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Abstract—Fuzzy planar graph is an important subclass of
fuzzy graph. Fuzzy planar graphs and its several properties are
presented. A very close association of fuzzy planar graph is fuzzy
dual graph. This is also defined and several properties of it are
studied. Isomorphism on fuzzy graphs are well defined in literature.
Isomorphic relation between fuzzy planar graph and its dual graph
are established.
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I. INTRODUCTION

Graph theory has vast applications in data mining, im-
age segmentation, clustering, image capturing, networking,
communication, planning, scheduling. For example, a data
structure can be designed in the form of a tree which utilizes
vertices and edges. Similarly, modeling of network topologies
can be done using the concept of graph. In the same way,
the most important concept of graph colouring is utilized
in resource allocation, scheduling, etc. Also, paths, walks
and circuits are used to solve many problems, viz. travelling
salesman, database design, resource networking. This leads to
the development of new algorithms and new theories that can
be used in various applications.

There are many practical applications with a graph structure
in which crossing between edges is a nuisance such as design
problems for circuits, subways, utility lines, etc. Crossing of
two connections normally means that the communication lines
must be run at different heights. This is not a big issue for
electrical wires, but it creates extra expenses for some types of
lines, e.g. burying one subway tunnel under another. Circuits,
in particular, are easier to manufacture if their connections
can be constructed in fewer layers. These applications are
designed by the concept of planar graphs. Circuits where
crossing of lines is necessary, can not be represented by planar
graphs. Numerous computational challenges including image
segmentation or shape matching can be solved by means of
cuts of planar graph.

After development of fuzzy graph theory by Rosenfeld
[23], the fuzzy graph theory is increased with a large number
of branches. McAllister [17] characterised the fuzzy inter-
section graphs. In this paper, fuzzy intersection graphs have
been defined from the concept of intersection of fuzzy sets.

Samanta and Pal [25] introduced fuzzy tolerance graphs as the
generalisation of fuzzy intersection graphs. They also defined
fuzzy threshold graphs [26]. Fuzzy competition graphs [24]
are another kind of fuzzy graphs which are the intersection of
the fuzzy neighbourhoods of vertices of a fuzzy graph. Many
works have been done on fuzzy sets as well as on fuzzy graphs
[2], [3], [4], [5], [7], [8], [10], [11], [12], [13], [14], [15], [19].
Abdul-jabbar et al. [1] introduced the concept of fuzzy planar
graph. In this paper, the crisp planar graph is considered and
the membership values are assigned on vertices and edges.
They also defined fuzzy dual graph as a straight forward way
as crisp dual graph. Again, Nirmala and Dhanabal [22] defined
special fuzzy planar graphs. The work presented in this paper
is similar to the work presented in [1]. In these papers, the
crossing of edges in fuzzy planar graph is not allowed. But,
in our work, we define fuzzy planar graph in such a way
that the crossing of edges is allowed. Also, we define the
fuzzy planarity value which measures the amount of planarity
of a fuzzy planar graph. These two concepts are new and
no work has been done with these ideas. It is also shown
that an image can be represented by a fuzzy planar graph
and contraction of such image can be made with the help
of fuzzy planar graph. The fuzzy multigraphs, fuzzy planar
graphs and fuzzy dual graphs are illustrated by examples. Also,
lot of results are presented for these graphs. These results have
certain applications in subway tunnels, routes, oil/gas pipelines
representation, etc.

II. PRELIMINARIES

A finite graph is a graph G = (V,E) such that V and E
are finite sets. An infinite graph is one with an infinite set of
vertices or edges or both. Most commonly in graph theory, it
is implied that the graphs discussed are finite. A multigraph
[6] is a graph that may contain multiple edges between any
two vertices, but it does not contain any self loops. A graph
can be drawn in many different ways. A graph may or may
not be drawn on a plane without crossing of edges.

A drawing of a geometric representation of a graph on any
surface such that no edges intersect is called embedding [6]. A
graph G is planar if it can be drawn in the plane with its edges
only intersecting at vertices of G. So the graph is non-planar
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if it can not be drawn without crossing. A planar graph with
cycles divides the plane into a set of regions, also called faces.
The length of a face in a plane graph G is the total length of
the closed walk(s) in G bounding the face. The portion of the
plane lying outside a graph embedded in a plane is infinite
region.

In graph theory, the dual graph of a given planar graph G is
a graph which has a vertex corresponding to each plane region
of G, and the graph has an edge joining two neighboring
regions for each edge in G, for a certain embedding of G.

A fuzzy set A on an universal set X is characterized by
a mapping m : X → [0, 1], which is called the membership
function. A fuzzy set is denoted by A = (X,m).

A fuzzy graph [23] ξ = (V, σ, µ) is a non-empty set V to-
gether with a pair of functions σ : V → [0, 1] and µ : V ×V →
[0, 1] such that for all x, y ∈ V , µ(x, y) ≤ min{σ(x), σ(y)},
where σ(x) and µ(x, y) represent the membership values of
the vertex x and of the edge (x, y) in ξ respectively. A loop
at a vertex x in a fuzzy graph is represented by µ(x, x) 6= 0.
An edge is non-trivial if µ(x, y) 6= 0.

A fuzzy graph ξ = (V, σ, µ) is complete if µ(u, v) =
min{σ(u), σ(v)} for all u, v ∈ V , where (u, v) denotes the
edge between the vertices u and v.

Several definitions of strong edge are available in litera-
ture. Among them the definition of [9] is more suitable for
our purpose. The definition is given below. For the fuzzy
graph ξ = (V, σ, µ), an edge (x, y) is called strong [9]
if 1

2 min{σ(x), σ(y)} ≤ µ(x, y) and weak otherwise. The
strength of the fuzzy edge (x, y) is represented by the value

µ(x,y)
min{σ(x),σ(y)} .

If an edge (x, y) of a fuzzy graph satisfies the condition
µ(x, y) = min{σ(x), σ(y)}, then this edge is called effective
edge [21]. Two vertices are said to be effective adjacent if
they are the end vertices of the same effective edge. Then
the effective incident degree of a fuzzy graph is defined as
number of effective incident edges on a vertex v. If all the
edges of a fuzzy graph are effective, then the fuzzy graph
becomes complete fuzzy graph. A pendent vertex in a fuzzy
graph is defined as a vertex of an effective incident degree one.
A fuzzy edge is called a fuzzy pendant edge [24], if one end
vertex is fuzzy pendant vertex. The membership value of the
pendant edge is the minimum among the membership values
of the end vertices.

A homomorphism [20] between fuzzy graphs ξ and ξ′ is
a map h : S → S′ which satisfies σ(x) ≤ σ′(h(x)) for all
x ∈ S and µ(x, y) ≤ µ′(h(x), h(y)) for all x, y ∈ S where S
is set of vertices of ξ and S′ is that of ξ′.

A weak isomorphism [20] between fuzzy graphs is a
bijective homomorphism h : S → S′ which satisfies σ(x) =
σ′(h(x)) for all x ∈ S.

A co-weak isomorphism [20] between fuzzy graphs is a
bijective homomorphism h : S → S′ which satisfies µ(x, y) =
µ′(h(x), h(y)) for all x, y ∈ S.

An isomorphism [20] between fuzzy graphs is a bijective
homomorphism h : S → S′ which satisfies σ(x) = σ′(h(x))
for all x ∈ S and µ(x, y) = µ′(h(x), h(y)) for all x, y ∈ S.

The underlying crisp graph of the fuzzy graph ξ = (V, σ, µ)
is denoted as ξ∗ = (V, σ∗, µ∗) where σ∗ = {u ∈ V |σ(u) > 0}
and µ∗ = {(u, v) ∈ V × V |µ(u, v) > 0}.

A (crisp) multiset over a non-empty set V is simply a
mapping d : V → N , where N is the set of natural
numbers. Yager [31] first discussed fuzzy multisets, although
he used the term “fuzzy bag”. An element of nonempty
set V may occur more than once with possibly the same
or different membership values. A natural generalization of
this interpretation of multiset leads to the notion of fuzzy
multiset, or fuzzy bag, over a non-empty set V as a mapping
C̃ : V × [0, 1] → N . The membership values of v ∈ V are
denoted as vµj , j = 1, 2, . . . , p where p = max{j : vµj 6= 0}.
So the fuzzy multiset can be denoted as M = {(v, vµj ), j =
1, 2, . . . , p|v ∈ V }.

To define fuzzy planar graph, fuzzy multigraph is essential
as planar graphs contain multi-edges. In the next section, fuzzy
multigraph is defined.

III. FUZZY MULTIGRAPH

In this section, the fuzzy multigraph is defined.
Definition 1: Let V be a non-empty set and σ : V →

[0, 1] be a mapping. Also let E = {((x, y), (x, y)µj ), j =
1, 2, . . . , pxy|(x, y) ∈ V × V } be a fuzzy multiset of
V × V such that (x, y)µj ≤ min{σ(x), σ(y)} for all j =
1, 2, . . . , pxy , where pxy = max{j|(x, y)µj 6= 0}. Then
ψ = (V, σ,E) is denoted as fuzzy multigraph where σ(x)
and (x, y)µj represent the membership value of the vertex x
and the membership value of the edge (x, y) in ψ respectively.

It may be noted that there may be more than one edge
between the vertices x and y. (x, y)µj denotes the membership
value of the j-th edge between the vertices x and y. Note that
pxy represents the number of edges between the vertices x and
y.

IV. FUZZY PLANAR GRAPHS

Planarity is important in connecting the wire lines, gas
lines, water lines, printed circuit design, etc. But, some times
little crossing may be accepted to these design of such lines/
circuits. So fuzzy planar graph is an important topic for these
connections.

A crisp graph is called non-planar graph if there is at least
one crossing between the edges for all possible geometrical
representations of the graph. Let a crisp graph G has a crossing
for a certain geometrical representation between two edges
(a, b) and (c, d). In fuzzy concept, we say that this two edges
have membership values 1. If we remove the edge (c, d), the
graph becomes planar. In fuzzy sense, we say that the edges
(a, b) and (c, d) have membership values 1 and 0 respectively.

Let ξ = (V, σ, µ) be a fuzzy graph and for a certain
geometric representation, the graph has only one crossing be-
tween two fuzzy edges ((w, x), µ(w, x)) and ((y, z), µ(y, z)).
If µ(w, x) = 1 and µ(y, z) = 0, then we say that the fuzzy
graph has no crossing. Similarly, if µ(w, x) has value near to
1 and µ(w, x) has value near to 0, the crossing will not be
important for the planarity. If µ(w, x) has value near to 1 and
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Fig. 1. Intersecting value between two intersecting edges.

µ(w, x) has value near to 1, then the crossing becomes very
important for the planarity.

Before going to the main definition, some co-related terms
are discussed below.

A. Intersecting value in fuzzy multigraph

In fuzzy multigraph, when two edges intersect at a point,
a value is assigned to that point in the following way. Let
in a fuzzy multigraph ψ = (V, σ,E), E contains two edges
((a, b), (a, b)µk) and ((c, d), (c, d)µl) which are intersected at
a point P , where k and l are fixed integers.

Strength of the fuzzy edge (a, b) can be measured by the
value I(a,b) =

(a,b)
µk

min{σ(a),σ(b)} . If I(a,b) ≥ 0.5, then the fuzzy
edge is called strong otherwise weak.

We define the intersecting value at the point P by IP =
I(a,b)+I(c,d)

2 . If the number of point of intersections in a
fuzzy multigraph increases, planarity decreases. So for fuzzy
multigraph, IP is inversely proportional to the planarity. Based
on this concept, a new terminology is introduced below for a
fuzzy planar graph.

Definition 2: Let ψ be a fuzzy multigraph and for a certain
geometrical representation P1, P2, . . . , Pz be the points of
intersections between the edges. ψ is said to be fuzzy planar
graph with fuzzy planarity value f , where

f =
1

1 + {IP1
+ IP2

+ . . .+ IPz}
.

It is obvious that f is bounded and the range of f is 0 < f ≤ 1.
If there is no point of intersection for a certain geometrical

representation of a fuzzy planar graph, then its fuzzy planarity
value is 1. In this case, the underlying crisp graph of this
fuzzy graph is the crisp planar graph. If f decreases, then the
number of points of intersection between the edges increases
and obviously the nature of planarity decreases. From this
analogy, one can say that every fuzzy graph is a fuzzy planar
graph with certain fuzzy planarity value.

Example 1: Here an example is given to calculate the
intersecting value at the intersecting point between two edges.
Two edges (a, b) and (c, d) are intersected where σ(a) =
0.7, σ(b) = 0.9, σ(c) = 0.75, σ(0.8), µ(a, b) = 0.4, µ(c, d) =
0.45 (see Fig. 1). Strength of the edge (a, b) is 0.4

0.7 = 0.57
and that of (c, d) is 0.45

0.75 = 0.6. Thus the intersecting value at
the point is 0.57+0.6

2 = 0.585.

Fuzzy planarity value for a fuzzy multigraph is calculated
from the following theorem.

Theorem 1: Let ψ be a fuzzy multigraph such that edge
membership value of each intersecting edge is equal to the
minimum of membership values of its end vertices. The fuzzy
planarity value f of ψ is given by f = 1

1+Np
, where Np is

the number of point of intersections between the edges in ψ.
Proof. Let ψ = (V, σ,E) be a fuzzy multigraph such that
edge membership values of each intersecting edge is equal
to minimum of its vertex membership values. For the fuzzy
multigraph, (x, y)µj = min{σ(x), σ(y)} for each intersecting
edge (x, y) and j = 1, 2, . . . , pxy .

Let P1, P2, . . . , Pk, be the point of intersections between
the edges in ψ, k being an integer. For any intersecting edge
(a, b) in ψ, I(a,b) =

(a,b)µj

min{σ(a),σ(b)} = 1. Therefore, for P1, the
point of intersection between the edges (a, b) and (c, d), IP1

is equals to 1+1
2 = 1. Hence IPi = 1 for i = 1, 2, . . . , k.

Now, f = 1
1+IP1

+IP2
+...+IPk

= 1
1+(1+1+...+1) = 1

1+Np
,

where Np is the number of point of intersections between the
edges in ψ. �

Definition 3: A fuzzy planar graph ψ is called strong fuzzy
planar graph if the fuzzy planarity value of the graph is greater
than 0.5.

The fuzzy planar graph of Example 5 is not strong fuzzy
planar graph as its fuzzy planarity value is less than 0.5.

Thus, depending on the fuzzy planarity value, the fuzzy
planar graphs are divided into two groups namely, strong and
weak fuzzy planar graphs.

Theorem 2: Let ψ be a strong fuzzy planar graph. The
number of point of intersections between strong edges in ψ is
at most one.
Proof. Let ψ = (V, σ,E) be a strong fuzzy planar graph. Let,
if possible, ψ has at least two point of intersections P1 and
P2 between two strong edges in ψ.

For any strong edge ((a, b), (a, b)µj ), (a, b)µj ≥
1
2 min{σ(a), σ(b)}. So I(a,b) ≥ 0.5.

Thus for two intersecting strong edges ((a, b), (a, b)µj )

and ((c, d), (c, d)µi),
I(a,b)+I(c,d)

2 ≥ 0.5, that is, IP1 ≥ 0.5.
Similarly, IP2 ≥ 0.5. Then 1 + IP1 + IP2 ≥ 2. Therefore,
f = 1

1+IP1
+IP2

≤ 0.5. It contradicts the fact that the fuzzy
graph is a strong fuzzy planar graph.

So number of point of intersections between strong edges
can not be two. It is clear that if the number of point
of intersections of strong fuzzy edges increases, the fuzzy
planarity value decreases. Similarly, if the number of point
of intersection of strong edges is one, then the fuzzy planarity
value f > 0.5. Any fuzzy planar graph without any crossing
between edges is a strong fuzzy planar graph. Thus, we
conclude that the maximum number of point of intersections
between the strong edges in ψ is one. �

Face of a planar graph is an important feature. We now
introduce the fuzzy face of a fuzzy planar graph.

Fuzzy face in a fuzzy graph is a region bounded by fuzzy
edges. Every fuzzy face is characterized by fuzzy edges in
its boundary. If all the edges in the boundary of a fuzzy face
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have membership value 1, it becomes crisp face. If one of such
edges is removed or has membership value 0, the fuzzy face
does not exist. So the existence of a fuzzy face depends on
the minimum value of strength of fuzzy edges in its boundary.
A fuzzy face and its membership value are defined below.

Definition 4: Let ψ = (V, σ,E) be a fuzzy planar graph
and
E = {((x, y), (x, y)µj ), j = 1, 2, . . . , pxy| (x, y) ∈ V ×

V } and pxy = max{j| (x, y)µj 6= 0}. A fuzzy face of ψ is
a region, bounded by the set of fuzzy edges E′ ⊂ E, of a
geometric representation of ψ. The membership value of the
fuzzy face is

min

{
(x, y)µj

min{σ(x), σ(y)} , j = 1, 2, . . . , pxy| (x, y) ∈ E′
}
.

A fuzzy face is called strong fuzzy face if its membership
value is greater than 0.5, and weak face otherwise. Every fuzzy
planar graph has an infinite region which is called outer fuzzy
face. Other faces are called inner fuzzy faces.

Example 2: In Fig. 2, F1, F2 and F3 are
three fuzzy faces. F1 is bounded by the edges
((v1, v2), 0.5), ((v2, v3), 0.6), ((v1, v3), 0.55) with
membership value 0.833. Similarly, F2 is a fuzzy bounded
face. F3 is the outer fuzzy face with membership value 0.33.
So F1 is a strong fuzzy face and F2, F3 are weak fuzzy faces.

Every strong fuzzy face has membership value greater than
0.5. So every edge of a strong fuzzy face is a strong fuzzy
edge.

�
�

�
�

�
�

�
�

v1(0.6) v2(0.7)t t

u u
v3(0.8) v4(0.7)

0.5

0.6

F1

F2

0.55

0.6

0.2

F3

Fig. 2. Example of faces in fuzzy planar graph.

Theorem 3: If the fuzzy planarity value of a fuzzy planar
graph is greater than 0.67, then the graph does not contain any
point of intersection between two strong edges.
Proof. Let ψ = (V, σ,E) be a fuzzy planar graph with
fuzzy planarity value f , where f ≥ 0.67. Let, if possible,
P be a point of intersection between two strong fuzzy edges
((a, b), (a, b)µj ) and ((c, d), (c, d)µj ).

For any strong edge ((a, b), (a, b)µj ), (a, b)µj ≥
1
2 min{σ(a), σ(b)}. Therefore, I(a,b) ≥ 0.5. For the minimum
value of I(a,b) and I(c,d), IP = 0.5 and f = 1

1+0.5 < 0.67. A

contradiction arises. Hence, ψ does not contain any point of
intersection between strong edges. �

Motivated from this theorem, we introduce a special type
of fuzzy planar graph called 0.67-fuzzy planar graph whose
fuzzy planarity value is more than or equal to 0.67. As in
mentioned earlier, if the fuzzy planarity value is 1, then the
geometrical representation of fuzzy planar graph is similar to
the crisp planar graph. It is shown in Theorem 7, if fuzzy
planarity value is 0.67, then there is no crossing between
strong edges. For this case, if there is any point of intersection
between edges, that is the crossing between the weak edge
and any other edge. Again, the significance of weak edge is
less compared to strong edges. Thus, 0.67-fuzzy planar graph
is more significant. If fuzzy planarity value increases, then
the geometrical structure of planar graph tends to crisp planar
graph.

Any fuzzy planar graph without any point of intersection
of fuzzy edges is a fuzzy planar graph with fuzzy planarity
value 1. Therefore, it is a 0.67-fuzzy planar graph.

V. FUZZY DUAL GRAPH

We now introduce dual of 0.67-fuzzy planar graph. In fuzzy
dual graph, vertices are corresponding to the strong fuzzy faces
of the 0.67-fuzzy planar graph and each fuzzy edge between
two vertices is corresponding to each edge in the boundary
between two faces of 0.67-fuzzy planar graph. The formal
definition is given below.

Definition 5: Let ψ = (V, σ,E) be a 0.67-fuzzy planar
graph and E = {((x, y), (x, y)µj ), j = 1, 2, . . . , pxy| (x, y) ∈
V × V }. Again, let F1, F2, . . . , Fk be the strong fuzzy faces
of ψ. The fuzzy dual graph of ψ is a fuzzy planar graph ψ′ =
(V ′, σ′, E′), where V ′ = {xi, i = 1, 2, . . . , k}, and the vertex
xi of ψ′ is considered for the face Fi of ψ.

The membership values of vertices are given by the map-
ping σ′ : V ′ → [0, 1] such that σ′(xi) = max{(u, v)µj , j =
1, 2, . . . , puv|(u, v) is an edge of the boundary of the strong
fuzzy face Fi}.

Between two faces Fi and Fj of ψ, there may exist more
than one common edge. Thus, between two vertices xi and
xj in fuzzy dual graph ψ′, there may be more than one edge.
We denote (xi, xj)νl be the membership value of the l-th edge
between xi and xj . The membership values of the fuzzy edges
of the fuzzy dual graph are given by (xi, xj)νl = (u, v)lµj
where (u, v)l is an edge in the boundary between two strong
fuzzy faces Fi and Fj and l = 1, 2, . . . , s, where s is the
number of common edges in the boundary between Fi and Fj
or the number of edges between xi and xj .

If there be any strong pendant edge in the 0.67-fuzzy planar
graph, then there will be a self loop in ψ′ corresponding to
this pendant edge. The edge membership value of the self loop
is equal to the membership value of the pendant edge.

Fuzzy dual graph of 0.67-fuzzy planar graph does not con-
tain point of intersection of edges for a certain representation,
so it is 0.67-fuzzy planar graph with planarity value 1. Thus
the fuzzy face of fuzzy dual graph can be similarly described
as in 0.67-fuzzy planar graphs.
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Example 3: In Fig. 3, a 0.67-fuzzy planar graph ψ =
(V, σ,E) where V = {a, b, c, d} is given. For this graph let
σ(a) = 0.6, σ(b) = 0.7, σ(c) = 0.8, σ(d) = 0.9.

and E = {((a, b), 0.5), ((a, c), 0.4), ((a, d), 0.55),
((b, c), 0.45), ((c, d), 0.7)}.
Thus, the 0.67-fuzzy planar graph has the following fuzzy
faces
F1 (bounded by ((a, b), 0.5), ((a, c), 0.4), ((b, c), 0.45)),
F2 (bounded by ((a, d), 0.55), ((c, d), 0.7), ((a, c), 0.4)),
and outer fuzzy face
F3 (surrounded by ((a, b), 0.5), ((b, c), 0.45), ((c, d), 0.7), ((a, d), 0.55)).

The fuzzy dual graph is constructed as follows. Here
all the fuzzy faces are strong fuzzy faces. For each strong
fuzzy face, we consider a vertex for the fuzzy dual graph.
Thus the vertex set V ′ = {x1, x2, x3, x4} where the ver-
tex xi is taken corresponding to the strong fuzzy face Fi,
i = 1, 2, 3, 4. So σ′(x1) = max{0.5, 0.4, 0.45} = 0.5,
σ′(x2) = max{0.55, 0.7, 0.4} = 0.7, σ′(x3)
= max{0.5, 0.45, 0.7, 0.55} = 0.7.

There are two common edges (a, d) and (c, d) between the
faces F2 and F3 in ψ. Hence between the vertices x2 and x3,
two edges exist in the fuzzy dual graph of ψ. Here membership
values of these edges are given by (x2, x4)ν1 = (c, d)µ1 = 0.7,
(x2, x4)ν2 = (a, d)µ1 = 0.55.

The membership values of other edges of the fuzzy
dual graph are calculated as (x1, x2)ν1 = (a, c)µ1 = 0.4,
(x1, x3)ν1 = (a, b)µ1 = 0.5, (x1, x3)ν2 = (b, c)µ1 = 0.45.

Thus the edge set of fuzzy dual graph is E′ =
{((x1, x2), 0.4), ((x1, x3), 0.5), ((x1, x3), 0.45),

((x2, x3), 0.7), ((x2, x3), 0.55)}.
In Fig. 3, the fuzzy dual graph ψ′ = (V ′, σ′, E′) of ψ is

drawn by dotted line.
Theorem 4: Let ψ be a 0.67-fuzzy planar graph without

weak edges. The number of vertices, number of fuzzy edges
and number of strong faces of ψ are denoted by n, p, m
respectively. Also let ψ′ be the fuzzy dual graph of ψ. Then
(i) the number of vertices of ψ′ is equal to m,
(ii) number of edges of ψ′ is equal to p,
(iii) number of fuzzy faces of ψ′ is equal to n.
Proof. Proof of (i), (ii) and (iii) are obvious from the definition
of fuzzy dual graph. �

Theorem 5: Let ψ′ be a fuzzy dual graph of a 0.67-fuzzy
planar graph ψ. The number of strong fuzzy faces in ψ′ is less
than or equal to the number of vertices of ψ.
Proof. Here ψ′ is a fuzzy dual graph of a 0.67-fuzzy planar
graph ψ. Let ψ has n vertices and ψ′ has m strong fuzzy faces.
Now, ψ may have weak edges and strong edges. To construct
fuzzy dual graph, weak edges are to eliminate. Thus if ψ has
some weak edges, some vertices may have all its adjacent
edges as weak edges. Let the number of such vertices be t.
These vertices are not bounding any strong fuzzy faces. If we
remove these vertices and adjacent edges, then the number of
vertices is n− t. Again, from Theorem 4, m = n− t. Hence,
in general m ≤ n. This concludes that the number of strong
fuzzy faces in ψ′ is less than or equal to the number of vertices
of ψ. �

σ(a) = 0.6

σ(c) = 0.8

σ(d) = 0.9

σ(b) = 0.7

(c, d)µ1 = 0.7

σ′(x1) = 0.5
σ′(x3) = 0.6

(a, b)µ1 = 0.5
(a, c)µ1 = 0.4
(a, d)µ1 = 0.55

(b, c)µ1 = 0.45

σ′(x2) = 0.7 (x2, x3)ν1 = 0.5
(x2, x3)ν2 = 0.7
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d

x1

x2

x3

b

(x1, x2)ν1 = 0.4
(x1, x3)ν1 = 0.5

(x1, x3)ν2 = 0.45

Fig. 3. Example of fuzzy dual graph.

An example is considered to illustrate the statement. Let
ψ = (V, σ,E) be a 0.67-fuzzy planar graph where V =
{a, b, c, d}. σ(a) = 0.8, σ(b) = 0.7, σ(c) = 0.9, σ(d) = 0.3.
E = {((a, b), 0.7), ((b, c), 0.7), ((c, d), 0.2), ((b, d), 0.2),
((a, d), 0.2)}. The corresponding fuzzy dual graph
is ψ′ = (V ′, σ′, E′) where V ′ = {x1, x2, x3}.
σ′(x1) = 0.7, σ′(x2) = 0.7, σ′(x3) = 0.7.
E′ = {((x1, x2), 0.2), ((x1, x3), 0.2), ((x1, x3), 0.7),
((x2, x3), 0.2), ((x2, x3), 0.7)}. Here number of strong fuzzy
face is one while number of fuzzy face is three (see Fig. 4).

w

w v

v

g
g f

a

b

c

x1

x2

d x3

Fig. 4. Example of a fuzzy dual graph with strong face.

Theorem 6: Let ψ = (V, σ,E) be a 0.67-fuzzy planar
graph without weak edges and the fuzzy dual graph of ψ be
ψ′ = (V ′, σ′, E′). The membership values of fuzzy edges of
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ψ′ are equal to membership values of the fuzzy edges of ψ.
Proof. Let ψ = (V, σ,E) be a 0.67-fuzzy planar graph without
weak edges. The fuzzy dual graph of ψ is ψ′ = (V ′, σ′, E′)
which is a 0.67-fuzzy planar graph as there is no point of
intersection between any edges. Let {F1, F2, . . . , Fk} be the
set of strong fuzzy faces of ψ.

From the definition of fuzzy dual graph we know that
(xi, xj)νl = (u, v)lµj where (u, v)l is an edge in the boundary
between two strong fuzzy faces Fi and Fj and l = 1, 2, . . . , s,
where s is the number of common edges in the boundary
between Fi and Fj .

The numbers of fuzzy edges of two fuzzy graphs ψ and ψ′

are same as ψ has no weak edges. For each fuzzy edge of ψ
there is a fuzzy edge in ψ′ with same membership value. �

VI. ISOMORPHISM ON FUZZY PLANAR GRAPHS

Isomorphism between fuzzy graphs is an equivalence rela-
tion. But, if there is an isomorphism between two fuzzy graph
and one is fuzzy planar graph, then the other will be fuzzy
planar graph. This result is proved in the following theorem.

Theorem 7: Let ψ be a fuzzy planar graph. If there exists
an isomorphism h : ψ → ξ where ξ is a fuzzy graph, ξ can
be drawn as fuzzy planar graph with same planarity value of
ψ.
Proof. Let ψ be a fuzzy planar graph and there exists an
isomorphism h : ψ → ξ where ξ is a fuzzy graph. Now,
isomorphism preserves edge and vertex weights. Also the
order and size of fuzzy graphs are preserved in isomorphic
fuzzy graphs [20]. So, the order and size of ξ will be equal to
ψ. Then, ξ can be drawn similarly as ψ. Hence, the number of
intersection between edges and fuzzy planarity value of ξ will
be same as ψ. This concludes that ξ can be drawn as fuzzy
planar graph with same fuzzy planarity value. �

In crisp graph theory, dual of dual graph of a planar graph
is planar graph itself. In fuzzy graph concept, fuzzy dual graph
of a fuzzy dual graph is not isomorphic to fuzzy planar graph.
The membership values of vertices of fuzzy dual graph are
the maximum membership values of its bounding edges of the
corresponding fuzzy faces in fuzzy planar graph. Thus vertex
weight is not preserved in fuzzy dual graph. But edge weight
is preserved in fuzzy dual graph. This result is established in
following theorem.

Theorem 8: Let ψ2 be the fuzzy dual graph of fuzzy dual
graph of a 0.67-fuzzy planar graph ψ without weak edges.
Then there exists a co-weak isomorphism between ψ and ψ2.
Proof. Let ψ be a 0.67-fuzzy planar graph which has no weak
edges. Also let, ψ1 be the fuzzy dual graph of ψ and ψ2 be the
fuzzy dual graph of ψ1. Now we have to establish a co-weak
isomorphism between ψ2 and ψ. As the number of vertices
of ψ2 is equal to that of strong fuzzy faces of ψ1. Again
the number of strong fuzzy faces is equal to the number of
vertices of ψ. Thus, the number of vertices of ψ2 and ψ are
same. Also, the numbers of edges of a fuzzy planar graph and
its dual graph are same. By the definition of fuzzy dual graph,
the edge membership value of an edge in fuzzy dual graph
is equal to the edge membership value of an edge in fuzzy

planar graph. Thus we can construct a co-weak isomorphism
from ψ2 to ψ. Hence the result is true. �

The Theorem 8 can be explained by the following example.
Here a 0.67-fuzzy planar graph ψ is constructed (See Fig.
5(a)). Then its fuzzy dual graph ψ1 is drawn in Fig. 5(b).
Also the fuzzy dual graph ψ2 of ψ1 is drawn in Fig. 5(c).
Now, we construct a bijective mapping from vertices of ψ2 to
vertices of ψ as a1 → a, b1 → b, c1 → c, d1 → d. Similarly,
we can extend the mapping from edge set of ψ2 to the edge
set of ψ. It is observed that the vertex membership values of
ψ2 is less than or equal to the vertex membership values of
ψ under the mapping and edge membership values are equal
under the mapping. Thus the mapping is said to satisfy the
co-weak isomorphism property.

Two fuzzy planar graphs with same number of vertices
may be isomorphic. But, the relations between fuzzy planarity
values of two fuzzy planar graphs may have the following
relations.

Theorem 9: Let ξ1 and ξ2 be two isomorphic fuzzy graphs
with fuzzy planarity values f1 and f2 respectively. Then f1 =
f2.
The proof of the theorem is the immediate consequence of
Theorem 7.

Theorem 10: Let ξ1 and ξ2 be two weak isomorphic fuzzy
graphs with fuzzy planarity values f1 and f2 respectively. f1 =
f2 if the edge membership values of corresponding intersecting
edges are same.
Proof. Here ξ1 = (V, σ1, µ1) and ξ2 = (V, σ2, µ2) are two
weak isomorphic fuzzy graphs with fuzzy planarity values f1
and f2 respectively. As two fuzzy graphs are weak isomorphic,
σ1(x) = σ2(y) for some x in ξ1 and y in ξ2. Let the graphs
have one point of intersection. Let two intersecting edges be
(a1, b1) and (c1, d1) in ξ1. Also two corresponding edges in ξ2
be (a2, b2) and (c2, d2). Then, intersecting value of the point is

given by
µ(a1,b1)

σ(a1)∧σ(b1)
+

µ(c1,d1)

σ(c1)∧σ(d1)

2 . The intersecting value of the

corresponding point in ξ2 is given as
µ(a2,b2)

σ(a2)∧σ(b2)
+

µ(c2,d2)

σ(c2)∧σ(d2)

2 .
Now, f1 = f2, if µ(a1, b1) = µ(a2, b2). The number of
point of intersections may increase. But, if the sum of the
intersecting value of ξ1 is equal to that of ξ2, fuzzy planarity
values of the graphs must be equal. Thus, for equality of f1
and f2, the edge membership values of intersecting edges of ξ
are equal to the edge membership values of the corresponding
edges in ξ2. �

Theorem 11: Let ξ1 and ξ2 be two co-weak isomorphic
fuzzy graphs with fuzzy planarity values f1 and f2 respec-
tively. f1 = f2 if the minimum of membership values of the
end vertices of corresponding intersecting edges are same.
Proof. Here ξ1 = (V, σ1, µ1) and ξ2 = (V, σ2, µ2) are two
co-weak isomorphic fuzzy graphs with fuzzy planarity values
f1 and f2 respectively. As two fuzzy graphs are co-weak
isomorphic, µ1(x, y) = µ2(z, t) for some edge (x, y) in ξ1 and
(z, t) in ξ2. Let the graphs have one point of intersection. Let
two intersecting edges be (a1, b1) and (c1, d1) in ξ1. Also, two
corresponding edges in ξ2 be (a2, b2) and (c2, d2). Then, inter-
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(a): A 0.67-fuzzy planar graph ψ
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a1(0.6)

c1(0.65)
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0.6

0.65 0.45

0.55
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(c): Fuzzy dual graph ψ2 of ψ1
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x(0.7)

y(0.7)
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0.55

0.6

0.45
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(b): Fuzzy dual graph ψ1 of ψ

Fig. 5. Dual of dual is co-weak isomorphic to planar graph in fuzzy graph
theory.

secting value of the point is given by
µ(a1,b1)

σ(a1)∧σ(b1)
+

µ(c1,d1)

σ(c1)∧σ(d1)

2 .
The intersecting value of the corresponding point in ξ2 is given

as
µ(a2,b2)

σ(a2)∧σ(b2)
+

µ(c2,d2)

σ(c2)∧σ(d2)

2 . Now, the fuzzy planarity values f1
= f2, if σ1(a1)∧σ(b1) = σ2(a2)∧σ2(b2). The number of point
of intersections may increase. But if the sum of the intersecting
value of ξ1 is equal to that of ξ2, fuzzy planarity values of the
graphs must be equal. Thus, for equality of f1 and f2, the
minimum membership value of end vertices of an edge in ξ1
is equal to that of a corresponding edge in ξ2. �

VII. CONCLUSION

This study describes the fuzzy multigraphs, fuzzy planar
graphs, and a very important consequence of fuzzy planar
graph known as fuzzy dual graphs. In crisp planar graph, no
edge intersects other. In fuzzy graph, an edge may be weak or
strong. Using the concept of weak edge, we define fuzzy planar
graph in such a way that an edge can intersect other edge.
But, this facility violates the definition of planarity of graph.
Since the role of weak edge is insignificant, the intersection
between a weak edge and an other edge is less important.
Motivating from this idea, we allow the intersection of edges
in fuzzy planar graph. It is well known that if the membership
values of all edges become one, the graph becomes crisp
graph. Keeping this idea in mind, we define a new term called
fuzzy planarity value of a fuzzy graph. If the fuzzy planarity
value of a fuzzy graph is one, then no edge crosses other
edge. This leads to the crisp planar graph. Thus, the fuzzy
planarity value measures the amount of planarity of a fuzzy
graph. This is a very interesting concept of fuzzy graph theory.
Strong fuzzy planar graphs and a distinguishable subclass of
strong fuzzy planar graph namely 0.67-fuzzy planar graphs
have been exemplified. From the definitions, it is concluded
that 0.67-fuzzy planar graph ⊂ strong fuzzy planar graph ⊂
fuzzy planar graph. Another important term of planar graph is
“face” which is redefined in fuzzy planar graph. A particular
type of fuzzy face called strong fuzzy face is incorporated.
Besides, isomorphism properties of fuzzy planar graphs are
investigated. It is shown that dual of dual fuzzy graphs are co-
weak isomorphism to fuzzy planar graph. Several properties
of isomorphism on fuzzy planar graphs are explained. It may
be noted that, in this article, fuzzy dual graph is defined for
the 0.67-fuzzy planar graph. But, if the planarity value is less
than 0.67, then some modification is required to define dual
graph. This is to be investigated in near future.

REFERENCES

[1] N. abdul-jabbar, J. H. Naoom and, E. H. Ouda, Fuzzy dual graph,
Journal Of Al-Nahrain University, 12(4), 168-171, 2009.

[2] M. Akram, Bipolar fuzzy graphs, Information Science, 181, 5548-5564,
2011.

[3] M. Akram, Interval-valued fuzzy line graphs, Neural Computing &
Applications, 21, 145-150, 2012.

[4] M. Akram and W. A. Dudek, Intuitionistic fuzzy hypergraphs with
applications, Information Sciences, 218, 182-193, 2013.

[5] M. Akram, Bipolar fuzzy graphs with applications, Knowledge Based
Systems, 39, 1-8, 2013.

[6] V. K. Balakrishnan, Graph Theory, McGraw-Hill, 1997.
[7] K. R. Bhutani and A. Battou, On M-strong fuzzy graphs, Information

Sciences, 155(12), 103-109, 2003.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 3, No. 1, 2014 

58 | P a g e  

www.ijarai.thesai.org 



[8] K. R. Bhutani and A. Rosenfeld, Strong arcs in fuzzy graphs, Informa-
tion Sciences, 152, 319-322, 2003.

[9] C. Eslahchi and B. N. Onaghe, Vertex strength of fuzzy graphs, Inter-
national Journal of Mathematics and Mathematical Sciences, Volume
2006, Article ID 43614, Pages 1-9, DOI 10.1155/IJMMS/2006/43614.

[10] M. Fazzolari and H. Ishibuchi, A review of the application of multiob-
jective evolutionary fuzzy systems: current status and further directions,
IEEE Transection on Fuzzy Systems, 21(1), 45-65, 2013.

[11] P. Ghosh, K. Kundu and D. Sarkar, Fuzzy graph representation of a fuzzy
concept lattice, Fuzzy Sets and Systems, 161(12), 1669-1675, 2010.

[12] L. T. Koczy, Fuzzy graphs in the evaluation and optimization of
networks, Fuzzy Sets and Systems, 46, 307-319, 1992.

[13] Q. Liang and J. M. Mendel, MPEG VBR video traffic modelling
and classification using fuzzy technique, IEEE Transection on Fuzzy
Systems, 9(1), 183-193, 2001.

[14] K. -C. Lin and M. -S. Chern, The fuzzy shortest path problem and its
most vital arcs, Fuzzy Sets and Systems, 58, 343-353, 1993.

[15] S. Mathew and M.S. Sunitha, Types of arcs in a fuzzy graph, Information
Sciences, 179, 1760-1768, 2009.

[16] S. Mathew and M.S. Sunitha, Strongest strong cycles and theta fuzzy
graphs, IEEE Transections on Fuzzy Systems, 2013.

[17] M. L. N. McAllister, Fuzzy intersection graphs, Comput. Math. Applic.,
15 (10) , 871-886, 1988.

[18] J. N. Mordeson and P. S. Nair, Fuzzy Graphs and Hypergraphs, Physica
Verlag, 2000.

[19] S. Munoz, M. T. Ortuno, J. Ramirez and J. Yanez, Coloring fuzzy graphs,
Omega, 33(3), 211-221, 2005.

[20] A. Nagoorgani and J. Malarvizhi, Isomorphism on fuzzy graphs, World
Academy of Science, Engineering and Technology, 23, 505-511, 2008.

[21] A. Nagoorgani and R. J. Hussain, Fuzzy effective distance K-
dominating sets and their applications, International Journal of Algo-
rithms, Computing and Mathematics, 2(3), 25-36, 2009.

[22] G. Nirmala and K. Dhanabal, Special planar fuzzy graph configurations,
International Journal of Scientific and Research Publications, 2(7), 1-4,
2012.

[23] A. Rosenfeld, Fuzzy graphs, in: L.A. Zadeh, K.S. Fu, M. Shimura (Eds.),
Fuzzy Sets and Their Applications, Academic Press, New York, 77-95,
1975.

[24] S. Samanta and M. Pal, Fuzzy k-competition graphs and p-competition
fuzzy graphs, Fuzzy Engineering and Information, 5(2), 191-204, 2013.

[25] S. Samanta and M. Pal, Fuzzy tolerance graphs, International Journal
of Latest Trends in Mathematics, 1(2), 57-67, 2011.

[26] S. Samanta and M. Pal, Fuzzy threshold graphs, CIIT International
Journal of Fuzzy Systems, 3(12), 360-364, 2011.

[27] S. Samanta and M. Pal, Irregular bipolar fuzzy graphs, Inernational
Journal of Applications of Fuzzy Sets, 2, 91-102, 2012.

[28] S. samanta and M. Pal, Bipolar fuzzy hypergraphs, International Journal
of Fuzzy Logic Systems, 2(1), 17− 28, 2012.

[29] S. Samanta, M. Pal and A. Pal, Some more results on bipolar fuzzy
sets and bipolar fuzzy intersection graphs, To appear in The Journal of
Fuzzy Mathematics.

[30] S. Samanta and M. Pal, A new approach to social networks based
on fuzzy graphs, To appear in Journal of Mass Communication and
Journalism.

[31] R. R. Yager, On the theory of bags, Int. J. General Systems, 13, 23-37,
1986.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 3, No. 1, 2014 

59 | P a g e  

www.ijarai.thesai.org 


