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Abstract—A parallel implementation of the Iterative 

Alternating Direction Explicit method by D’Yakonov (IADE-DY) 

for solving 2-D heat equation on a distributed system of 

Geranium Cadcam cluster (GCC) using the Message Passing 

Interface (MPI) is presented. The implementation of the 

scheduling of n tri-diagonal system of equations with the above 

method was used to show improvement on speedup, effectiveness, 

and efficiency. The Master/Worker paradigm and Single 

Program Multiple Data (SPMD) model is employed to manage 

the whole computation based on the use of domain 

decomposition. The completion of the execution can need task 

recovery and favorable configuration. The above mentioned 

details consist of a main report about the numerical validation of 

the parallelization through simulation to demonstrate the 

proposed method effectiveness on the cluster system.  It was 

found that the rate of convergence decreases as the number of 

processors increases. The result of this paper suggests that the 2-

D IADE-DY scheme is a good approach to solving problems, 
particularly when it is simulation with more processors. 

Keywords—Parallel Implementation; Heat Equation; SPMD; 

IADE-DY; Domain Decomposition 

I. INTRODUCTION  

Software programmers developing parallel application do 
focus on some challenges in the area of parallel computing. 
According to [18] there are theoretical challenges such as task 
decomposition, dependence analysis, and task scheduling. 
Then there are practical challenges such as portability, 
synchronization, and debugging. An alternative and cost 
effective means of achieving a comparable performance is by 
way of distributed computing, using a system of processors 
loosely connected through a local area network [3]. For a 
global computational task with other processors, relevant data 
need to be passed from processors to processors through a 
message passing mechanism [7, 11, 28, 22]. There is greater 
demand for computational speed and computations must be 
completed within reasonable time period by using multiple 
processors on a single problem, hence, the demand for faster 
processors has been growing rapidly, which can only be met 
by the sue of parallel computers for grand challenge problems 
[19, 30] and [4]. 

There are a number of important unresolved questions 
concerning multiprocessor computers, among these issues are: 
should they consist of a few, rather powerful processors or 
many very much less powerful processors, or something in 
between? According to [16] there is a natural expectation that 
the multiprocessors with a few, powerful processors will have 

an MIMD architecture, and that the others will have SIMD 
architecture. Parallelization of heat equation has been 
proposed by [3], and recent developments have included a 
number of different applications [5, 2]. Another issue is the 
communication among the processors. How is the memory 
connected to the processors, and how are these processors 
connected to each other? The model proposed in this paper 
enhances overlap communication and computation to avoid 
unnecessary synchronization; hence, the method yields 
significant speedup by the use of the non-blocking 
communication. 

While the theoretical properties of the 2-D IADE-DY 
algorithm employing the master/worker paradigm and SPMD 
model are promising, achieving good performance in practice 
can be challenging. In reference to [2] this is due to 
fundamental tradeoff between the reduction of the time 
required for an inherently sequential part of the algorithm, and 
an increase in the number of the iterations required to 
converge. Previous analysis of the IADE scheme in the 
literature did not consider the efficient parallelization and 
scheduling of tasks to improve scalability. Sequential 
numerical methods for solving time dependable problems have 
been explored extensively [25, 30].  

A number of software tools have been developed for 
parallel implementation, MPI [19] is chosen since it has a 
large user group. The objective of our parallel focus is to 
improve performance. Due to our objective, parallelizing code 
has traditionally been paired with general code optimizations 
for performance, especially in the scientific and engineering 
area [18].  

The main contribution of this paper is to present a detailed 
study of the parallelization using the 2-D IADE-DY algorithm 
employing master/worker paradigm and SPMD model to 
enhance overlapping communication with computation on the 
GCC cluster system running MPI that result in significant 
improved speedup, effectiveness, and efficiency across 
varying mesh sizes. The Master/Worker paradigm and SPMD 
model is employed to manage the whole computation based on 
the use of domain decomposition. The completion of the 
execution can need task recovery and favorable configuration. 
Our results demonstrate two properties that make this 
approach attractive for the platform of GCC: overlap 
communication and computation, and ability to arbitrary use 
various varying mesh sizes. The distribution done in the GCC 
reduces the memory pressure on the master while preserving 
parallel efficiency.   
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To obtain results with sufficient accuracy for the numerical 
prediction of the scalable parallel implementation of the AGE, 
IADE and ADI algorithm, fine discretization of the domain 
would be necessary. Due to the limitation in both processing 
element power and memory on sequential architectures and 
the dimension of full scale utility, only coarse grids are 
possible. A confine enhancement may be achieved if a domain 
decomposition method is used to allow locally refined meshes. 
The paper is organized as follows: section 2 emphasizes on 
previous related work, section 3 introduces the model for the 
2-D heat equation and method and the 2D-IADE-DY scheme.  
Section 4 and 4 introduces the performance analysis and 
numerical experiment. Finally, a conclusion is included in 
section 6.  

II. PREVIOUS WORK 

Parallelization of Partial Differential Equations (PDE) by 
time decomposition was first proposed by [24]. The 
motivation for the paper was to achieve parallel real-time 
solutions. Recent improvements have included a number of 
different applications [5], and [2] emphasizes the scheduling 
of tasks in the Para real algorithm. The importance of loop 
parallelization and loop scheduling has been extensively 
studied [1]. This work is distinct while promoting flexibility, 
and applies standard parallel concepts. Several approaches to 
solving heat equation have been carried out in [6, 25, 26, 27] 
and [13, 29, 32]. We have applied the 2-D IADE-DY scheme 
by simulation to schedule the n tri-diagonal system of 
equations with the above method used to show improvement 
on speedup, effectiveness, and efficiency. Reference [10] and 
[12] show speedup and efficiency, while comparing to our 
results generated using GCC, the GCC results show better 
conformity to linearity for speedup and closeness to unity for 
efficiency than [10] as applied to the simple method using 
MPI. In [20], the unconditional stability of the alternating 
difference schemes has similarity to our scheme. Our 
implementation compared to [26] and [27, 6] is a way of 
proofing stability and convergence in the GCC cluster system. 
We also note the various constant improvements on speedup, 
effectiveness, and efficiency analysis carried out in [33h] 
using the overlapping domain decomposition method. 
However, [32] proposed a generalized speedup formula as the 
ratio of the parallel to sequential speed. As in relation to the 
performance strategies implementation, a thorough study of 
speedup models together with their advantages is implemented 
in [30, 9, 28] show the same conformity to our 
implementation, but here we were able to achieve unity 
conformity in the message passing mechanism. 

III. THE MODEL PROBLEM 

The problem that is of interest to us is the heat equation in 
2-dimension. We assume that the heat will spread within the 
field based on a dynamics described in [27, 31] and the 
Alternating Group Explicit [13] method by the following: 

2 2

2 2
( , , ), ( , , ) (0, ],

U U U
h x y t x y t R T

t x y

  
    

  
     (3.1) 

with the initial condition, 

( , ,0) ( , ),( , , ) {0},U x y F x y x y t R                    (3.1a) 

 

and ( , , )U x y t is specified on the boundary of ,R R by  

( , , ) ( , , ),( , , ) (0, ],U x y t G x y t x y t R T             (3.1b) 

 
where for simplicity we assume that the region R of the xy-

plane is a rectangle. Consider the two-dimensional heat (3.1) 
with the auxiliary conditions (3.1a) and (3.1b). The region R is 
a rectangle defined by  

 ( , ) : 0 ,0 .R x y x L y M      

At the point ( , , )i j kP x y t in the solution domain, the 

value of ( , , )U x y t is denoted by , ,i j kU  where

, 0 ( 1),0 ( 1)i jx i x y j y for i m j n and         

( 1), ( 1).x L m y M n       The increment in the 

time ,t t  is chosen such that 0,1,2,kt k t for k  

for simplicity of presentation, we assume that m and n are 

chosen so that x y   and consequently the mesh ratio is 

defined by
2( )t x    . 

 

A. The IADE-DY and DS-MF 

By fractional splitting, each time step in the double sweep 

methods is split into two steps of size / 2t . The horizontal 

sweep advances from kt to 1/2kt  by using a difference 

approximation that is implicit in only the x-direction. 
Specifically, past values in the y-direction along the grid line 

ix x are used, to yield the intermediate value , , 1/2i j ku  . 

Then, in the vertical sweep from 1/2kt  to 1kt  , the solution is 

obtained by using an approximation implicit in only the y-
direction and uses past values in the x-direction along the grid 

line jy y , to yield the final value , ,i j ku .   

At the ( 1/ 2)k  time level method, the solution of (3.1) 

uses a backward-difference approximation. 
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Where x yand  are the usual central difference 

operators in the x and y coordinates respectively.  
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From (3.4), for 1,2, ,j n  
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let 1 ,
2

a b c


     . Equation (3.5) – (3.7) can be 

written in a more compact matrix form as: 
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at the (k+1) time level, (3.1) is approximated by, 
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from (3.4), for i  = 1, 2, . . . , m. 
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let 1 ,
2

a b c


     . Equations (3.13) – (3.15) can be 

displayed in a more compact matrix form as: 
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B. IADE-DY 

The matrices A and B are respectively tridiagonal of size 
(mxm) and (nxn). Hence, at each of the (k + ½) and (k + 1) 
time levels, these matrices can be decomposed into 

1 2 1 2

1
,

6
G G G G  where 1 2G and G are lower and upper 

bidiagonal matrices given respectively by 
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hence, by taking p as an iteration index, and for a fixed 

acceleration parameter r > 0, the two-stage IADE-DY scheme 
of the form, 
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can be applied on each of the sweeps (3.2) and (3.10). By 

carrying out the relevant multiplications in (3.19), the 
following equations for computation at each of the 
intermediate levels are obtained: 
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IV. PERFORMANCE ANALYSIS AND PARALLEL ALGORITHM 

All experiment were performed on the GCC of 8 nodes 
with Gigabit Ethernet interconnect. Each node consists of dual 
core processors (3.0GHZ) with 16 GB of RAM. The MPI 
implementation was implemented in C/MPI.  A parallel 
platform design to run numerical application has to be 
efficient [8]. The platform contains more computations on 
large set of varying mesh sizes, and its evaluation has to be 
large to benchmarking. Performance concerns not only the 
cost of functions of the schemes, but resource accesses and 
code placement on computing resources [8]. Making 
declaration for placement of data at the beginning of 
computation, it does not accept any perturbation. The 2D 
IADE-DY scheme is extremely tested using the GCC cluster 
system for its implementation. The objective is to evaluate the 
overhead it introduces and its ability to exploit the inherent 
parallelism of an iterative computation as stated in [18]. The 
scalability across varying number of processors and mesh 
sizes is observed.  To obtain any speedup we need 
convergence in fewer than N iterations. The closer the coarse 
propagator is to the fine propagation, the faster will be the 
convergence. If they are too similar, then the sequential part of 
the algorithm will significantly degrade the speedup. A simple 
speedup analysis according to [2] produces the following: 

,
)1( KKNr

N


                                   (4.1) 

 
Where r is the ration of the time taken by coarse 

propagation to fine propagation over the same time interval, K 
is the number of iterations required for convergence, and 
communication overhead is ignored. 

In the limit ,,0
K

N
r    therefore, the efficiency 

will be .
1

K
Full efficiency can be achieved if the algorithm 

converges in one iteration. To make r smaller, the coarse 
propagator must be less than accurate due to larger time step 
or coarse spatial grid, which in turn requires more iteration to 
converge [17].  As treated in [14, 15], the algorithm for the 
scheme is performed on a distributed memory system of p 
processors, assumes that each processors initially stores n = 
N/p objects distributed over the entire physical domain. In the 
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first iteration of the algorithm, the domain is decomposed into 
two sub-domains so that the difference between the sums of 
the weight of the sub-domain is as small as possible. Then the 
same process is applied to two sub-domains in parallel, and 
process is repeated recursively, for log p iteration. In other 

words, during iteration i, 1 logi p,  the p processors are 

group into 
12 i

groups of 
1/ 2ip 

processors each. At the 

beginning of the iteration, the problem domain is already 

partitioned into 
12i

sub-domains and the objects in each sub-
domain are stored in single group of processors. At the end of 
the iteration, each processor group is divided into two groups, 
and the corresponding sub-domain is divided into two sub-
groups with the object in one sub-domain residing in one half 
the processors and the other objects in the other sub-domain 
residing in the other half of processor. Data parallelism 
originated the SPMD [23]. Thus, the finite difference 
approximation can be treated as a SPMD problem; essentially 
the same computation must be performed for multiple data 
sets. The multiple data are different parts of the overall grid, 
each sent to a different computer node (processor). The main 
issues that arise in parallelizing a finite difference grid are: the 
determination of how best to partitioned the grid among 
processors, and how to pass instructions about grid boundaries 
from node to node. 

The domain decomposition is used to distribute data 
between different processors, in order to minimize the idle 
time static load balancing is used to distribute the data such 
that each processor gets almost the same number of 
computational points. The partitioning and load balancing is 
done in the pre-processing stage, wherein, separate grid files 
are generated for each processor along with other necessary 
information about partitioning. Thus there is no need to 
allocate any extra storage or scatter the grid data when the 
parallel program is executed. At the end of the parallel 
computation each process writes the output into separate files 
suitable for verification. 

V. NUMERICAL EXPERIMENTS AND DISCUSSION 

The algorithm was tested on the 2-D heat equation and the 
application of the above mentioned algorithm is now 
demonstrated on meshes of 100x100, 200x200 and 300x300 
respectively. Tables 1 – 3, show the various performance 
timing. Consider the 2-D parabolic equation of the form: 

t

U

y

U

x

U














2

2

2

2

                                             (5.1) 

 
The boundary conditions and initial condition posed are: 
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The exact solution is given by 

 

       )()(),,( ySinxSinetyxU t  .  

TABLE I.  100x100 meshes with MPI 

 

                                                                                                           

Scheme N Tw Tm Tsd Spar Epar 

 

 1 334.3 8.6 3.3 1.000 1.000 

 2 285.6 8.5 3.2 1.516 0.758 

 3 198.7 8.5 3.1 2.172 0.724 

IADE 4 141.6 8.5 3.1 2.764 0.691 

 5 128.1 8.5 3.1 3.165 0.633 

 6 108.5 8.5 3.1 3.588 0.598 

 7 98.1 8.5 3.1 3.787 0.541 

 8 83.8 8.5 3.1 4.144 0.518 

 

TABLE II.  200x200 meshes with MPI 

 

                                                                                                          

Scheme N Tw Tm Tsd Spar Epar 

 

 1 486.4 14.9 5.8 1.000 1.000 

 2 392.8 14.7 5.6 1.782 0.891 

 3 308.5 14.7 5.6 2.562 0.854 

IADE 4 286.7 14.7 5.6 3.244 0.811 

 5 203.1 14.7 5.6 3.91 0.782 

 6 189.6 14.7 5.6 4.302 0.717 

 7 163.5 14.7 5.6 4.795 0.685 

 8 142.9 14.7 5.6 4.952 0.619 

 

 

TABLE III.  300x300 meshes with MPI 

 

                                                                                                            

Scheme N Tw Tm Tsd Spar Epar 

 

 1 685.4 18.6 9.5 1.000 1.000 

 2 536.8 18.5 9.3 1.798 0.899 

 3 482.1 18.5 9.3 2.658 0.886 

IADE 4 413.8 18.5 9.3 3.476 0.869 

 5 386.9 18.5 9.3 4.24 0.848 

 6 251.8 18.5 9.3 4.926 0.821 

 7 210.1 18.5 9.3 5.572 0.796 

 8 189.6 18.5 9.3 5.976 0.747 

       

 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 
Vol. 2, No. 6, 2013 

32 | P a g e  
www.ijarai.thesai.org 

Here, we observed in our experiments designed to test the 
effectiveness of our approach that as the mesh size increases, 
the execution time increases as well with a proportionate 
decrease in time as processors increases for three mesh sizes in 
Tables 1 – 3. Tw is the time for the worker, Tm is the master 
time, Tsd is the worker domain decomposition time for worker 
allocation, Spar is the speedup, and Epar is the efficiency. This 
phenomenon shows that as the number of processors 
increases, though it might lead to a decrease in execution time 
but will get to a point that increasing the processors will not 
have much impact on total execution time. The time spend in 
data exchange will be significant compared to the time spend 
in computation and the parallel efficiency goes down. Hence, 
when the number of processors increases, balancing the 
number of computational cells per processors will become a 
difficult task due to significant load imbalance. When the 
number of processors increases, execution time suddenly 
increases for certain number of processors mesh sizes. This 
gain is due to the uneven distribution of the computational 
cells when a large number of processors are used, execution 
time had a very small change due to domain decomposition 
influence on performance in parallel computation. The larger 
the mesh sizes show that up to certain number, the speedup 
improvement is near linearity. The performance begins to 
degrade with an effect caused by increase in communication 
overheads.   

The problem size is scaled up following the memory-
bounded constraint. This phenomenon is well under expected 
since the implicit replacement has a very low computation 
overhead as implemented on the three problems. However, 
these jumps in communication time which are relatively larger 
than the others are mainly caused by the architecture of the 
communication between the processors, that is, due to the 
underlying machine architecture not the algorithm. This rate of 
performance decrease is fairly shown for parallel computing, 
especially for experiments conducted under non-dedicated 
environments which show that the proposed algorithm scales 
well. Our experiment shows reliability by conforming to 
convergence, and how memory is been distributed to access 
main data. This step is made possible by the Master/Worker 
computation process. 

VI. CONCLUSION  

We have explained in this paper how the role of GCC in 
the parallelization of the 2-D IADE-DY scheme is a good 
approach to solving problems, particularly when it is 
simulation with more processors. The objective is to present a 
design of paradigm adapted architecture for distributed 
computation, because they depend on empirical concern (data 
and code). The algorithm presented shows significant 
improvement when implemented on the above number of 
processors. In addition to the ease of use compared to other 
common approaches, the results shoe negligible overhead with 
effective load scheduling which produce the expected inherent 
speedups. It was also confirmed that the domain 
decomposition, and the use of SPMD are important and this is 
easy with our parallel platform of GCC. The performance of 
the 2D IADE-DY with the parallel paradigm is in many cases 
superior. As the number of processors increases, the 
bottleneck of parallel computation appears and the global 

reduction consumes a large part of time, then the improvement 
becomes significant.  
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