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Abstract—Comparative study among Least Square Method: 

LSM, Steepest Descent Method: SDM, and Conjugate Gradient 

Method: CGM for atmospheric sounder data analysis (estimation 

of vertical profiles for water vapor) is conducted. Through 

simulation studies, it is found that CGM shows the best 

estimation accuracy followed by SDM and LSM. Method 

dependency on atmospheric models is also clarified. 
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I. INTRODUCTION 

Air-temperature and water vapor profiles are used to be 

estimated with Infrared Sounder data [1]. One of the problems 

on retrieving vertical profiles is its retrieving accuracy. In 

particular, estimation accuracy of air-temperature and water 

vapor at tropopause
1
 altitude is not good enough because there 

are gradient changes of air-temperature and water vapor 

profile in the tropopause so that observed radiance at the 

specific channels are not changed for the altitude.  

In order to estimate air-temperature and water vapor, least 

square based method is typically used. In the process, Root 

Mean Square: RMS difference between observed radiance and 

calculated radiance with the designated physical parameters 

are minimized. Then the designated physical parameters 

including air-temperature and water vapor at the minimum 

RMS difference are solutions.  

Typically, Newton-Raphson method
2
 which gives one of 

local minima is used for minimization of RMS difference. 

Newton-Raphson needs first and second order derivatives, 

Jacobean and Hessian at around the current solution. It is not 

easy to formularize these derivatives analytically. The 

proposed method is based on Levenberg Marquardt: LM of 

non-linear least square method
3
. It uses numerically calculated 

first and second order derivatives instead of analytical based 

derivatives. Namely, these derivatives can be calculated with 

radiative transfer model based radiance calculations. At 

                                                           
1 http://en.wikipedia.org/wiki/Tropopause 
2 http://en.wikipedia.org/wiki/Newton's_method 
3  

http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm 

around the current solution in the solution space, directional 

derivatives are calculated with the radiative transfer model. 

The proposed method is validated for air-temperature and 

water vapor profile retrievals with Infrared: IR sounder
4
 data 

derived from Atmospheric Infrared Sounder:/AIRS onboard 

AQUA satellite [2]-[7]. A comparison of retrieving accuracy 

between Newton-Raphson method and the proposed method 

based on LM method [8] is made in order to demonstrate an 

effectiveness of the proposed method in terms of estimation 

accuracy in particular for the altitude of tropopause [9]. Global 

Data Assimilation System: GDAS
5
 data of assimilation model 

derived 1 degree mesh data is used as truth data of air-

temperature and water vapor profiles. The experimental data 

show that the proposed method is superior to the conventional 

Newton-Raphson method. 

The following section describes proposed method for 

water vapor profile retrievals followed by experiments. Then 

finally, conclusion and some discussions are described. 

II. THEORETICAL BACKGROUND AND SIMULATION 

METHOD 

A. Radiative Transfer Equation 

Radiative transfer equation is expressed with equation (1). 

 

 
 

where νdenotes wave number (cm-1), and 

Rν: at sensor brightness temperature 

(I0)ν : brightness temperature of ground surface 

τν(z0): total column atmospheric transmittance 

B{T(z)}ν: Planckian function of air temperature at the altitude 

of z 

Kν(z): atmospheric transmittance at the altitude of z 

This equation (1) can be linearized as follows, 

 

R=BK      (2) 

                                                           
4 http://en.wikipedia.org/wiki/Atmospheric_Infrared_Sounder 
5 http://www.mmm.ucar.edu/mm5/mm5v3/data/gdas.html 
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Where the number of unknown variables and the number 

of given equations are same. Therefore, it can be solved 

relatively  easily. This solution from linear inversion 

provides initial value  of the steepest descent method. 

Without this initial value, steepest descent method falls in 

one of local minima easily. 

B. Water Vapor Profile Retrieval Method 

For instance, it can be solved based on steepest descent 
method as shown in equation (3) 

 

 
 

Also, it is possible to estimate water vapor profile to minimize 

the following covariance matrix of error, 

 

 
Where 

x a : Designated variable matrix 

xˆ : Variable matrix for estimation 

A: Jacobian Matrix 

S : Covariance matrix for measurement error 

R: Observed brightness temperature 

R a : Estimated brightness temperature 

Covariance matrix can be defined as equation (5). 

 

 
 

Jacobian Matrix can be expressed in equation (6). 

 

 
 

C. Steepest Descent Method (Non-linear optimization 

method) 

Steepest descent method can be represented in equation (7). 

 
Where 

q k : estimated value at the iteration number k 

g : updating vector 

α : step width 

Estimated value can be updated with the direction of g and 

with step size of α. Then estimation process is converged at 

one of local minima, not global optimum solution. This 

learning or updating process can be illustrated as shown in 

Figure 1. Initial value is derived from the linear inversion, 

K=B
-1

R. 

 

 
Fig. 1. Process flow of steepest descent method 

D. Simulation Method 

From equation (1), observed brightness temperature of 

atmospheric sounder can be expressed as follows, 

 
Where w denotes water vapor content in the atmosphere 

while α 、β 、γ 、ψ denotes coefficients. Using MODTRAN 

of radiative transfer software code including six atmospheric 

models, Tropic: TRP, Mid. Latitude Summer: MLS, Mid. 

Latitude Winter: MLW, Sub-Arctic Summer: SAS, Sub-Arctic 

Winter: SAW, and 1976 US Standard atmosphere: USS, 

observed brightness temperature at certain wavelength can be 

calculated. With the reference to AIRS observation 

wavelength, the following three wavelength are selected for 

simulation study, 6.7, 7.3, and 7.5 μm. Therefore, coefficients 

in equation (8) can be estimated for each observation 

wavelength together with Root Mean Square Error: RMSE of 

water vapor retrieval error. 

III. SIMULATION RESULTS 

A. Water Vapor Profile 

Figure 2 to 8 shows water vapor profiles for 6 different 

atmospheric models with default relative humidity, and its 

plus minus 10%, 20%, and 30% while Figure 9 to 15 shows 

accumulated water vapor profiles for 6 different atmospheric 

models with default relative humidity, and its plus minus 10%, 

20%, and 30% derived from MODTRAN 4.3, respectively. 

These water vapor profiles and accumulated water vapor 

profiles are totally dependent on relative humidity, obviously. 

It is also obvious that water vapor and accumulated water 

vapor of the Tropic atmosphere is greatest followed by Mid. 

Latitude Summer, 1976 U.S. Standard, Mid. Latitude Winter, 

Sub Arctic Summer, and Sub Arctic Winter.  
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Fig. 2. Water vapor profiles for 6 atmospheric models with default relative 

Humidity 

 

 
Fig. 3. Water vapor profiles for 6 atmospheric models with default relative 

humidity minus 10% 

 

 
Fig. 4. Water vapor profiles for 6 atmospheric models with default relative 

humidity minus 20% 

 

 
Fig. 5. Water vapor profiles for 6 atmospheric models with default relative 

humidity minus 30% 

 

 
Fig. 6. Water vapor profiles for 6 atmospheric models with default relative 

humidity plus 10% 

 
Fig. 7. Water vapor profiles for 6 atmospheric models with default relative 

humidity plus 20% 
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Fig. 8. Water vapor profiles for 6 atmospheric models with default relative 

humidity plus 30% 

 

 
Fig. 9. Accumulative water vapor profiles for 6 atmospheric models with 

default relative humidity 

 
Fig. 10. Accumulative water vapor profiles for 6 atmospheric models with 

default relative humidity minus 10% 

 

 
Fig. 11. Accumulative water vapor profiles for 6 atmospheric models with 

default relative humidity minus 20% 

 

 
Fig. 12. Accumulative water vapor profiles for 6 atmospheric models with 

default relative humidity minus 30% 

 

 
Fig. 13. Accumulative water vapor profiles for 6 atmospheric models with 

default relative humidity plus 10% 
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Fig. 14. Accumulative water vapor profiles for 6 atmospheric models with 

default relative humidity plus 20% 

 

 
Fig. 15. Accumulative water vapor profiles for 6 atmospheric models with 

default relative humidity plus 30% 

 
Fig. 16. Optical depth profile for the tropic atmospheric model 

 

 
Fig. 17. Optical depth profile for the Mid. Latitude Summer atmospheric 

Model 

 

 

Fig. 18. Optical depth profile for the Mid. Latitude Winter atmospheric model 

 

Fig. 19. Optical depth profile for the Sub Arctic Summer atmospheric model 
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Fig. 20. Optical depth profile for the Sub Arctic Winter atmospheric model 

 

Fig. 21. Optical depth profile for the 1976 U.S. Standard atmospheric model 

B. Optical Depth Profile 

Figure 16 to 21 shows optical depth profiles for 6 different 

atmospheric models. It is also obvious that optical depth of the 

Tropic atmosphere is greatest followed by Mid. Latitude 

Summer, 1976 U.S. Standard, Mid. Latitude Winter, Sub 

Arctic Summer, and Sub Arctic Winter. 

C. Up-welling Radiance Profile 

Figure 22 to 26 shows up-welling radiance profiles for 6 

different atmospheric models. It is also obvious that upwelling 

radiance of the Tropic atmosphere is greatest followed by Mid. 

Latitude Summer, 1976 U.S. Standard, Mid. Latitude Winter, 

Sub Arctic Summer, and Sub Arctic Winter. 

 

 
Fig. 22. Up-welling radiance profiles for the Tropic atmospheric model 

 
Fig. 23. Up-welling radiance profiles for the Mid. Latitude Summer 

atmospheric model 

 
Fig. 24. Up-welling radiance profiles for the Mid. Latitude Winter 

atmospheric model 
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Fig. 25. Up-welling radiance profiles for the Sub Arctic Summer atmospheric 

model 

 

 
Fig. 26. Up-welling radiance profiles for the Sub Arctic Winter atmospheric 

Model 

 

 
Fig. 27. Up-welling radiance profiles for the 1976 U.S. Standard atmospheric 

model 

 

D. RMSE for Three Different Methods for Water Vapor 

Profile Estimation 

Root Mean Square Error: RMSE of three different water 

vapor estimation methods are evaluated. Using spectral 

upwelling radiance, it is possible to estimate water vapor 

profile. With the reference to AIRS observation wavelength, 

the following three wavelengths are selected for simulation 

study, 6.7, 7.3, and 7.5 μm. Up-welling radiance at the 

wavelength is calculated for 6 different atmospheric models 

with MODTRAN 4.3, then water vapor profile is estimated 

with the Least Square Method, Steepest Descent Method, and 

Conjugate Gradient Method. True water vapor profiles are 

given by MODTRAN 4.3. Therefore, RMSE can be evaluated.  

Table 1 to 3 shows RMSE. It is found that RMSE of the 

Conjugate Gradient Method is smallest followed by Steepest 

Descent Method and Least Square Method. Least Square 

Method is totally equal to Linear Regression. Because water 

vapor profile estimation is not linear problem solving, RMSE 

of the Least Square Method is not so good. Meanwhile, both 

Conjugate Gradient and Steepest Descent Methods find one of 

local minima. Steepest Descent Method often output trivial 

solution due to algorithm nature. Therefore, Conjugate 

Gradient Method is better than Steepest Descent Method 

mostly. 

TABLE I.  RMSE FOR STEEPEST DESCENT METHOD FOR 6 

ATMOSPHERIC MODELS 

 
 

TABLE II.  RMSE FOR CONJUGATE GRADIENT METHOD FOR 6 

ATMOSPHERIC MODELS 

 
 

TABLE III.  RMSE FOR LEAST SQUARE METHOD FOR 6 ATMOSPHERIC 

MODELS 
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IV. CONCLUSION 

Comparative study among Least Square Method: LSM, 

Steepest Descent Method: SDM and Conjugate Gradient 

Method: CGM for atmospheric sounder data analysis 

(estimation of vertical profiles for water vapor) is conducted. 

Three retrieval methods, SDM, LSM, and CGM are compared 

in terms of Root Mean Square Error: RMSE. In particular, 

atmospheric model dependency on RMSE is to be clarified. 

Thus it becomes possible to use the most appropriate method 

for each atmospheric model. Through simulation studies, it is 

found that CGM shows the best estimation accuracy followed 

by SDM and LSM. Method dependency on atmospheric 

models is also clarified. 
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