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Abstract—In this paper, we propose a new type of information-
theoretic method. We suppose that a neuron should be evaluated
from different points of view to precisely discern its properties.
In this paper, we restrict ourselves to two types of evaluation
methods for neurons, namely, self and outer-evaluation. A neuron
fires only as a result of evaluating itself, while the neuron can
fire as a result of evaluation by all surrounding neurons. Self-
and outer-evaluation should be equivalent to each other. When
contradiction between two types of evaluation exists, the con-
tradiction should be as small as possible. Contradiction between
self- and outer-evaluations is realized in terms of the Kullback-
Leibler divergence between two types of neurons. Contradiction
between self- and outer-evaluation can be resolved by decreasing
the contradiction ratio between the two types of evaluation in
terms of KL divergence. This method is expected to extract the
main features in input patterns, if those are shared by two types
of evaluation. We applied the method to two data sets, namely,
the logistic and dollar-yen exchange rate data. In both problems,
experimental results showed that visualization performance could
be improved, leading to clearer class structure for both problems.
In addition, when visualization was improved, generalization
performance did not necessarily degrade, showing the possibility
of networks with better visualization and prediction performance.

Keywords—contradiction resolution; self- and outer-evaluation;
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I. INTRODUCTION

We here introduce the necessity of using multiple types of
evaluation on a neuron to fully understand its main mechanism.
We restrict ourselves to two types of evaluation for neurons,
namely, self- and outer-evaluation for actual implementation.
Then, the necessity is more concretely explained in terms of
explicit class structure in the self-organizing maps and the
interpretation of internal representations in neural networks.

A. Contradiction Resolution

In this paper, we suppose that a neuron can be evaluated
from multiple points of view. For example, a neuron can be
evaluated individually or as a member of a neuron group.
The neuron may be seen differently when it is evaluated
individually or as a member of a group. If evaluation as an
individual neuron is contradictory to evaluation as a member
of a neuron group, the neuron should take some action to solve
this difficulty. This behavior cannot be fully explained without
considering the effects of other neurons, meaning that a neuron
cannot be understood from a single type of evaluation alone;

we must evaluate a neuron from multiple points of view to
fully understand the main mechanism of the neuron.

For the simplification and actual application of this neces-
sity of multiple types of evaluation, we suppose two types
of neuron evaluation [1]. One type of evaluation is realized
by evaluating a neuron for itself without any consideration
on other neurons. This means that a neuron fires to input
patterns, taking into account a relation between the neuron and
the input patterns. This evaluation is called “self-evaluation”.
On the other hand, the other one is obtained by evaluating
a neuron by taking into account other neurons’ relations
between the neurons and the input patterns. This means that
the neuron’s firing rates are determined only by those of
other neurons. This evaluation is called “outer evaluation”.
If the self-evaluation of a neuron is different from the outer-
evaluation of the same neuron, the neuron has very specific
characteristics which are not shared by other neurons. On the
other hand, if the self-evaluation is equivalent to the outer-
evaluation, the characteristics inherent to the neuron are shared
by the other neurons. Our hypothesis is that the contradiction
between the two types of evaluation should be reduced as much
as possible. It is desirable that all neurons are in harmony with
each other.

B. Explicit Class Structure

The contradiction resolution can be applied to the clarifica-
tion of class structure in self-organizing maps. Self-organizing
maps [2], [3], [4] are a well-known technique in neural net-
works. In particular, they have been used to visualize complex
data on simpler form. However, it has been difficult to fully
visualize knowledge obtained by the self-organizing maps.
Thus, there have been many different kinds of visualization
techniques so far developed for self-organizing maps [5], [6],
[71, [8], [9], [10], [11], [12]. [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22]. However, we can say that those methods
did not necessarily succeed in visualizing the knowledge
obtained by conventional self-organizing maps.

We think that one of the main reasons for the difficulty
in visualization is due to the characteristics of self-organizing
maps. Self-organizing maps are based upon competition and
cooperation between neurons. In particular, cooperation plays
the most important role. This cooperation is based upon the
hypothesis that neighboring neurons behave in the same way as
a particular neuron. A winner neuron is selected by the process
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of competition, and the neighboring neurons of the winner are
updated in the same way, in proportion to distance from the
winner neuron. Now, to clarify class structure, it is necessary
to make class boundaries as clear as possible. However, self-
organizing maps go through a process of making class bound-
aries unclear. This is because neighboring neurons must be as
similar as possible, due to the process of cooperation. The class
boundaries are naturally based upon dissimilarity between
neurons. This shows the necessity to attenuate cooperation
between neurons for explicit class structure.

In our contradiction resolution, cooperation between neu-
rons corresponds to the outer-evaluation, because the results
obtained by the outer-evaluation are ones realized only by
all the other neurons. On the other hand, self-evaluation is
a form of evaluation realized only within a neuron without
considering any other neurons. The influence of self-evaluation
can be used to attenuate the effect of cooperation between
neurons and to clarify dissimilarity between neurons. This
dissimilarity is related to the clarification of class boundaries
in self-organizing maps.

C. Interpretation of Internal Representation

Our contradiction resolution is used to provide supervised
neural networks with more interpretable internal represen-
tations. One of the most important things to do in neural
networks is to explain why such neural mechanisms can be
used to produce outputs from inputs through obtained internal
representations [23]. Though there have been many attempts to
interpret final representations [24], [25], [26], [27], [28] [29],
[30], [31], the problem has remained unsolved. Furthermore,
we are as yet unaware of the relationship between interpretable
representations and generalization performance.

Our method aims to provide neural networks with inter-
pretable internal representations in two ways, namely, through
visualization performance due to self-organizing maps and the
characteristics of self- and outer-evaluation. First, because our
method is applied to the production of self-organizing maps,
the outputs from our method are inherited from interpretable
knowledge in the self-organizing maps. As above mentioned,
the introduction of self- and outer-evaluation can be used to
make class boundaries clearer and to make it easier to interpret
final knowledge.

Second, the self- and outer-evaluation aim to enhance the
characteristics shared by two types of evaluation. A neuron
is evaluated for itself and by all the other ones. When the
characteristics obtained by the self-evaluation are equivalent
to those obtained by the outer-evaluation, those characteristics
should be emphasized or enhanced. On the other hand, if
the characteristics obtained by self-evaluation are different
from those obtained by outer-evaluation, those characteristics
should be weakened. Thus, we can expect that gradually, only
important and shared characteristics will become stronger. Our
contradiction resolution should finally produce interpretable
knowledge by enhancing important characteristics.

D. Outline

In Section 2, we first explain the concept of contradiction
between self and outer-evaluation. Then, we present how to
compute the firing rates by the self and outer-evaluation. We
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Fig. 1. Concept of contradiction resolution: perception (a) and resolution

(b) and (c).

introduce the Kullback-Leibler divergence between firing rates
by self- and outer-evaluation. This Kullback-Leibler diver-
gence is called the “contradiction ratio” to show how self-
and outer-evaluation are different from each other. Finally, we
explain how to compute connection weights by reducing the
contradiction ratio.

In Section 3, we present two experimental results, namely,
the logistic data and dollar-yen exchange rate estimation.
In the logistic data, we explain several evaluation measures
and how to implement them, showing experimental results.
While the results show that the conventional SOM failed to
produce explicit class boundaries, the contradiction resolution
produced from two to five class boundaries, depending on
the parameter. In addition, generalization performance was
the same as that by the conventional self-organizing maps
and radial-basis function networks. In the dollar-yen exchange
rate prediction, class structure became gradually complicated
when the parameter was increased. The generalization error
gradually decreased and seemed to reach a stable state when
the parameter was increased. The generalization errors were
sufficiently small compared to those generated by the con-
ventional self-organizing maps and the radial-basis function
networks.
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II. THEORY AND COMPUTATIONAL METHODS
A. Concept of Contradiction Resolution

We suppose that a neuron can be evaluated from many
different points of view to fully understand its main mech-
anism. The characteristics of a neuron can be changed by
different types of evaluation. A neuron is defined by the
unification of all the characteristics evaluated from different
points of view. For simplification, we suppose that there
are only two types of evaluation, namely, self- and outer-
evaluation. In self-evaluation, a neuron is evaluated by itself
and for itself, as represented in Figure 1 (al). On the other
hand, in outer-evaluation, a neuron is evaluated and viewed by
all the other neurons as shown in Figure 1 (a2). It is desirable
that the results of self-evaluation are equivalent to those of
outer-evaluation. However, it happens that the results of self-
evaluation are contrary to those by outer-evaluation. As shown
in Figure 1 (a), the firing rate obtained via self-evaluation is
small while that obtained via outer-evaluation is large. Because
this contradiction between self- and outer-evaluation exists, we
should make it as small as possible. In Figure 1 (bl), the firing
rate obtained by self-evaluation becomes larger and closer to
that obtained by outer-evaluation. This is a case where outer-
evaluation is more influential. On the other hand, in Figure 1
(c), the effect of self-evaluation becomes apparent. The firing
rate obtained by the outer-evaluation in Figure 1 (c2) becomes
smaller by the contradiction resolution, because the effect of
self-evaluation has some influence on the outer-evaluation.

By using this property of contradiction resolution, the
characteristics shared by both self- and outer-evaluation can
be enhanced, while those specific to each evaluation can be
inhibited. Thus, we can expect that important characteristics
are enhanced by the contradiction resolution.

B. Self and Outer Evaluation

Let us explain how to compute outputs from competi-
tive neurons and input patterns in Figure 2. The sth input
pattern of total S patterns can be represented by x° =
[z5, 25, -+ ,25]T, s = 1,2,---,S. Connection weights
into the jth competitive unit of total M units are computed
by C; = [Clj,CQj,"',CLj]T, ] = 1,2,...,M. NOW, w¢E
can compute the firing rates by self and outer-evaluation.
A neuron’s firing rates by self-evaluation can be defined by
using the outputs from the neuron. Then, the jth competitive
neuron output, without considering the other neurons, can be

computed by
s [x* = ¢ |?
v; = exp <—%‘_% . (1)

where x° and w; are supposed to represent L-dimensional
input and weight column vectors, where L denotes the number
of input units. The spread parameter o is computed by 1/8,
where 5 > 0. Thus, the firing rate obtained by the self-
evaluation can be computed by

| exp (LX)
(il s) = M (_2|fs—c2m|2) ' @

m=1 CXP 207
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The firing rate of a neuron evaluated by outer-evaluation is
determined by considering all the firing rates of all the other
neurons. We approximate the firing rates by summing all firing
rates of all neighboring neurons, excluding the target neuron.
In addition, the rates are weighted by the distances between
those neurons and the target neuron. Then, the outputs by the
outer evaluation are defined by

M

v = > (1= 8m)dimp(mls), 3)

m=1

where ¢;,,, represent relations between the jth and mth neuron.
The output obtained by the evaluation is the sum of all
neighboring neurons’ firing rates weighted by the relations
between them. Then, the firing rate of the outer-evaluation can
be defined by

SN (1 = 8jm)@jmp(m]s)

a0 | s) = SMSM (1= Spm)brmp(mls)

“4)

C. Contradiction Resolution

Contradiction resolution aims to reduce contradiction be-
tween self and outer-evaluation [32]. We use the Kullback-
Leibler divergence to represent the difference between self-
and outer-evaluation. Using the Kullback-Leiber divergence,
the contradiction ratio is defined by

NS a1 PULS)
CR = ;p(S);pU | 9)log s 5)

When the KL divergence is minimized, we have

S_ .12
» q(j | s)exp (—%)
P (715 = =

5 __ 2 :
S a(m | s)exp (—Lxpelt)

By substituting this optimal firing rates p*(j | s) for p(j | ),
we have the free energy:

(6)

S M
F = =20 p(s)log> q(j|s)
s=1 j=1

5 — ¢ 2
X exp (—H 2023 I . @)
B

This equation can be expanded as

S M
Fo= >"ps)Y 0G| 9)lx* — wyl?
s=1 i—=1
s u p(i| s)
2 %/ -
+2075 ;p(s);p (5| s)log Dk (8)

Thus, the free energy can be used to decrease K L divergence
as well as quantization errors. By differentiating the free
energy, we can obtain re-estimation formula:

- ZSSZI p (7| S)Xs.
’ Zf:l p*(J | s)

9
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We here present two experimental results by using the
artificial data and the dollar-yen exchange rates. We used the
logistic data as the artificial one, where in addition to the
presentation of experimental results, we show how to compute
several computational measures to evaluate the performance
quantitatively and visually. In the dollar-yen exchange rate es-
timation, we in particular show how visualization performance
is related to prediction performance. The network size was set
to a much larger one for the intuitive interpretation of our
results, namely, 20 by 15 neurons.

RESULTS AND DISCUSSION

A. Logistic Function Identification

1) Experiment Outline: We first used artificial data gen-
erated by the logistic function y = (1 — exp(—=z))/(1 +
exp(—x)). As shown in Figure 3(a), the training data was
generated by the function added to the normal random values
with a standard deviation of 0.1. The number of training
and testing patterns was 100 and 1,000, respectively. Figure
3(b) shows testing data (in black) and predicted values (in
red) by the RBF network with forward selection with the
Bayesian information criterion [33], [34], [35]. The input data
increased linearly from -10 to 10, meaning that no boundaries
inside could be identified. Thus, we tried to show how the
contradiction resolution divides this linear data into classes.
Then, we examine to what extent this classification is related
to the prediction performance.

2) Quantitative Evaluation: We quantitatively evaluated
the performance of contradiction resolution in terms of the
property of topological maps and prediction performance. For
the property of the self-organizing maps, we used the well-
known and simple error measures for quantification evaluation,
namely, quantization and topographic errors. This is because
much importance was placed on the easy reproduction of our
results. The quantization error is simply the average distance
from each data vector to its BMU (best-matching unit). The
topographic error is the percentage of data vectors for which
the BMU and the second-BMU are not neighboring units
[36]. In addition, to measure how the maps are organized, we
computed mutual information (INF)

INF = ZZp

s=1j=1

p(j | s)

®700) (10

p(j|s)lo

A neural network for two types of evaluation where some connection weights are eliminated for simplification purposes.

*
* HHFE g P

(b) Predicted

Fig. 3. Training data in red (a) and testing data in black with predicted values
in red (b) for the logistic function y = (1 — exp(—z))/(1 + exp(—=x)).

As this mutual information increases, the organization of the
maps increases accordingly.

Table I shows the summary of the experimental results. The
mean squared errors (MSE) between the targets and outputs
on the output layer decreased from 0.11346 (6=1) to 0.00126
(8=5). Then, the mean squared errors (MSE) slightly increased
and reached a stable value. The quantization errors (QE)
decreased from 5.050 (6=1) to 0.073 (6=20). The topographic
errors (TE) decreased from one (8=1) to 0.2 (6=30). Mutual
information increased from 0 (8=1) to 1.654 (5=30). The
correlation coefficients between mutual information and MSE,
QE and TE were -0.962, -0.999 and -0.419, respectively.
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TABLE 1. MSE FOR THE TESTING DATA, QUANTIZATION ERRORS
(QE), TOPOGRAPHIC ERRORS (TE) AND MUTUAL INFORMATION WHEN
THE PARAMETER 3 WAS CHANGED FROM 1 TO 19 FOR THE 20 BY 15 MAP.
THE SYMBOL CC IN THE FINAL ROW REPRESENTS THE CORRELATION
COEFFICIENTS BETWEEN INFORMATION (INF) AND THE OTHER
MEASURES.

B MSE QE TE  INF
1 011346 5050  1.000  0.000
3
5

0.00159 1.580 1.000 1.146

0.00126 0.633 1.000 1.428
7 0.00127 0.317 1.000 1.533
10 0.00128 0.151 1.000 1.605
15 0.00126 0.094 0.720 1.638
20 0.00126 0.073 0.660 1.649
25 0.00126 0.075 0.420 1.653

Thus, the quantization errors and topographic errors could be
decreased when mutual information was increased.

3) Visual Evaluation: We evaluated visualization perfor-
mance in terms of a U-matrix and contradiction ratios. For
visualization, we computed the contradiction ratio for each
neuron by the average of the contradiction ratios over all input

patterns
S
Rj =3 n(s)
s=1

We used the absolute values of the contradiction ratios only
for better visualization, namely, to show a tendency similar to
that of the U-matrix.

p(j | s)
q(j|s)

log . (11)

Figure 4 shows U-matrices (a) and contradiction ratios (b).
When the parameter § was increased from 10 to 20 in Figure 4
(al)-(a3), two class boundaries were gradually unfolded. When
the parameter 5 was 25 in Figure 4 (a4), the number of classes
increased to three. Finally, when the parameter was increased
to 30 in Figure 4 (a5), the number of class boundaries increased
to four. In addition, the contradiction ratios gradually detected
five classes corresponding to those detected by the U-matrix
in Figure 4 (b1)-(b5).

4) Interpretation: Figure 5 shows labels (1) and data with
boundaries (2) when the parameter 5 was changed from 20 (a)
to 30 (c). When the parameter 5 was 20, two class boundaries
were detected and three classes were identified. As shown in
Figure 5 (a), the logistic function was separated into flat higher
and lower areas, and the intermediate areas between them.
When the parameter 5 was increased to 25 in Figure 5 (b),
we could see three classes boundaries dividing four classes,
see Figure 5 (bl). As shown in Figure 5 (b2), in addition to
two class boundaries in Figure 5 (bl), a class boundary in
the middle of the U-matrix could be identified. Finally, when
the parameter 5 was 30 in Figure 5(c), four class boundaries
with five classes were identified, see Figure 5(c1). The slope
between the lower and higher areas were further subdivided
into three classes in Figure 5 (c2).

5) Using Conventional Methods: For comparison, we used
the conventional SOM for the same logistic function. For
producing the self-organizing maps, the well-known SOM
toolbox of Vesanto et al. [37] was used, because the final
results of SOMs have been very different given the small
changes in implementation such as initial conditions. We have

Vol. 2, No. 7, 2013
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Fig. 5. U-matrices with 20 by 15 when the parameter 5 was changed from
20 (a) to 30 (c).

confirmed the reproduction of stable final results by using this
package. In the SOMs, the Batch method was used, which has
shown better performance than the popular real-time method
in terms of visualization, quantization and topographic errors.

The mean squared error (MSE) was the same (0.00126) as
that of the contradiction ratio in Table II. The quantization error
was 0.048, see Table II. On the other hand, by the contradiction
resolution, the lowest error was 0.073, as shown in Table I.
Thus, the conventional SOM showed lower quantization errors.
The topographic error was 0.580, shown in Table II. Thus,
the topographic error by the contradiction ratio in Table I
was much lower than that obtained by the conventional SOM.
Mutual information was 1.635 by the SOM, while it increased
to 1.654 via the contradiction resolution, see Table I. Thus,
mutual information by contradiction resolution was slightly
higher than that by the conventional SOM. The RBF networks
with the Ridge regression and generalized cross validation
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Fig. 4.

TABLE II. MSE FOR TESTING DATA, QUANTIZATION ERRORS (QE),
TOPOGRAPHIC ERRORS (TE) AND MUTUAL INFORMATION (INF) BY THE
SOM AND RADIAL-BASIS NETWORKS. THE SYMBOL ”"FS” DENOTES THE
FORWARD SELECTION RBF WITH THE BAYESIAN INFORMATION
CRITERION AND "RR” DENOTES THE RIDGE REGRESSION RBF WITH THE
GENERALIZED CROSS VALIDATION.

Size or methods MSE QE TE INF
SOM 0.00126  0.048  0.580  1.635
I O R
RR(gev) 0.00124

(a) U-matrix (b) CR

Fig. 6. U-matrices (a) and contradiction ratios (b) by the conventional SOM
when the network size was 20 by 15.

[33], [34], [35] showed the best result of 0.00124 (MSE).
However, by the RBF with forward selection and the Bayesian
information criterion, the worst error of 0.00142 was obtained.
By visual inspection, we could see that two class boundaries,
which were rather weak, moved to the center of the U-matrix
in Figure 6 (a). By the contradiction ratios, two classes on
the upper right and lower left hand sides of the map became
larger, as in Figure 6(b).

U-matrices and contradiction ratios with 20 by 15 when the parameter 5 was changed from 10 (a) to 30 (c).

TABLE III. MSE FOR TESTING DATA, QUANTIZATION ERRORS (QE),
TOPOGRAPHIC ERRORS (TE) AND MUTUAL INFORMATION WHEN THE TIME
LAG WAS CHANGED FROM 1 TO 10 AND THE PARAMETER 3 WAS 10.

Lag  MSE QE TE  INF
T 0068 0058 0776 0.79%
2 0077 028 0385  0.802
30066 0370 0304  0.800
4 0050 0450 0.194 0.793
5 0058 0447 0.133  0.79%
6 0060 0495 0257 0.794
7 0061 0536 0.174 0.791
8 0064 0559 0.181 0.789
9 0063 0571 0.130 0.790

—_
(=]

0.065  0.608 0.097 0.786

B. Dollar-Yen Exchange Rate Prediction

1) Time Lag: In the dollar-yen exchange rate prediction,
the rate at time ¢ must be estimated by the previous ¢ rates
ZTy—1,..t—q- The time lag ¢ must be determined before the
experiment. We determined the time lag based on the errors
(MSE) for the testing data when the parameter 0 was ten.
Table III shows the summary of the experimental results. The
mean squared error (MSE) for the testing data decreased and
increased from 0.068 (lag=1) to 0.065 (lag=10). When the time
lag was four, the minimum value of 0.050 was obtained. The
quantization errors (QE) increased from 0.058 to 0.608, while
the topographic errors (TE) decreased from 0.776 to 0.097.
Mutual information decreased slightly from 0.802 (lag=2) to
0.786 (lag=10). The experimental results showed that the mean
squared error (MSE) was the lowest when the time lag was
four. The quantization errors (QE) increased gradually when
the lag increased, while the topographic errors decreased.
In addition, mutual information remained almost unchanged.
From these results, in our experiments, the time lag was
determined to be four.
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TABLE IV. MSE FOR THE TESTING DATA, QUANTIZATION ERRORS
(QE), TOPOGRAPHIC ERRORS (TE) AND MUTUAL INFORMATION WHEN
THE PARAMETER 3 WAS CHANGED FROM 1 TO 19 FOR THE 20 BY 15 MAP.
. THE SYMBOL CC IN THE FINAL ROW REPRESENTS CORRELATION
COEFFICIENTS BETWEEN INFORMATION (INF) AND THE OTHER
MEASURES.

8 MSE QE TE  INF
1 5024 3977 0.000  0.000
3 0.108 0861 0.161 0715
5
7
9

0.155 0.611 0.300  0.787
0.109 0.573 0294 0.794
0.049 0.508 0317  0.796
11 0.049 0.401 0.161 0.796
13 0.055 0326 0.194  0.797
15 0.054 0298  0.244  0.797
17 0.055 0281  0.228  0.797

2) Prediction Performance: Table IV shows the summary
of the experimental results. The minimum value for MSE
was 0.049 when the parameter S was nine and eleven. The
quantization errors (QE) decreased gradually to 0.263 (5=19).
The topographic errors (TE) fluctuated from zero (5=1) to
0.317(5=9). Mutual information immediately reached the level
of 0.794 when the parameter § was seven. Then, mutual
information seemed to be stable. The correlation coefficients
between MSE, QE, TE and mutual information were -0.973,
-0.989 and 0.709, respectively.

The experimental results showed that the mean squared
errors for the testing data was the lowest when the parameter
(8 was around 10. The quantization errors decreased gradually
when the parameter 8 was increased. The topographic errors
fluctuated when the parameter 8 was increased. In addition,
mutual information had a strong negative correlation with the
MSE and quantization errors. This means that if we want to
decrease the MSE and quantization errors, we have only to
increase mutual information, meaning that all we have to do
given decreasing MSE and quantization errors is to increase
the parameter £.

3) Visual Performance: Figure 7 shows the U-matrices and
contradiction ratios when the parameter S was increased from
3 to 19. When the parameter § was increased from three in
Figure 7 (al) and (bl) to seven in Figure 7 (a3) and (b3), one
clear class boundary could be seen and neurons with higher
contradiction ratios could be seen on the upper side of the map.
When the parameter 3 was increased to nine in Figure 7 (a4)
and (b4), the class boundary on the upper side was twisted,
and another boundary appeared at the bottom. Neurons with
the contradiction ratios were also differentiated on the upper
side, and a small group of higher contradiction ratios could be
seen on the lower side of the map. When the parameter 3 was
increased to 19 in Figure 7 (a5) and (b5), the class boundaries
on the upper side of the map became further complicated, and
other boundaries at the bottom appeared. The contradiction
ratios with high values scattered to the four corners of the
map, as in Figure 7 (b5).

4) Interpretation: We tried to interpret how contradiction
resolution classified the entire period. We interpreted the maps
when the parameter 8 was fixed so as to minimize the MSE
for the testing data. Figure 8 shows maps with labels based
on the U-matrices when the network size was 20 by 15 (c¢)
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Exceptional period

Fig. 8.  Map with labels and class boundaries based on the U-matrices and
with 20 by 15 neurons for the dollar-yen exchange rates.
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Fig. 9.  Dollar-yen exchange rates during 2011.

and the parameter 5 was nine. The entire period seemed to
be divided into three. The first period saw the rates gradually
decreasing from January to July in Figure 9. The second period
saw the dollar-yen rates remain relatively stable during August
and September, as in Figure 9. In addition, a period with the
highest rates of April was separated by the class boundary on
the lower side.

5) Conventional Methods: For comparison, we used the
conventional SOM and RBF networks. Table V shows the sum-
mary of experimental results when we used the conventional
SOM and the radial basis networks. By the SOM, the MSE was
0.052, which was higher than that obtained by the contradiction
ratio in Table IV.

Using the RBE network with forward selection and the
Bayesian information criterion, the obtained error was 0.055.
When the RBF network with Ridge regression was used, the
MSE increased to 0.063, which was larger than that obtained
by our method in Table IV. Thus, our method showed the
possibility of better prediction performance. For the other
measures, the quantization and topographic errors were smaller
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Contradlctlon ratios and U-matrices by the conventlonal methods.

Fig. 10.

than those obtained by our method in Table IV. In addition,
mutual information was also smaller than that obtained by the
contradiction ratio in Table IV.

Figures 10 (a) and (b) show the contradiction ratios and U-
matrices obtained by the conventional SOM. Class boundaries
on the upper side of the matrix seemed to be present, but were
weaker than those obtained by our method, as shown in Figure
7. In addition, a group of neurons with higher contradiction
ratios was smaller and weaker compared to those present in
our method, see Figure 7.

C. Discussion

1) Validity of Methods and Experimental Results: In this
paper, we proposed a new information-theoretic method to
resolve contradiction in neural networks. We supposed that
a neuron can be evaluated from multiple points of view. To

U-matrices with 20 by 15 when the parameter 5 was increased from 3 to 19.

TABLE V. MSE FOR TESTING DATA, QUANTIZATION ERRORS (QE),
TOPOGRAPHIC ERRORS (TE) AND MUTUAL INFORMATION BY THE
CONVENTIONAL SOM AND RBF NETWORKS. ”"FS” DENOTES THE

FORWARD SELECTION RBF WITH THE BAYESIAN INFORMATION

CRITERION AND "RR” DENOTES THE RIDGE REGRESSION RBF WITH THE

GENERALIZED CROSS VALIDATION.

Methods MSE QE TE INF
T_SOM _ 0022 _0235_ 0117 0773

FS(bic) 0.055
RR(gev) 0.063

fully understand the characteristics of the neuron, we should
examine the characteristics obtained from these different types
of evaluation. For simplification, we suppose that a neuron
can be viewed from two forms of evaluation. These two types
of evaluation are self- and outer-evaluation, respectively. For
the self-evaluation, a neuron’s firing rate is determined by
evaluating only relations between the neuron and the incoming
input patterns. For the outer-evaluation, a neuron’s firing rate
is determined by evaluating relations between the incoming
input patterns and all its surrounding neurons. If contradiction
between self- and outer-evaluation exists, this contradiction
should be reduced as much as possible. In this way, we expect
that the characteristics shared by self- and outer-evaluation
will be enhanced, and eventually, that important characteristics
can be intensified. Thus, the contradiction resolution can be
expected to improve visualization and prediction performance
by extracting important characteristics in input patterns.

First, the experimental results confirmed that interpretation
by visualization could be improved. In the logistic data, weak
class boundaries were produced in terms of the U-matrix by the
conventional SOM, as in Figure 6. By contradiction resolution,
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depending on the parameter 3, we were able to explicitly
identify three to five classes in the logistic data in Figure 4. For
the dollar-yen exchange rates, the number of class boundaries
differed depending on the parameter (3, see Figure 7. The
conventional SOM failed to produce explicit class structure
in terms of the U-matrix in Figure 10. Compared with the
class structure obtained by the conventional SOM, the class
structure obtained by contradiction resolution was clearer, as
in Figure 7.

As mentioned in the introduction section, many attempts
have been made to visualize final representations in self-
organizing maps [5], [6], [7], [8], [9], [10], [13], [14], [16].
However, it has been difficult to visualize SOMs’ knowledge at
the present of stage of techniques. Our method of contradiction
resolution succeeded in producing explicit class structure in
two experimental results. These experimental results showed
that distinction between self- and outer-evaluation had effects
to clarify class structure.

However, the quality of visualized maps was not neces-
sarily improved. For the logistic data, quantization errors were
not necessarily smaller than those obtained by the conventional
SOM in Table I and II. For the dollar-yen exchange rates,
quantization and topographic errors were not smaller than
those obtained by the conventional SOM in Tables IV and
V. Only for the topographic errors of the logistic data, it was
possible that the errors were smaller than those by obtained
the conventional SOM, see Tables I and II. Though improved
predication performance was obtained, there is the possibility
that quantization and topographic errors were scarified. Thus,
careful attention should be paid to final representations for
interpretation.

Favorable results were obtained for prediction performance.
For the logistic data, contradiction resolution showed that the
MSE for the testing data was almost equivalent to that obtained
by the conventional SOM and RBF networks, as in Tables I and
II. In the dollar-yen exchange rates, the MSE by the contradic-
tion reduction was the lowest in Tables IV and V. In both cases,
clearer class structures could be identified as in Figures 7 and
10. This shows that contradiction resolution could be used to
improve visualization while keeping generalization errors low.

Because the evaluation criteria between our method and the
conventional RBF were different from each other, we could
not say definitely that contradiction resolution showed better
prediction performance. However, the experimental results
showed the possibility that prediction performance by contra-
diction resolution is not necessarily contrary to visualization
performance.

2) Limitation of the Method: One of the main problems is
that we have not yet determined criteria to choose optimal rep-
resentations for visualization and prediction. For visualization,
the experimental results showed that when the parameter § was
increased, class structure became complicated. Because we do
not yet have criteria to measure the clarity of class structure, all
we have to do is to visually inspect the final representations and
to choose the best possible representations for visualization.
Thus, it is apparent that we need objective criteria to choose
optimal representations for better visualization.

Objective criteria have not existed to choose the optimal
representations for prediction performance either. One of the
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ways to solve this problem is to use mutual information. In the
two experimental results, mutual information was correlated
with quantization errors and MSE. The correlation coefficients
were close to one for the two data sets in Tables I and IV.
This means that quantization and MSE can be decreased by
increasing mutual information. Thus, one way to obtain op-
timal representations is to monitor mutual information. Then,
the optimal point should be where mutual information ceases
to increase, namely, where mutual information reaches a stable
point.

3) Possibility of the Method: The possibility of the method
was explained in terms of a new SOM with a new visualization
method for self-organizing maps and an extension to multiple
types of evaluation. First, our method is related to a new type
of self-organizing maps which produce more explicit class
structure with a new visualization method. As mentioned in
the introduction section, it has been very difficult to visualize
SOM knowledge because final representations are usually
not easily interpretable. There have been many attempts to
visualize SOM knowledge more clearly. However, even if
sophisticated visualization methods are used, it is still difficult
to interpret SOM knowledge. In our experiments, by using the
conventional SOM, weak boundaries were detected both for
the logistic data in Figure 6 and for the dollar-yen exchange
rates in Figure 10. However, even if class boundaries were
weak in terms of a U-matrix, clear contradiction ratios could
be obtained in the above figures. In addition, the contradiction
ratios for each neuron showed clear class structure for both
cases in Figures 5 and 8. These results show the possibility
of a new SOM with a visualization method by using the
contradiction ratios.

Second, we have restricted ourselves to two types of
evaluation, namely, self- and outer-evaluation. This is because
they are easily implemented when we suppose the two types
of evaluation. However, as mentioned in the introduction
section, we think that a neuron should be evaluated from as
many different viewpoints as possible. Contradiction should
be computed among many different types of evaluation, and
this contradiction should be reduced as much as possible. If it
is possible to take into account many types of evaluation for
neurons, the characteristics of the neurons can be more exactly
interpreted.

IV. CONCLUSION

In this paper, we proposed a new type of information-
theoretic method called “contradiction resolution.” We sup-
posed that a neuron should be evaluated differently and
those different types of evaluation should be unified. For
simplification, we restricted ourselves to only two types of
evaluation, namely, self- and outer-evaluation. In the self-
evaluation, a neuron is evaluated for itself, while in the outer-
evaluation, a neuron is evaluated by all its neighboring neurons.
Contradiction between the two types of neurons is represented
by the Kullback-Leibler divergence. Contradiction ratio in
terms of the Kullback-Leibler divergence is reduced as much
as possible.

We applied the method to the logistic and dollar-yen
exchange rates. For the logistic data, experimental results
confirmed that several explicit class boundaries which could
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not be detected by the conventional self-organizing maps were
detected by our method. In addition, better generalization
performance was obtained without significantly degrading to-
pographic preservation. In the dollar-yen exchange rates, class
structure obtained by contradiction resolution was much better
than that obtained by the conventional self-organizing maps.
The best MSE was obtained by using contradiction resolution,
though different criteria were used for comparison. At the least,
the experimental results showed a possibility of better predic-
tion performance. However, this improved performance was
obtained by sacrificing quantization and topographic errors.

Though there are several problems in our method, such as
the selection of optimal representations, it still, according to
the experimental results, has shown its potential for visualizing
data without sacrificing prediction performance. This shows
that we can develop neural networks with better interpretation
while keeping better predication performance.
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