
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

27 | P a g e
www.ijarai.thesai.org

Parallelization of 2-D IADE-DY Scheme on

Geranium Cadcam Cluster for Heat Equation

Simon Uzezi Ewedafe

Computing & IT. Baze University, Abuja

Baze University, Abuja

Abuja, Nigeria

Rio Hirowati Shariffudin

Institute of Mathematical Sciences

Universiti Malaya

Kuala Lumpur, Nigeria

Abstract—A parallel implementation of the Iterative

Alternating Direction Explicit method by D’Yakonov (IADE-DY)

for solving 2-D heat equation on a distributed system of

Geranium Cadcam cluster (GCC) using the Message Passing

Interface (MPI) is presented. The implementation of the

scheduling of n tri-diagonal system of equations with the above

method was used to show improvement on speedup, effectiveness,

and efficiency. The Master/Worker paradigm and Single

Program Multiple Data (SPMD) model is employed to manage

the whole computation based on the use of domain

decomposition. The completion of the execution can need task

recovery and favorable configuration. The above mentioned

details consist of a main report about the numerical validation of

the parallelization through simulation to demonstrate the

proposed method effectiveness on the cluster system. It was

found that the rate of convergence decreases as the number of

processors increases. The result of this paper suggests that the 2-

D IADE-DY scheme is a good approach to solving problems,
particularly when it is simulation with more processors.

Keywords—Parallel Implementation; Heat Equation; SPMD;

IADE-DY; Domain Decomposition

I. INTRODUCTION

Software programmers developing parallel application do
focus on some challenges in the area of parallel computing.
According to [18] there are theoretical challenges such as task
decomposition, dependence analysis, and task scheduling.
Then there are practical challenges such as portability,
synchronization, and debugging. An alternative and cost
effective means of achieving a comparable performance is by
way of distributed computing, using a system of processors
loosely connected through a local area network [3]. For a
global computational task with other processors, relevant data
need to be passed from processors to processors through a
message passing mechanism [7, 11, 28, 22]. There is greater
demand for computational speed and computations must be
completed within reasonable time period by using multiple
processors on a single problem, hence, the demand for faster
processors has been growing rapidly, which can only be met
by the sue of parallel computers for grand challenge problems
[19, 30] and [4].

There are a number of important unresolved questions
concerning multiprocessor computers, among these issues are:
should they consist of a few, rather powerful processors or
many very much less powerful processors, or something in
between? According to [16] there is a natural expectation that
the multiprocessors with a few, powerful processors will have

an MIMD architecture, and that the others will have SIMD
architecture. Parallelization of heat equation has been
proposed by [3], and recent developments have included a
number of different applications [5, 2]. Another issue is the
communication among the processors. How is the memory
connected to the processors, and how are these processors
connected to each other? The model proposed in this paper
enhances overlap communication and computation to avoid
unnecessary synchronization; hence, the method yields
significant speedup by the use of the non-blocking
communication.

While the theoretical properties of the 2-D IADE-DY
algorithm employing the master/worker paradigm and SPMD
model are promising, achieving good performance in practice
can be challenging. In reference to [2] this is due to
fundamental tradeoff between the reduction of the time
required for an inherently sequential part of the algorithm, and
an increase in the number of the iterations required to
converge. Previous analysis of the IADE scheme in the
literature did not consider the efficient parallelization and
scheduling of tasks to improve scalability. Sequential
numerical methods for solving time dependable problems have
been explored extensively [25, 30].

A number of software tools have been developed for
parallel implementation, MPI [19] is chosen since it has a
large user group. The objective of our parallel focus is to
improve performance. Due to our objective, parallelizing code
has traditionally been paired with general code optimizations
for performance, especially in the scientific and engineering
area [18].

The main contribution of this paper is to present a detailed
study of the parallelization using the 2-D IADE-DY algorithm
employing master/worker paradigm and SPMD model to
enhance overlapping communication with computation on the
GCC cluster system running MPI that result in significant
improved speedup, effectiveness, and efficiency across
varying mesh sizes. The Master/Worker paradigm and SPMD
model is employed to manage the whole computation based on
the use of domain decomposition. The completion of the
execution can need task recovery and favorable configuration.
Our results demonstrate two properties that make this
approach attractive for the platform of GCC: overlap
communication and computation, and ability to arbitrary use
various varying mesh sizes. The distribution done in the GCC
reduces the memory pressure on the master while preserving
parallel efficiency.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

28 | P a g e
www.ijarai.thesai.org

To obtain results with sufficient accuracy for the numerical
prediction of the scalable parallel implementation of the AGE,
IADE and ADI algorithm, fine discretization of the domain
would be necessary. Due to the limitation in both processing
element power and memory on sequential architectures and
the dimension of full scale utility, only coarse grids are
possible. A confine enhancement may be achieved if a domain
decomposition method is used to allow locally refined meshes.
The paper is organized as follows: section 2 emphasizes on
previous related work, section 3 introduces the model for the
2-D heat equation and method and the 2D-IADE-DY scheme.
Section 4 and 4 introduces the performance analysis and
numerical experiment. Finally, a conclusion is included in
section 6.

II. PREVIOUS WORK

Parallelization of Partial Differential Equations (PDE) by
time decomposition was first proposed by [24]. The
motivation for the paper was to achieve parallel real-time
solutions. Recent improvements have included a number of
different applications [5], and [2] emphasizes the scheduling
of tasks in the Para real algorithm. The importance of loop
parallelization and loop scheduling has been extensively
studied [1]. This work is distinct while promoting flexibility,
and applies standard parallel concepts. Several approaches to
solving heat equation have been carried out in [6, 25, 26, 27]
and [13, 29, 32]. We have applied the 2-D IADE-DY scheme
by simulation to schedule the n tri-diagonal system of
equations with the above method used to show improvement
on speedup, effectiveness, and efficiency. Reference [10] and
[12] show speedup and efficiency, while comparing to our
results generated using GCC, the GCC results show better
conformity to linearity for speedup and closeness to unity for
efficiency than [10] as applied to the simple method using
MPI. In [20], the unconditional stability of the alternating
difference schemes has similarity to our scheme. Our
implementation compared to [26] and [27, 6] is a way of
proofing stability and convergence in the GCC cluster system.
We also note the various constant improvements on speedup,
effectiveness, and efficiency analysis carried out in [33h]
using the overlapping domain decomposition method.
However, [32] proposed a generalized speedup formula as the
ratio of the parallel to sequential speed. As in relation to the
performance strategies implementation, a thorough study of
speedup models together with their advantages is implemented
in [30, 9, 28] show the same conformity to our
implementation, but here we were able to achieve unity
conformity in the message passing mechanism.

III. THE MODEL PROBLEM

The problem that is of interest to us is the heat equation in
2-dimension. We assume that the heat will spread within the
field based on a dynamics described in [27, 31] and the
Alternating Group Explicit [13] method by the following:

2 2

2 2
(, ,), (, ,) (0,],

U U U
h x y t x y t R T

t x y

  
    

  
 (3.1)

with the initial condition,

(, ,0) (,),(, ,) {0},U x y F x y x y t R   (3.1a)

and (, ,)U x y t is specified on the boundary of ,R R by

(, ,) (, ,),(, ,) (0,],U x y t G x y t x y t R T   (3.1b)

where for simplicity we assume that the region R of the xy-

plane is a rectangle. Consider the two-dimensional heat (3.1)
with the auxiliary conditions (3.1a) and (3.1b). The region R is
a rectangle defined by

 (,) : 0 ,0 .R x y x L y M    

At the point (, ,)i j kP x y t in the solution domain, the

value of (, ,)U x y t is denoted by , ,i j kU where

, 0 (1),0 (1)i jx i x y j y for i m j n and         

(1), (1).x L m y M n      The increment in the

time ,t t is chosen such that 0,1,2,kt k t for k  

for simplicity of presentation, we assume that m and n are

chosen so that x y   and consequently the mesh ratio is

defined by
2()t x    .

A. The IADE-DY and DS-MF

By fractional splitting, each time step in the double sweep

methods is split into two steps of size / 2t . The horizontal

sweep advances from kt to 1/2kt  by using a difference

approximation that is implicit in only the x-direction.
Specifically, past values in the y-direction along the grid line

ix x are used, to yield the intermediate value , , 1/2i j ku  .

Then, in the vertical sweep from 1/2kt  to 1kt  , the solution is

obtained by using an approximation implicit in only the y-
direction and uses past values in the x-direction along the grid

line jy y , to yield the final value , ,i j ku .

At the (1/ 2)k  time level method, the solution of (3.1)

uses a backward-difference approximation.

2 2

, , 1/2 , , , , 1/2 , ,
2 2

i j k i j k x i j k y i j ku u u u
 
     (3.2)

Where x yand  are the usual central difference

operators in the x and y coordinates respectively.

)2(
2

)2(
2

,1,,,,1,

2/1,,12/1,,2/1,,1,,1,,

kjikjikji

kjikjikjikjikji

uuu

uuuuu













 (3.3)

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

29 | P a g e
www.ijarai.thesai.org

kjikjikjikji

kjikji

uuuu

uu

,1,,,,1.2/1,,1

2/1,,2/1,,1

2
)1(

22

)1(
2

















 (3.4)

From (3.4), for 1,2, ,j n

kjkjkjkjo

kjkj

uuuu

uui

,1,1,,1,1,12/1,,

2/1,,22/1,,1

2
)1(

22

2
)1(:1

















 (3.5)

kjikjikjikji

kjikji

uuuu

uumi

,1,,,,1,2/1,,1

2/1,,2/1,,1

2
)1(

22

)1(
2

:1,,3,2


















 (3.6)

kjmkjmkjmkjm

kjmkjm

uuuu

uumi

.1,,,,1,2/1,,1

2/1,,2/1,,1

2
)1(

22

)1(
2

:

















(3.7)

let 1 ,
2

a b c


     . Equation (3.5) – (3.7) can be

written in a more compact matrix form as:

(1/2) , 1,2, ,k

j kAu f j n   . (3.8)

where

1, 2, , 1, 2, ,

1, 1, 1, 1, , 1, 1, 0, , 1/2

, , 1, , , , 1,

, , 1, , , , 1, 1, , 1/2

(, , ,) , (, , ,)

(1) ()
2 2

(1) 2,3, , 1
2 2

(1) ()
2 2

T T

j j m j j j m j

j j k j k j k j k

i j i j k i j k i j k

m j m j k m j k m j k m j k

u u u u f f f f

f u u u u

f u u u i m

f u u u u

 


 


 


  

 

   

 

    

     

    

 (3.9)

at the (k+1) time level, (3.1) is approximated by,

2 2

, , 1 , , 1/2 , , 1/2 , , 1
2 2

i j k i j k x i j k y i j ku u u u
 
       (3.10)

)2(
2

)

2(
2

1,1,1,,1,1,2/1,,1

2/1,,2/1,,12/1,,1,,









kjikjikjikji

kjikjikjikji

uuuu

uuuu





 (3.11)

2/1,,12/1,,2/1,,1

1,1,1,,1,1,

2
)1(

2

2
)1(

2









kjikjikji

kjikjikji

uuu

uuu











 (3.12)

from (3.4), for i = 1, 2, . . . , m.

1,0,2/1,1,12/1,1,

2/1,1,11,2,1,1,

22
)1(

22
)1(:1









kikiki

kikiki

uuu

uuuj







 (3.13)

2/1,,12/1,,2/1,,1

1,1,1,,1,1,

2
)1(

2

2
)1(

2

:1,,3,2











kjikjikji

kjikjikji

uuu

uuu

nj













 (3.14)

1,1,2/1,,1

2/1,,2/1,,1

1,,1,1,

22

)1(
2

)1(
2

:













knikni

knikni

knikni

uu

uu

uunj









 (3.15)

let 1 ,
2

a b c


     . Equations (3.13) – (3.15) can be

displayed in a more compact matrix form as:

(1)

1/2 , 1,2, ,k

i kBu g i m

  (3.16)

where
(1)

,1 ,2 , ,1 ,2 ,(, ,) , (, , ,)k T T

i i i i n i i i nu u u u g g g g  

)(
2

)1(
2

1,,3,2
2

)1(
2

)(
2

)1(
2

1,1,2/1,,12/1,,2/1,,1,

2/1,,12/1,,2/1,1,1,

1,,2/1,1,12/1,1,2/1,1,11,













kniknikniknini

kjikjikiji

koikikikii

uuuug

njuuug

uuuug


















 (3.17)

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

30 | P a g e
www.ijarai.thesai.org

B. IADE-DY

The matrices A and B are respectively tridiagonal of size
(mxm) and (nxn). Hence, at each of the (k + ½) and (k + 1)
time levels, these matrices can be decomposed into

1 2 1 2

1
,

6
G G G G  where 1 2G and G are lower and upper

bidiagonal matrices given respectively by

1 2[,1], [,],i i iG l and G e u  (3.18)

where

1,,2,1)6(
6

6

),1
6

1
(

5

6

,
5

6
),1(

5

6

1

1












mie
e

c
l

ulae

buae

i

i

i

iii

i



hence, by taking p as an iteration index, and for a fixed

acceleration parameter r > 0, the two-stage IADE-DY scheme
of the form,

(1/2) ()

1 1 2

(1) (1/2)

2

() ()()

()

p p

p p

rI G u rI gG rI gG u hf and

rI G u u



 

    

 

 (3.19)

can be applied on each of the sweeps (3.2) and (3.10). By

carrying out the relevant multiplications in (3.19), the
following equations for computation at each of the
intermediate levels are obtained:

(i) at the (1/ 2)thp iterate,

))(

(
1

1,,3,2

),)(

(
1

)(
1

)(
^

11

)(

111

)2/1(

11^

)2/1(

)(

1

^
)(

^

11

)(

111

)2/1(

11^

)2/1(

1

)(

2

^

1

)(

1

^

1^

)2/1(

1

m

p

mmmm

p

mmm

p

mm

p

m

i

p

ii

p

iiii

p

iii

p

ii

p

i

ppp

hfusswv

usvul

d

u

mi

hfuswusswv

usvul

d

u

hfuswuss

d

u





































 (3.20)

Where,

migersgrs

rd
rr

h
r

g

ii ,,2,1,,

,1,
6

)12(
,

6

6











and , 1,2, , 1i i i iv gl w gu i m      .

(ii) at the (1)thp  iterate,

1,2,,1,

,(
1

,

)1(

1

)2/1()1(

)2/1(

)1(

















mierdwhere

uuu
d

u

d

u
u

ii

p

ii

p

i

i

p

i

m

p

mp

m

 (3.21)

IV. PERFORMANCE ANALYSIS AND PARALLEL ALGORITHM

All experiment were performed on the GCC of 8 nodes
with Gigabit Ethernet interconnect. Each node consists of dual
core processors (3.0GHZ) with 16 GB of RAM. The MPI
implementation was implemented in C/MPI. A parallel
platform design to run numerical application has to be
efficient [8]. The platform contains more computations on
large set of varying mesh sizes, and its evaluation has to be
large to benchmarking. Performance concerns not only the
cost of functions of the schemes, but resource accesses and
code placement on computing resources [8]. Making
declaration for placement of data at the beginning of
computation, it does not accept any perturbation. The 2D
IADE-DY scheme is extremely tested using the GCC cluster
system for its implementation. The objective is to evaluate the
overhead it introduces and its ability to exploit the inherent
parallelism of an iterative computation as stated in [18]. The
scalability across varying number of processors and mesh
sizes is observed. To obtain any speedup we need
convergence in fewer than N iterations. The closer the coarse
propagator is to the fine propagation, the faster will be the
convergence. If they are too similar, then the sequential part of
the algorithm will significantly degrade the speedup. A simple
speedup analysis according to [2] produces the following:

,
)1(KKNr

N


 (4.1)

Where r is the ration of the time taken by coarse

propagation to fine propagation over the same time interval, K
is the number of iterations required for convergence, and
communication overhead is ignored.

In the limit ,,0
K

N
r   therefore, the efficiency

will be .
1

K
Full efficiency can be achieved if the algorithm

converges in one iteration. To make r smaller, the coarse
propagator must be less than accurate due to larger time step
or coarse spatial grid, which in turn requires more iteration to
converge [17]. As treated in [14, 15], the algorithm for the
scheme is performed on a distributed memory system of p
processors, assumes that each processors initially stores n =
N/p objects distributed over the entire physical domain. In the

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

31 | P a g e
www.ijarai.thesai.org

first iteration of the algorithm, the domain is decomposed into
two sub-domains so that the difference between the sums of
the weight of the sub-domain is as small as possible. Then the
same process is applied to two sub-domains in parallel, and
process is repeated recursively, for log p iteration. In other

words, during iteration i, 1 logi p,  the p processors are

group into
12 i

groups of
1/ 2ip 

processors each. At the

beginning of the iteration, the problem domain is already

partitioned into
12i

sub-domains and the objects in each sub-
domain are stored in single group of processors. At the end of
the iteration, each processor group is divided into two groups,
and the corresponding sub-domain is divided into two sub-
groups with the object in one sub-domain residing in one half
the processors and the other objects in the other sub-domain
residing in the other half of processor. Data parallelism
originated the SPMD [23]. Thus, the finite difference
approximation can be treated as a SPMD problem; essentially
the same computation must be performed for multiple data
sets. The multiple data are different parts of the overall grid,
each sent to a different computer node (processor). The main
issues that arise in parallelizing a finite difference grid are: the
determination of how best to partitioned the grid among
processors, and how to pass instructions about grid boundaries
from node to node.

The domain decomposition is used to distribute data
between different processors, in order to minimize the idle
time static load balancing is used to distribute the data such
that each processor gets almost the same number of
computational points. The partitioning and load balancing is
done in the pre-processing stage, wherein, separate grid files
are generated for each processor along with other necessary
information about partitioning. Thus there is no need to
allocate any extra storage or scatter the grid data when the
parallel program is executed. At the end of the parallel
computation each process writes the output into separate files
suitable for verification.

V. NUMERICAL EXPERIMENTS AND DISCUSSION

The algorithm was tested on the 2-D heat equation and the
application of the above mentioned algorithm is now
demonstrated on meshes of 100x100, 200x200 and 300x300
respectively. Tables 1 – 3, show the various performance
timing. Consider the 2-D parabolic equation of the form:

t

U

y

U

x

U














2

2

2

2

 (5.1)

The boundary conditions and initial condition posed are:

0

100),1,(

0),0,(

100),,1(

0),,0(























t

txU

txU

tyU

tyU

 (5.1a)

)10,10(

)()()0,,(





yx

ySinxSinyxU 
 (5.1b)

The exact solution is given by

)()(),,(ySinxSinetyxU t  .

TABLE I. 100x100 meshes with MPI

Scheme N Tw Tm Tsd Spar Epar

 1 334.3 8.6 3.3 1.000 1.000

 2 285.6 8.5 3.2 1.516 0.758

 3 198.7 8.5 3.1 2.172 0.724

IADE 4 141.6 8.5 3.1 2.764 0.691

 5 128.1 8.5 3.1 3.165 0.633

 6 108.5 8.5 3.1 3.588 0.598

 7 98.1 8.5 3.1 3.787 0.541

 8 83.8 8.5 3.1 4.144 0.518

TABLE II. 200x200 meshes with MPI

Scheme N Tw Tm Tsd Spar Epar

 1 486.4 14.9 5.8 1.000 1.000

 2 392.8 14.7 5.6 1.782 0.891

 3 308.5 14.7 5.6 2.562 0.854

IADE 4 286.7 14.7 5.6 3.244 0.811

 5 203.1 14.7 5.6 3.91 0.782

 6 189.6 14.7 5.6 4.302 0.717

 7 163.5 14.7 5.6 4.795 0.685

 8 142.9 14.7 5.6 4.952 0.619

TABLE III. 300x300 meshes with MPI

Scheme N Tw Tm Tsd Spar Epar

 1 685.4 18.6 9.5 1.000 1.000

 2 536.8 18.5 9.3 1.798 0.899

 3 482.1 18.5 9.3 2.658 0.886

IADE 4 413.8 18.5 9.3 3.476 0.869

 5 386.9 18.5 9.3 4.24 0.848

 6 251.8 18.5 9.3 4.926 0.821

 7 210.1 18.5 9.3 5.572 0.796

 8 189.6 18.5 9.3 5.976 0.747

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

32 | P a g e
www.ijarai.thesai.org

Here, we observed in our experiments designed to test the
effectiveness of our approach that as the mesh size increases,
the execution time increases as well with a proportionate
decrease in time as processors increases for three mesh sizes in
Tables 1 – 3. Tw is the time for the worker, Tm is the master
time, Tsd is the worker domain decomposition time for worker
allocation, Spar is the speedup, and Epar is the efficiency. This
phenomenon shows that as the number of processors
increases, though it might lead to a decrease in execution time
but will get to a point that increasing the processors will not
have much impact on total execution time. The time spend in
data exchange will be significant compared to the time spend
in computation and the parallel efficiency goes down. Hence,
when the number of processors increases, balancing the
number of computational cells per processors will become a
difficult task due to significant load imbalance. When the
number of processors increases, execution time suddenly
increases for certain number of processors mesh sizes. This
gain is due to the uneven distribution of the computational
cells when a large number of processors are used, execution
time had a very small change due to domain decomposition
influence on performance in parallel computation. The larger
the mesh sizes show that up to certain number, the speedup
improvement is near linearity. The performance begins to
degrade with an effect caused by increase in communication
overheads.

The problem size is scaled up following the memory-
bounded constraint. This phenomenon is well under expected
since the implicit replacement has a very low computation
overhead as implemented on the three problems. However,
these jumps in communication time which are relatively larger
than the others are mainly caused by the architecture of the
communication between the processors, that is, due to the
underlying machine architecture not the algorithm. This rate of
performance decrease is fairly shown for parallel computing,
especially for experiments conducted under non-dedicated
environments which show that the proposed algorithm scales
well. Our experiment shows reliability by conforming to
convergence, and how memory is been distributed to access
main data. This step is made possible by the Master/Worker
computation process.

VI. CONCLUSION

We have explained in this paper how the role of GCC in
the parallelization of the 2-D IADE-DY scheme is a good
approach to solving problems, particularly when it is
simulation with more processors. The objective is to present a
design of paradigm adapted architecture for distributed
computation, because they depend on empirical concern (data
and code). The algorithm presented shows significant
improvement when implemented on the above number of
processors. In addition to the ease of use compared to other
common approaches, the results shoe negligible overhead with
effective load scheduling which produce the expected inherent
speedups. It was also confirmed that the domain
decomposition, and the use of SPMD are important and this is
easy with our parallel platform of GCC. The performance of
the 2D IADE-DY with the parallel paradigm is in many cases
superior. As the number of processors increases, the
bottleneck of parallel computation appears and the global

reduction consumes a large part of time, then the improvement
becomes significant.

REFERENCES

[1] J. Aguilar, E. Leiss, ‘Parallel loop scheduling approaches for distributed
and shared memory system,’ Parallel Process Letter 15 (1 – 2), 131 –

152, 2005.

[2] E. Aubanel, ‘Scheduling of tasks in the parareal algorithm,’ Parallel
Computing 37 (3), 172 – 182, 2011.

[3] W. Barry, A. Michael, ‘Parallel programming techniques and application

using networked workstation and parallel computers,’ Prentice Hall,
New Jersey, 2003.

[4] D. Callahan, K. Kennedy, ‘Compiling programs for distributed memory

multiprocessors,’ Journal of supercomputer 2, pp 151 – 169, 1988.

[5] E. Celledoni, T. Kvamsdal, ‘Parallelization in time for thermo-
viscoplastic problems in extrusion alluminium,’ Int’l Journal for

numerical methods in engineering 75 (5), 576 – 598, 2009.

[6] H. Chi-Chung, G. Ka-Kaung, ‘Solving partial differential equations on a
network of workstations,’ IEEE, pp 194 – 200, 1994.

[7] P.J Coelho, M.G Carvalho, ‘Application of a domain decomposition
technique to the mathematical modeling of utility boiler’ Journal of

numerical methods in eng., 36 pp 3401 – 3419, 1993.

[8] D. Cyril, M. Fabrice, ‘Jacobi computation using mobile agent,’ Int’l
Journal of Computer Science & Information Technologies, 1 (5), 392 –

401, 2010.

[9] D’Ambra P., M. Danelutto, S. Daniela, L. Marco, ‘Advance
environments for parallel and distributed applications: a view of current

status,’ Parallel Computing 28, pp 1637 – 1662, 2002.

[10] H.S Dou, Phan-Thien, ‘A Domain decomposition implementation of the
simple method with PVM,’ Computational Mechanics 20 pp 347 – 358,

1997.

[11] F. Durst, M. Perie, D. Chafer, E. Schreck, ‘Parallelization of efficient
numerical methods for flows in complex geometries,’ Flow simulation

with high performance computing I, pp 79 – 92, Vieweg,
Braunschelweig, 1993.

[12] J.H. Eduardo, M.A. Yero, H. Amaral, ‘Speedup and scalability analysis

of master-slave application,’ 2007.

[13] D.J. Evans, M.S. Sahimi,’The alternating group explicit iterative method

for parabolic equations I: 2-dimensional problems, Intern. j. compt.
math, Vol. 24, (1988) pp. 311-341

[14] S. U. Ewedafe, R. H. Shariffudin, ‘Armadillo generation distributed

system with geranium cadcam cluster for solving 2-d telegraph
problem,’ Intern. j. compt. math, vol. 88, 589 – 609, 2011.

[15] S. U. Ewedafe, R. H. Shariffudin, ‘Parallel implementation of 2-d

telegraphic equation on MPI/PVM cluster,’ Int. j. parallel prog, 39, 202
– 231, 2011.

[16] A. Fatoohi, E.G. Chester, ‘Implementation of an ADI method on parallel

computers,’’ Journal of scientific computing 2 (2), 1987.

[17] M. J. Gander, S. Vandewall, ‘Analysis of the parareal time-parallel time-
integration method,’ SIAM jour. on scientific computing 29 (2), 556 –

578, 2007.

[18] N. Giacaman, O. Sinnen, ‘Parallel iterator for parallelizing object-
oriented applications,’ Intl journal of parallel programming, 39 (2) 223 –

269, 2011.

[19] W. Groop, E. Lusk, A. Skjellum, ‘Using MPI, portable and parallel

programming with the message passing interface,’ 2
nd

 Ed., Cambridge
MA, MIT Press, 1999.

[20] Y. Guangwei, H. Xudeng, ‘Parallel iterative difference schemes based

on prediction techniques for Sn transport method,’ Applied numerical
mathematics 57, 746 – 752, 2007.

[21] M. Gupta, P. Banerjee, ‘Demonstration of automatic data partitioning for

parallelizing compilers on multi-computers,’ IEEE trans. parallel
distributed system, 3, vol. 2, pp 179 – 193, 1992a.

[22] K. Jaris, D.G. Alan, ‘A High-performance communication service for

parallel computing on distributed systems,’ Parallel computing 29, pp
851 – 878, 2003.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 6, 2013

33 | P a g e
www.ijarai.thesai.org

[23] H. Laurant, ‘A method for automatic placement of communications in

SPMD parallelization,’ Parallel computing 27, 1655 – 1664, 2001.

[24] J. L. Lions., Y. Maday, G. Turinki, ‘Parareal in time discretization of

PDE,’ Comptes, rendus de lacadimie des sciences – series 1 –
mathematics 332 (7), 661 – 668, 2011.

[25] A. R. Mitchell, G. Fairweather, ‘Improved forms of the Alternating

direction methods of Douglas, Peaceman and Rachford for solving
parabolic and elliptic equations, ’Numer. maths, 6, 285 – 292, 1964.

[26] J. Noye, ‘Finite difference methods for partial differential equations,’

Numerical solutions of partial differential equations. North-Hilland
publishing company, 1964.

[27] D.W Peaceman, H.H Rachford, ‘The numerical solution of parabolic and

elliptic differential equations,’ Journal of soc. indust. applied math. 8 (1)
pp 28 – 41, 1955.

[28] L. Peizong, Z. Kedem, ‘Automatic data and computation decomposition

on distributed memory parallel computers,’ ACM transactions on

programming languages and systems, vol. 24, number 1, pp 1 – 50,

2002.

[29] M. S. Sahimi, E. Sundararajan, M. Subramaniam, and N. A. A Hamid,

‘The D’Yakonov fully explicit variant of the iterative decomposition
method,’ International journal of computers and mathematics with

applications, 42, 1485 – 1496, 2001.

[30] V. T Sahni, ‘Performance metrics: keeping the focus in routine. IEEE
parallel and distributed technology, Spring pp 43 – 56, 1996.

[31] G.D Smith, ‘Numerical solution of partial differential equations: finite

difference methods 3
rd

 Ed.,’ Oxford oniversity press New York, 1985.

[32] X.H Sun, J. Gustafson, ‘Toward a Better Parallel Performance Metric,’
Parallel Computing 17, 1991.

[33] M. Tian, D. Yang, ‘Parallel finite-difference schemes for heat equation

based upon overlapping domain decomposition,’ Applied maths and
computation, 186, pp 1276 – 1292, 2007.

