) Moore 

neighborhood 

initial configuration of the CA . The neighborhood of a 
cell(a,b) is the set of cells whose states at time t determine the 
state of the cell (a, b) at time t + 1, by means of the local 
trasition function. Depending on the process to be modeled 
,one can choose an appropriate neighborhood. Nevertheless, 
the traditional neighborhoods considered are the Von Neu-
mann neighborhood (see Fig. 2-(b)), and the Moore neighbor-
hood (see Fig. 2-(c)). Note that the main cell is also consid-
ered in its neighborhood. A neighborhood is defined by means 
of a finite set of indices  

    c cell a of odNeighborho :1:, NmiyxN ii 
 

, such that for every cell (a, b), its neighborhood,  

 N ba, is the set of m cells given by 

 
      Nyxybxaybxa kkmmbaN  ,:,,,........., 11,

   . 

Note that for Von Neumann neighborhood, we have 

          1,0,0,1,1,0,0,1,0,0 N      . 

Cell's state  [10] : 
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  )1(2,1,10,1tSc  




  

(2)1(t)
c

S1)(t
c

S:f 
 

Where 

1iteration at  cell  theof State: tSc  
function  Transition:f (Determines how the cell’s state can 

change). 
As the cellular space is considered to be finite, boundary 

coditions must be taken into account in order to asure the 
well-defined dynamics of the CA. 

C. Probabilistic Analysis of Cellular Automata Rules 

With each time step, the state of each individual cell 
changes according to a set of rules based on the states of the 
cell’s neighbors. These rules can be either deterministic (cer-
tain) or stochastic (probability-based/uncertain). To determine 
this exactly we need to define two essential factors, if the de-
cision rules have the form C →D, meaning IF C THEN D, 
where C is the condition attribute, and D is the decision attrib-
ute of  the decision rule then we have ,  

The certainty factor of the decision rule C →D, denoted by 

    ),( DCcer  , is defined as : 

 (3))/(),( CDpDCcer   

 Where ]1,0[),( DCcer . If 1),( DCcer , then the given 

 decision rule is a deterministic or certain decision rule . 

Otherwise, 1),(0  DCcer , the given decision rule is a sto-

chastic or uncertain decision rule. 

The coverage factor of the decision rule C →D in S, denoted  

by ),cov( DC , is defined as: 

(4))/(),cov( DCpDC   

 In this work we consider a non-uniform case of cellular a 
tomata where different cells may contain different rules. At a 
given moment, only one rule is active for a cell and deter-
mines the cell's function. A non-active rules may be activated 
in next time steps. 

    Let any cell in the lattice be labeled by its position 
 ji,c   

where i  and j  are the row and column indices. A func-
tion  

 tS c  is the state of cell c  at time step t . The rules of the  

model specify how the state  1tS c  is to be computed 
from  

the states at time step t  of it's neighbors  

 )1,(),1,(),,1(),,1(  jijijiji
as in fig. 3: 

 
Fig. 3.  Parameters of the transition rules. 

Here we assume that there are two possible structures ei-
ther horizontal or vertical interaction between cells each of 
them has different probability of infection respectively. A 
small probability 0.0001 of spontaneous infection is assumed. 
This represents the possibility of external infection e.g. infec-
tion due to traveling or imported objects [1].  

In the horizontal case, the state of cell  ji,  depends only 

on the states of cells 
    1,,1,  jiji

 while during vertical 

interaction it's state depends on states of cells
    jiji ,1,,1 

. 
So, the automata rules must be formalized for the two direc-
tions as follows: 

5) For Horizontal interaction (with probability of 

infection 

                h
p

 ) : 

a) If   0;, tjiS  and   1;1,  tjiS  or   1;1,  tjiS  then 
  11;, tjiS  with probability h

p
                                         (5). 

 

b) If   1;, tjiS
 then   21;, tjiS                              (6) 

.   

c)  If   1;, tjiS  then   21;, tjiS                                 

(7).                                                        

d)   11;, tjiS  (independent of it's interaction 

neighbors) with probability 0.0001.                                      (8). 

6) For Vertical interaction (with probability of infection     
v

p
)  : 
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a) If   0;, tjiS
 and   1;1,  tjiS

 or   1;1,  tjiS
 

then   11;, tjiS
 with probability v

p
                             (9). 

b) If   1;, tjiS then   21;, tjiS                            (10).                                         

c) If   1;, tjiS then   21;, tjiS
                          (11). 

d)   11;, tjiS  (independent of  it's interaction 

neighbors) with probability 0.0001                                     

(12). 

    If a cell is susceptible (0), the simulation module counts 
the number of infected cells that are its nearest neighbors. The 
simulation then calculates the probability the cell can avoid 

being infected  m1 ,where β is the infection rate (the 
probability a contact with an infected person is actually 
infectious) and m is the number of infected cells. Subtracting 
this value from 1 yields the probability of the cell being 
infected [10]. 

III.  THE OPTIMIZATION PROBLEM 

The optimization problem is as follows: Given a limited 
quantity of influenza vaccine and a particular population 
structure and infection rate pattern for a single wave of 
pandemic influenza, what proportion of each stage should be 
vaccinated to minimize the impact of the epidemic? [ see :9] 

We divide the population into four different cases: 
Susceptible, Exposed , Infected and Recovered that are 

indexed as 4,..,1i  .We let ni be the number of individuals in 

class i , and the total population size is 




4

1i

inn

. We let  be 
the infection rate, i.e. (the probability a contact with an 

infected person is actually infectious), where  either takes 

the value hp
 or Vp

 depending on the movement direction. 

We let V  be the total number of vaccine doses available be-

fore day one of the epidemic, and i the proportion of 

individuals in case i  that is vaccinated. Thus, the total number 
of doses distributed is, 

 13
,

4

1














VQ

wherenQ i

i

i

 since we cannot use more vaccine than there is available. We 
assume that each person vaccinated receives one dose of 
vaccine. Four different values of the vaccination rate are 

considered: V  = 0, 0.2, 0.3, 0.4. Note that as V increases, the 
number of infected individual decreases. To reflect the impact 

of a single illness, we let iw
 be the weight assigned to an 

illness in each case for minimization of the loss function. 
Then, the optimization problem is expressed as  

 14
4

1
min iwin

i


      

 

Such that  

 15
4

1
V

i
iin 




 

We concentrate on minimizing overall illness in the 
population as well as number of lives lost given a predeter-

mined number of doses V of vaccine. We use weights of one, 

i.e. 
4,...,1,1  iiw

for minimizing illness objective function. 
The rules have been applied based on an optimization 
algorithm as illustrated in Fig. 4 showing the behavior of the 
epidemic through different probabilities. 

Pseudocode 

Overall structure 

Main function 
Get information from user and initialize variablesVisualise 

state 

Loop through generations: 

1) Update count of infected neighbours for each cell 

2) Update state of each cell based on number of infected 

neighbours 

3) Visualize state 

4) Stop 

In this work we consider how we can model the spread of 
an epidemic using a two-dimensional cellular automaton. We 
will use programming features of the matrix algebra package 
MATLAB to develop an implementation that simulates a sim-
ple model [3] as shown in fig.4. We want to construct a model 

of an epidemic that will develop over a fixed N  by N  grid in 
a given number of generations. We apply a set of rules to each 
cell that will determine its fate in the next generation, for ex-
ample whether a given cell will become infected or not. The 
probabilities of state changes are a set of predefined parame-
ters. By studying the effects of varying these parameters we 
try to predict how the epidemic will develop over time will it 
eventually die out.  

We apply the same strategy of vaccination used by [3] 
where the user have the ability to vaccinate specific regions of 
the environment. This takes input from the user while the sim-
ulation is running, allowing vaccination strategies to be tested. 
Since vaccination is not usually permanent but lasts for a pe-
riod of time, it is implemented in much the same way as the 
temporary immunity that follows organism recovery. While 
the program is running, the user can click on the grid causing 
vaccination to be simulated at the clicked point. 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  
Vol. 2, No.4, 2013 

43 | P a g e  
www.ijarai.thesai.org 

  
Fig. 4. Pseudo code for main program 

IV.  SIMULATION AND ANALYSIS 

A.   Different scenarios based on varying p-horizontal ( hp
) 

and p-vertical ( vp
) 

Because our cellular automaton is probabilistic (i.e. ran-
dom numbers affect the chances of different scenarios arising, 

even with fixed hp
 , vp

and  
q

) it is necessary to run several 
simulations to obtain an approximate understanding of what 
should happen to the spread of the epidemic. We also need to 

test several different values of  hp
  and  vp

. Initially, we will 

set q  as a constant 1 and vary  hp
 ,  vp

. Thus an Infected 

cell will immediately become Recovered . We will test for hp , 
 9.0,7.0,5.0,3.0,1.0vp . 

Case 1:  .}9.0,7.0,5.0,3.0,1.0{,1.0  vh pp  

 

Case2:  .}7.0,5.0,3.0,1.0{,3.0  vh pp  

 

Case 3:  .}5.0,3.0,1.0{,5.0  vh pp  

 

 

Pseudo code for main program 

Initialize constants to represent cell states (Susceptible, 
Exposed, Infected, and Recovered) 

Input N, the array size to use 

Input h
p

 and  v
p

 , the probabilities of becoming infected 
during horizontal and vertical interaction  

Input 
q

 , the probability of  becoming recovered . 

Optionally input ca_state, the state matrix, from given 
initial configuration 

If no initial configuration was supplied: 

    Initialize ca_state with all cells Susceptible 

    Set randomly-selected cells near centre to Infected 

Add a border of immune cells to ca_state 

Visualize ca_state 

Initialize infected_neighbours, the infected neighbour 
count matrix 

Loop through generations 

   Loop through valid x-coordinates (2 to N+1) 

            Loop through valid y-coordinates (2 to N+1) 

                   Update count of infected_neighbours(x, 
y) 

                 End loop through y-coordinates 

          End loop through x-coordinates 

          Loop through valid x-coordinates (2 to N+1) 

                  Loop through valid y-coordinates (2 to 
N+1) 

                             Update ca_state(x, y) based on in-
fected_neighbours(x, y) 

                 End loop through y-coordinates 

         End loop through x-coordinates 

         Visualize ca_state 

End loop through generations  
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Case 4:  .}3.0,1.0{,7.0  vh pp  
 

B. We run the simulations for 100 generations and observe 

the behavior of the disease in a grid of size 50 × 50 . 

TABLE I.  Description of observed behaviour for a range of values of vp
h

p ,  and q  (green is Susceptible, red is Infected, and black is Recovered)

                         

         q               

     

vh pp ,  

 

0.2 

 

0.6 

 

1 

 

0.1 , 0.1 

  
Chaotic pattern emerges 

rapidly. Almost all cells In-

fected at any one time. 

 
disease dies out followed by 

all cells Susceptible within 

approx 66 generations. 

 
 disease dies out followed by all 

cells Susceptible within approx 5 

generations. 
 

0.1 , 0.3 

 
Chaotic pattern emerges 

rapidly. Almost all cells In-

fected at any one time. 

 
disease dies out followed by 

all cells Susceptible within 

approx 16 generations. 

 
 disease dies out followed by all 

cells Susceptible within approx 4 

generations. 
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0.1 , 0.5 

 
Chaotic pattern emerges 

rapidly. Almost all cells In-

fected at any one time. 

 
disease dies out followed by 

all cells Susceptible within 

approx 30 generations. 

 
disease dies out followed by all 

cells Susceptible within approx 4 

generations 
 

0.1 , 0.7 

 
Chaotic pattern emerges 

rapidly. Almost all cells In-

fected at any one time. 

 
disease dies out followed by 

all cells Susceptible within 

approx 66 generations 

 
disease dies out followed by all 

cells Susceptible within approx 9 

generations 
 

0.1 , 0.9 

 
Chaotic pattern emerges 

rapidly. Almost all cells In-

fected at any one time. 

 
disease dies out followed by 

all cells Susceptible within 

approx 14 generations 

 
disease dies out followed by all 

cells Susceptible within approx 9 

generations 
 

0.3 , 0.3 

 
Chaotic pattern emerges 

Spreads more quickly. 
 Chaotic pattern emerges 

  Spreads slowly. 

 
Chaotic pattern emerges 

  Spreads more slowly. 
 

0.3 , 0.5 

 Chaotic pattern emerges 

Spreads more quickly. 

 
Chaotic pattern emerges 

  Spreads rapidly. 

 
Chaotic pattern emerges 

  Spreads more slowly. 
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0.3 , 0.7 

 Chaotic pattern emerges 

Spreads more quickly. 

 
Chaotic pattern emerges 

  Spreads rapidly. 

 
Chaotic pattern emerges 
  Spreads more slowly. 

 

0.5 , 0.5 

 Chaotic pattern emerges 

Spreads more quickly. 

 
Chaotic pattern emerges 

  Spreads rapidly. 
 

Chaotic pattern emerges 
  Spreads slowly. 

 
Note that: the figures shown in table1 will be a bit different every time we execute the program as the vaccine is given ran-

domly by each user. 

V. CONCLUSION 

These epidemic scenarios presented above provide an op-
portunity to demonstrate the visualization capabilities of a 
graphical CA model. When [3] use a single probability of in-
fection, they got only two results in which all cells are in sus-
ceptible state. But, here when dividing the cellular space into 
two directions of motion with two different probabilities of 

infection, there are more optional values for vp
h

p ,
 differ at 

which generation it is obtained as shown above in table1. We 
introduced a theoretical model to simulate the spreading of an 
epidemic. It is based on transferring the problem into paramet-
ric one and the rules into restrictions, obtaining the optimiza-
tion problem (14). It is solved with the chosen values of  

vp
h

p ,
 and 

q
 get the minimum value of the function which 

minimize the impact of the epidemic. 

VI. FUTURE WORK 

PCA are lattice model of spatially extended systems with 
probabilistic local dynamical rules of evolution. It is difficult 
to analyze rigorously, so the computational simulation provide 
an alternative tool. So the future work is to develop an itera-
tive Probabilistic Neural Networks with fully parallel proba-
bilistic feedback dynamic. In addition, Parallel Genetic Algo-
rithms can be incorporated by modifying the probabilities. 
PGA search through the space of parameters to calibrate the 
model to observe data. Whilst, PNN synthesis of approaches 
based on prior analysis and contextual information. 
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