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Abstract—In this paper, we propose a new type of information-
theoretic method for the self-organizing maps (SOM), taking into
account competition between competitive (output) neurons as well
as input neurons. The method is called ”double competition”,
as it considers competition between outputs as well as input
neurons. By increasing information in input neurons, we expect
to obtain more detailed information on input patterns through
the information-theoretic method. We applied the information-
theoretic methods to two well-known data sets from the machine
learning database, namely, the glass and dermatology data sets.
We found that the information-theoretic method with double
competition explicitly separated the different classes. On the
other hand, without considering input neurons, class boundaries
could not be explicitly identified. In addition, without consid-
ering input neurons, quantization and topographic errors were
inversely related. This means that when the quantization errors
decreased, topographic errors inversely increased. However, with
double competition, this inverse relation between quantization
and topographic errors was neutralized. Experimental results
show that by incorporating information in input neurons, class
structure could be clearly identified without degrading the map
quality to severely.

Keywords—double competition, self-organizing maps, mutual
information, class structure

I. I NTRODUCTION

A. Goal of the Present Paper

The present paper aims to show that the concept of
competition among components in neural networks should be
extended to all components of neural networks. Many methods
have been developed to realize competition in neural networks.
However, we think that they are only related to one aspect of
competition. For example, competitive learning is in particular
specialized in the competition between output neurons. In
standard competitive learning, output neurons compete with
each other to represent input patterns. If a neuron wins the
competition, it tries to represent input patterns as efficiently as
possible. A number of variants to overcome the problems such
as dead neurons, the number of neurons, and initial conditions
have been developed [1], [2], [3], [4], [5] ,[6], [7], [8], [9].
However, the focus in competitive learning is on competition
between output neurons. We have mentioned that competition
can be realized in any component of neural networks. Then,
in addition to output neurons, we can consider input neurons
in competitive neural networks. We can imagine a case where
output as well as input neurons compete with other to represent
input patterns. The goal of the present paper is to show that
the extension of competition into input neurons can improve
the performance of neural networks.

B. Information-Theoretic SOM

We apply the information-theoretic method to SOM
(information-theoretic SOM), which is based on competition
between neurons. The self-organizing map is one of the most
important techniques in neural networks [10], [11] and has
been used to visualize complex and highly structured data. In
SOM, much attention has been paid in particular to topolog-
ical preservation, and many methods to measure topological
consistency have been proposed [12], [13], [14], [15], [16],
[17], [18]. In addition, many visualization methods have also
been developed to interpret the SOM knowledge obtained by
learning [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29]. However, in spite of having a good reputation for
visualization, SOM has faced difficulty in visualizing results
obtained by learning. In the SOM, competition and cooperation
between neurons are simultaneously performed in learning. In
particular, cooperation processes need extensive fine tuning to
maintain topological preservation. However, as more focus is
placed on cooperation processes, it becomes more difficult to
visualize class structure or class boundaries, since cooperation
processes have roles to diminish discontinuity between neurons
related to class boundaries. Though several methods have
been developed to measure and extract discontinuity on the
output space [30], [31], it is still difficult to extract clear class
structure.

To overcome this shortcoming of SOM, we have introduced
several information-theoretic methods to realize SOM [32],
[33]. Information-theoretic methods are numerous in neural
learning [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46], [47]. From the information-theoretic point
of view, learning in neural networks lies in the acquisition
of information content on input patterns. Though we need
expensive computations to measure the information content
or mutual information, there are a number of information
theoretic methods available to do this. In particular, we have
introduced similarity between competitive learning and mu-
tual information maximization. When mutual information is
defined between input patterns and output neurons and is
maximized, just one neuron fires, while all the others ceases
to do. Thus, mutual information maximization corresponds to
the competitive processes of competitive learning. One of the
main merits of this information-theoretic method is that it is
easy to control the process of competition and cooperation.
Depending on the information obtained by the information-
theoretic method, we can control final connection weights
and corresponding outputs. For example, when information
obtained in learning is larger, competition between neurons
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becomes more intense, and more severecompetition processes
are realized. On the other hand, when obtained information is
smaller, competition between neurons becomes weaker and all
neurons tend to fire equally. This means that just by adjusting
the information to be obtained by learning, we can control the
competition processes. In addition, the method is not winner-
take-all, and many neurons can participate in competition and
cooperation. By controlling the information content in neural
networks, we can easily control its performance.

C. Necessity of Double Competition

The information-theoretic SOM has shown good perfor-
mance in clarifying class structure. However, the method
cannot always detect clear class structure, in particular when
the problems are complex. To resolve this, we introduce the
concept of competition into input neurons, as mentioned above.
In our framework, the input neurons must compete with each
other to represent input patterns. In addition, if an output
neuron fires at the same time as an input neuron, the cor-
responding connection weights between the input and output
neuron should be stronger. We call this competition ”double
competition”, because input and output neurons compete with
each other to represent input patterns.

We have so far tried to introduce competition in input
neurons, which is called ”information enhancement”. In infor-
mation enhancement, we tried to enhance competition between
neurons by focusing on specific input neurons [48], [49]. On
the other hand, we have combined information maximization in
input neurons and output neurons, which are separately defined
[50]. Those methods have shown improved performance for
several problems. However, they are not always effective for
taking into account the combined effect of input and output
neurons. In this double competition, we suppose two types
of actions, namely, competition and mutual interaction. In the
competition, input as well as output neurons compete with
each other. In addition, we suppose some interaction between
input and output neurons. Concretely, when an input and output
pattern fire in the same way, the interaction between them
becomes stronger.

D. Outline

In Section 2, we first explain the correspondence between
information maximization and competitive learning. We ex-
plain the concept of double competition to include input and
output neurons. Then, we try to present the information-
theoretic learning method to realize double competition by
using the free energy. Finally, we explain how to estimate
the firing probabilities of input neurons. In Section 3, we
present two experimental results from the well-known machine
learning database. Using a principal component analysis, we
try to show that class structure can be clarified by using
the present method. However, we point out that topological
preservation may be sacrificed for this better visualization.
Thus, it is important to more closely examine the relations
between better visualization and topological preservation.

II. T HEORY AND COMPUTATIONAL METHODS

A. Double Competition

Competitive learning has been considered to be one of
the most important learning methods in neural networks [51],

[2], [52], [53], [4], [5], [3], [54], [55], [1], [3], [56], [7],
[57], [58]. In particular, we have introduced information-
theoretic competitive learning [59], [60], [61]. Contrary to the
computational methods so far developed, we have supposed
that competitive learning is a realization of mutual information
maximization between output neurons and input neurons. In
competitive learning, attention has been mainly to output
neurons. However, we can imagine that any components in
a neural network compute with each other and we try to
apply the concept of competition to input neurons. In the input
neurons, we focus on the importance of input neurons. Because
input neurons correspond to input variables, the importance of
input variables should be taken into account.

Let us explain how to produce self-organizing maps by
using a network architecture in Figure 1. Thesth input
pattern can be represented byxs = [xs

1, x
s
2, · · · , xs

L]
T , s =

1, 2, · · · , S. Connection weights into thejth competitive
neuron are denoted bywj = [w1j , w2j , · · · , wLj ]

T , j =
1, 2, . . . ,M. Supposing that the firing ratep(k | s) of the kth
input neuron for thesth input pattern can be computed, then
the distance between input patterns and connection weights
can be computed by

∥ xs −wj ∥2=
L∑

k=1

p(k | s)(xs
k − wkj)

2. (1)

The firing ratep(k | s) is considered to be the importance of
thekth input neuron for thesth input pattern. The output from
an output neuron is computed by

vsj = exp

(
−∥ xs −wj ∥2

2σ2

)
, (2)

whereσ denotes a spread parameter and defined by

σ =
1

β
, (3)

whereβ is larger than zero. By normalizing theoutput, we
have the firing rate

p(j | s) =
exp

(
−∥xs−wj∥2

2σ2

)
∑M

m=1 exp
(
−∥xs−wm∥2

2σ2

) . (4)

We should also compute the collective output from the neu-
ron. In the self-organizing maps, the collective outputs are
determined by distances from the winner. The winnerc1 is
determined by

c1 = argmaxj v
s
j . (5)

Following the formulation of SOM, we compute the distance
between the winner and the other neurons by

ϕjc1 = exp

(
−∥ rj − rc1 ∥2

2σ2
ngh

)
, (6)

whererj denotes the position of thejth neuron onthe output
map andσngh is the spread parameter. Thus, the expected
output is approximated by this function

q(j | s) = ϕjc1∑M
m=1 ϕmc1

. (7)
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Fig. 1. Network architecture for the information-theoretic self-organizing
maps whereonly connection weights from a winner at the center are plotted.

B. Free Energy Minimization

Learning should be performed to reduce the difference be-
tween actual and expected outputs. We represent this difference
by using the Kullback-Leibler divergence

C =
S∑

s=1

p(s)
M∑
j=1

p(j | s) log p(j | s)
q(j | s)

. (8)

In addition to this KL divergence, we have other errors
which must be minimized, namely quantization errors between
connection weights and input patterns

Q =
S∑

s=1

p(s)
M∑
j=1

p(j | s)∥xs −wj∥2. (9)

Fixing this quantization errors and minimizing the KL-
divergence, we have the optimal firing rates

p∗(j | s) =
q(j | s) exp

(
−∥xs−wj∥2

2σ2

)
∑M

m=1 q(m | s) exp
(
−∥xs−wm∥2

2σ2

) . (10)

We have the following equation called ”free energy”

F = 2σ2
S∑

s=1

log

M∑
j=1

q(j | s) exp
(
−∥ xs −wj ∥2

2σ2

)
. (11)

Finally, by differentiating the free energy, we canobtain
the re-estimation formula

wj =

∑S
s=1 p

∗(j | s)p(k | s)xs∑S
s=1 p

∗(j | s)p(k | s)
. (12)

As shown in the equation (10), connection weights are modi-
fied to make the actual outputs closer to expected outputs.

C. Estimating Firing Rates of Input Neurons

To obtain connection weightswkj , we must estimate the
firing rates of input neuronsp(k | s) in the equation (1). For

this purpose, we first compute the outputs from thejth neuron
by

v̂sj = exp

(
−
∑L

k=1(x
s
k − wkj)

2

2σ2

)
, (13)

Normalizing this output, we have the estimated firing rates

p̂(j | s) =
v̂sj∑M

m=1 v̂
s
j

. (14)

By using p̂(j | s), we have the outputfrom the kth input
neuron

v̂sk = exp

(
−
∑M

j=1 p̂(j | s)(xs
k − wkj)

2

2σ2

)
, (15)

Then, we have the firing rate of thekth input neuron

p̂(k | s) = v̂sk∑L
l=1 v̂

s
l

. (16)

Putting this firing ratep̂(k | s) in the equation (1), (2), we
havethe distance considering input neurons,

∥ xs −wj ∥2=
L∑

k=1

p̂(k | s)(xs
k − wkj)

2. (17)

III. R ESULTS AND DISCUSSION

A. Experiment Outline

We applied the method two data sets, namely, the glass and
dermatology data. Both were taken from the well-known ma-
chine learning database [62]. The number of input neurons and
patterns for the glass data were 214 and 10, respectively. The
number of input neurons and patterns for the dermatology data
were 366 and 34, respectively. All the data were normalized
to range between zero and one. For quantitative evaluation,
we used the well-known quantization and topographic errors.
There have been many attempts [12], [13], [14], [15], [16],
[17], [18] to measure map quality quantitatively. Among them,
both errors are very simple and easy to implement. For
visual evaluation, we used the principal component analysis
(PCA) to summarize connection weights. As mentioned in the
introduction section, there is difficulty in interpreting SOM
knowledge, a number of methods have been developed to
clarify the knowledge [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29]. In this study, we used the PCA for clarification,
in particular for simplifying the knowledge. It is easy to
demonstrate the performance by using the techniques specific
to the SOM, such as the U-matrix. However, we used the
PCA so that the present results could be widely interpreted
and reproduced.

B. Glass Data

1) Firing Rates of Input Neurons:First, we examine how
the firing rates could be changed by increasing the parameterβ
or by increasing information content in input neurons. When
the parameterβ was increased from one in Figure 2(a) to
three in Figure 2(c), little change in the firing rates could be
seen. When the parameterβ was increased from four in Figure
2(d) to eight in Figure 2(f), the firing rates became gradually
differentiated. When the parameterβ was increased from ten
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in Figure 2(g) to 14 in Figure 2(i), higherand lower firing rates
becomes clearer. Finally, when the parameterβ was increased
from 16 in Figure 2(j) to 20 in Figure 2(l), the clearest firing
rates could be seen. Input neurons No.6 and No.8 had the
highest firing rates, while input neuron No.5 had the lowest
firing rate. The results show that when the parameterβ was
increased, the firing rates became gradually clearer.

2) Results of PCA for Connection Weights:Figure 3 shows
the results of the PCA for connection weights by the SOM
and the information-theoretic method with double competition.
Figure 3(a) shows the results of PCA by using the conventional
SOM. We can see that a condensed group could be seen on
the right hand side of the map, and the remaining connection
weights were scattered widely on the left hand side of the
map. When the parameterβ was two and three in Figures
3(b) and (c), connection weights were close to those by the
conventional SOM in Figure 3(a). When the parameterβ was
increased from four in Figure 3(d) to eight in Figure 3(f),
a group on the right side began to separate from the others.
When the parameterβ was increased from 10 in Figure 3(g)
to 14 in Figure 3(i), two explicit groups of connection weights
on the left and right hand sides began to form. Finally, when
the parameterβ was increased from 16 in Figure 3(j) to 20 in
Figure 3(l), connection weights were separated into two groups
on the left hand side and right hand side. In addition, another
group could be seen in the middle of the map.

Figure 4 shows the results of PCA by the information-
theoretic methods without considering input neurons. When
the parameterβ was increased from two in Figure 4(a) to 20 in
Figure 4(c), a condensed group on the right hand side remained
the same, but connection weights on the left hand side became
more scattered. These results show that when the parameter
β was increased, input patterns were separated into explicit
groups by using the information on input neurons. On the other
hand, without considering input neurons, explicit groups could
not be expected.

3) Quantization and Topographic Errors:We have seen
that class structure is clearer by using the information-theoretic
method with double competition. The next step is to quantify
the map quality obtained using this method. Figure 5(a) shows
the quantization errors by the information-theoretic method
with double competition in red, without considering input
neurons in blue, and SOM in black. The information-theoretic
method without considering input neurons showed a sharp
decrease in quantization errors, while the quantization errors
by SOM and the method with double competition had rela-
tively higher errors. Topographic errors using the information-
theoretic method without considering input neurons were
quite large. On the other hand, topographic errors did not
increase when using the information-theoretic method with
double competition. The decrease in quantization errors and
increase in the topographic errors by the information-theoretic
method without considering input neurons can be inferred from
free energy equation (18) (for more detailed discussion, see
the discussion section). On the other hand, quantization and
topographic errors did not change excessively with the double
competition information-theoretic method, and were close to
the errors obtained by the conventional SOM. Thus, it can
be said that the introduction of information on input neurons
attenuated the operation of the free energy.

C. Dermatology Data

1) Firing Rates of Input Neurons:We applied the
information-theoretic method to the well-known data set of
the dermatology from the machine learning database. Figure 6
shows the firing rates of input neurons when the parameterβ
was increased from one (a) to 15 (i). Even if we increased
the parameterβ beyond this point, little change could be
seen in the firing rates. When the parameterβ was one in
Figure 6(a), the firing rates were almost uniform. When the
parameterβ was two and three in Figure 6(b) and (c), small
changes in the firing rates appeared. When the parameterβ
was increased from five in Figure 6(d) to nine in Figure 6(f),
differences between higher and lower rates became larger.
When the parameterβ was increased from 11 in Figure 6(g)
to 15 in Figure 6(i), higher and lower firing rates were at their
largest.

2) Results of the PCA for Connection Weights:Figure 7
shows the results of the PCA for connection weights by the
SOM (a) and the information-theoretic method with double
competition when the parameterβ was increased from one
(b) to 15 (i). By using the SOM, as shown in Figure 7(a),
connection weights seemed to be divided into three groups
with weak boundaries. When the parameterβ was one and
three in Figures 7(b) and (c), the results of the PCA were
almost equivalent to that by the SOM in Figure 7(a). When
the parameterβ was increased from five in Figure 7(d) to
nine in Figure 7(f), a distinct group became separated on the
right hand side of the map. When the parameterβ was further
increased from 11 in Figure 7(g) to 15 in Figure 7(i), three
groups were clearly separated.

Figure 8 shows the results of the PCA by the information-
theoretic method without considering input neurons. When the
parameterβ was increased from one in Figure 8(a) to nine
in Figure 8(b), three groups became more apparent. Then,
even when the parameterβ was increased from nine in Figure
8(b) to 15 in Figure 8(c), the results of the PCA remained
almost the same. The results of the PCA by the information-
theoretic method without considering input neurons were infe-
rior to those by the information-theoretic method with double
competition in terms of class structure. This shows that the
information of input neurons is critical in clarifying class
structure.

3) Quantization and Topographic Errors:Figure 9 shows
the quantization and topographic errors when the parameterβ
was increased from one to 15. Figure 9(a) shows quantization
errors by the SOM in black, the information-theoretic method
with double competition in red, and without considering input
neurons in blue. By using the information-theoretic method
without considering input neurons, the quantization errors
decreased sharply from the beginning onwards. On the other
hand, by using the information-theoretic method with double
competition, quantization errors increased and became larger
than that by the conventional SOM. Figure 9(b) shows to-
pographic errors when the parameterβ was increased from
one to 15. By using the information-theoretic method without
considering input neurons, the topographic error increased
sharply and eventually became much larger than the error ob-
tained by the conventional SOM. On the other hand, by using
the information-theoretic method with double competition, the
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Fig. 2. Firing rates of input neurons bythe information-theoretic method with double competition when the parameterβ was increased from one (a) to 20
(t) for the glass data.

topographic error increased less than by using the information-
theoretic method without double competition. The behavior
of the information-theoretic method without considering input
neurons can be inferred from the free energy equation (18). By
introducing the firing rates of input neurons, this tendency was
attenuated. When using the information-theoretic method with
double competition, the quantization and topographic errors
did not increase or decrease to the extent observed when using
the information-theoretic method without considering input
neurons.

D. Discussion

1) Validity of Methods and Experimental Results:In this
paper, we have proposed a new type of information-theoretic
method which takes into account the firing rates of input neu-
rons. We have so far shown that competitive learning as well
as self-organizing maps aim to maximize mutual information
between input patterns and output neurons [59], [60], [61].
However, little attention has been paid to information content
in input neurons. In particular, we have not fully used any
information on input neurons in learning processes. Thus, we

have introduced the firing rates of input neurons in the learn-
ing procedure of the self-organizing maps. We succeeded in
determining the re-estimation formula for connection weights.
We applied the method to two well-known data sets from the
machine learning database, namely, the glass and dermatology
data. In both data sets, we succeeded in extracting clearer class
structure, particularly by detecting clear class boundaries for
the both data sets.

In addition, we could see that quantization and topographic
errors were inversely related when we used the method without
considering input neurons. This inverse relation can be pre-
dicted by examining the free energy equation. The free energy
equation in its expanded form appears as the following

F =
S∑

s=1

p(s)
M∑
j=1

p∗(j | s)∥xs −wj∥2

+2σ2
S∑

s=1

p(s)
M∑
j=1

p(j | s) log p∗(j | s)
q(j | s)

, (18)

recalling that the spread parameterσ is defined by usingthe
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Fig. 3. Results by PCA for connectionweights by double competition for the glass data.
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Fig. 4. Results by PCA for connectionweights without considering input neurons for the glass data.

other parameterβ.

σ =
1

β
. (19)

When the parameterβ was increased, and thespread parameter
σ was decreased, the first term of the free energy became
more effective. This means that quantization errors decreased,
as shown in Figures 5 (a) and 9(a). On the other hand, when
the parameterβ is decreased and the spread parameterσ is
increased, the effect of the second term of the free energy
becomes dominant. The second term is the KL divergence
is used to imitate the collective behavior of output neurons.
Thus, when the parameterβ is decreased, the topological

errors should decreased as well. This is shown in Figure 5(b)
and 9(b). The introduction of input neuron firing rates in the
learning processes attenuated this tendency.

2) Problems of the Method:There are two problems of this
information-theoretic method, namely, the estimation of firing
rates of input neurons and degradation in terms of quantization
and topographic errors.

First, there is a problem with estimating the firing rates
of input neurons, which must be computed in order to realize
competitive processes. However, in the computation of compet-
itive neurons, we must insert the firing rates of input neurons
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Fig. 6. Firing rates of inputneurons when the parameterβ was increased from one to 20 for the dermatology data.

into the equation (1). In Section II.C, we briefly presented
how to estimate the firing rates of input neurons. However,
in the estimation of the firing rates, we must insert the firing
rates of competitive neurons into the equation (2). We should
thus more carefully examine whether the firing rates of input
neurons can be stabilized for the precise computation of the
information content, and for producing stable self-organizing
maps.

Second, we have a problem of degradation in terms of
quantization and topographic errors. In Figures 5 and 9,
quantization and topographic errors increased, though they did
not reach extreme values as was the case with the method

without considering input neurons. We must explain why and
how the degradation occurred and try to improve quantization
and topographic errors.

3) Possibilities of the Method:The method presented in
this paper can be considered as a new input variable selection
in SOM, and opens up the possibility of having competition
in all components of neural networks. First, this method is
an extension of the self-organizing maps which takes into
account the importance of input neurons or input variables.
The competition between input neurons can be considered
as the introduction of the importance of input variables in
the self-organizing maps. As is well known, variable se-
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Fig. 8. Results of the PCA forconnection weights without considering input neurons for the dermatology data.

lection has played important roles in learning, in particular
in supervised learning [63], [64]. In unsupervised learning,
such as SOM, the criteria to choose important variables have
not been determined. However, in the information-theoretic
method, the criteria to measure the importance of neurons
is naturally introduced: the importance is measured in terms
of information content in neurons. When this information
increases, the importance of the neurons becomes larger. We
use the importance of input neurons to visualize input patterns
by SOM, as it plays an important role in this regard. Thus, it
is important to examine relations between the importance of
input neurons and the visualization of SOM.

Second, there is the possibility of having competition
among all components in neural networks. In the present model
of a neural network, in addition to input and output neurons,
there are connection weights from the input neurons to output
neurons. If it is possible to take into account the competition
between all these connection weights, much better performance
of a network can be expected. This means that in a neural
network, every component competes with each other to most
efficiently process outside stimuli.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 3, No.11, 2014

www.ijarai.thesai.org

www.ijarai.thesai.org 
28 | P a g e



2 4 6 8 10 12 14
0. 5

0. 6

0. 7

0. 8

0. 9

1

1. 1

Beta

Q
E

2 4 6 8 10 12 14
0

0. 1

0. 2

0. 3

0. 4

Beta

T
E

SOM

SOM

Double competition

Without considering input neurons

Without considering input neurons

Double competition

(a) Quantization errors (b) Topographic errors

Fig. 9. Quantization and topographic errors bythe SOM, and the information-theoretic method with double competition and without considering input neurons
for the dermatology data.

IV. CONCLUSION

In this paper, we have introduced an information-theoretic
method considering information in input neurons to realize
competitive learning as well as the self-organizing maps. When
mutual information is maximized between neurons and input
patterns, just one neuron wins the competition. Namely, mutual
information maximization corresponds to competitive learning.
However, we can imagine that any component in a neural
network should contain information on input patterns. Thus,
we tried to take into account input neurons in addition to
the output or competitive neurons usually used in competitive
learning. We applied the information-theoretic method to the
self-organizing maps by adding cooperation processes to com-
petitive learning. Then, we applied the information-theoretic
methods to two well-known data sets, namely, glass and derma-
tology data sets from the machine learning database. We found
that by increasing information in input neurons, connection
weights tended to be divided into clear groups. In addition, the
inverse relation between quantization and topographic errors
which was observed in the information-theoretic competitive
learning without considering input neurons, was neutralized
by considering these input neurons. However, quantization and
topographic errors tended to degrade map quality when using
the information-theoretic method. Thus, we should examine
how and why this deterioration occurred in terms of quantiza-
tion and topographic errors to realize the information-theoretic
method with better quantization and visualization performance.
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