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Abstract—In this paper, we propose a new type of information-
theoretic method for the self-organizing maps (SOM), taking into
account competition between competitive (output) neurons as well
as input neurons. The method is called "double competition”,
as it considers competition between outputs as well as input
neurons. By increasing information in input neurons, we expect
to obtain more detailed information on input patterns through
the information-theoretic method. We applied the information-
theoretic methods to two well-known data sets from the machine

learning database, namely, the glass and dermatology data sets.

We found that the information-theoretic method with double
competition explicitly separated the different classes. On the
other hand, without considering input neurons, class boundaries
could not be explicitly identified. In addition, without consid-
ering input neurons, quantization and topographic errors were
inversely related. This means that when the quantization errors
decreased, topographic errors inversely increased. However, with
double competition, this inverse relation between quantization
and topographic errors was neutralized. Experimental results
show that by incorporating information in input neurons, class
structure could be clearly identified without degrading the map
quality to severely.

Keywords—double competition, self-organizing maps, mutual
information, class structure
I. INTRODUCTION
A. Goal of the Present Paper

B. Information-Theoretic SOM

We apply the information-theoretic method to SOM
(information-theoretic SOM), which is based on competition
between neurons. The self-organizing map is one of the most
important techniques in neural networks [10], [11] and has
been used to visualize complex and highly structured data. In
SOM, much attention has been paid in particular to topolog-
ical preservation, and many methods to measure topological
consistency have been proposed [12], [13], [14], [15], [16],
[17], [18]. In addition, many visualization methods have also
been developed to interpret the SOM knowledge obtained by
learning [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29]. However, in spite of having a good reputation for
visualization, SOM has faced difficulty in visualizing results
obtained by learning. In the SOM, competition and cooperation
between neurons are simultaneously performed in learning. In
particular, cooperation processes need extensive fine tuning to
maintain topological preservation. However, as more focus is
placed on cooperation processes, it becomes more difficult to
visualize class structure or class boundaries, since cooperation
processes have roles to diminish discontinuity between neurons
related to class boundaries. Though several methods have
been developed to measure and extract discontinuity on the
output space [30], [31], it is still difficult to extract clear class
structure.

The present paper aims to show that the concept of To overcome this shortcoming of SOM, we have introduced

competition among components in neural networks should bseveral information-theoretic methods to realize SOM [32],
extended to all components of neural networks. Many methodg3]. Information-theoretic methods are numerous in neural
have been developed to realize competition in neural networksearning [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
However, we think that they are only related to one aspect of44], [45], [46], [47]. From the information-theoretic point
competition. For example, competitive learning is in particularof view, learning in neural networks lies in the acquisition
specialized in the competition between output neurons. Iof information content on input patterns. Though we need
standard competitive learning, output neurons compete witkexpensive computations to measure the information content
each other to represent input patterns. If a neuron wins ther mutual information, there are a number of information
competition, it tries to represent input patterns as efficiently asheoretic methods available to do this. In particular, we have
possible. A number of variants to overcome the problems suctroduced similarity between competitive learning and mu-
as dead neurons, the number of neurons, and initial conditiortsial information maximization. When mutual information is
have been developed [1], [2], [3], [4], [5] .[6], [7], [8], [9]. defined between input patterns and output neurons and is
However, the focus in competitive learning is on competitionmaximized, just one neuron fires, while all the others ceases
between output neurons. We have mentioned that competitiot@ do. Thus, mutual information maximization corresponds to
can be realized in any component of neural networks. Therthe competitive processes of competitive learning. One of the
in addition to output neurons, we can consider input neurongain merits of this information-theoretic method is that it is
in competitive neural networks. We can imagine a case whereasy to control the process of competition and cooperation.
output as well as input neurons compete with other to represeiiepending on the information obtained by the information-
input patterns. The goal of the present paper is to show thaheoretic method, we can control final connection weights
the extension of competition into input neurons can improveand corresponding outputs. For example, when information
the performance of neural networks. obtained in learning is larger, competition between neurons
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becomes more intense, and more sewampetition processes [2], [52], [53], [4], [5], [3], [54], [55], [1], [3], [56], [7],

are realized. On the other hand, when obtained information ig57], [58]. In particular, we have introduced information-
smaller, competition between neurons becomes weaker and #fleoretic competitive learning [59], [60], [61]. Contrary to the
neurons tend to fire equally. This means that just by adjustingomputational methods so far developed, we have supposed
the information to be obtained by learning, we can control thehat competitive learning is a realization of mutual information
competition processes. In addition, the method is not winnermaximization between output neurons and input neurons. In
take-all, and many neurons can participate in competition andompetitive learning, attention has been mainly to output
cooperation. By controlling the information content in neuralneurons. However, we can imagine that any components in

networks, we can easily control its performance. a neural network compute with each other and we try to
. - apply the concept of competition to input neurons. In the input
C. Necessity of Double Competition neurons, we focus on the importance of input neurons. Because

The information-theoretic SOM has shown good perfor-inpUt neurons correspond to input variables, the importance of
mance in clarifying class structure. However, the methodnPut variables should be taken into account.
cannot always detect clear class structure, in particular when | et us explain how to produce self-organizing maps by
the problems are complex. To resolve this, we introduce thgsing a network architecture in Figure 1. The¢h input

concept of competition into input neurons, as mentioned abovgattern can be represented Ry = [25, 25, - ,z%]7, s =
In our framework, the input neurons must compete with each 2 ... S Connection weights into thejth competitive
other to represent input patterns. In addition, if an outpuheuron are denoted by, = [wi;,waj,- - ,wg;]T, § =

neuron fires at the same time as an input neuron, the cot- 2 ... A/. Supposing that the firing rate( | s) of the kt
responding connection weights between the input and outpiput neuron for thesth input pattern can be computed, then

neuron should be stronger. We call this competition "doublehe distance between input patterns and connection weights
competition”, because input and output neurons compete Withan be computed by

each other to represent input patterns.

L
We have so far trieq,' to introduce competition” in input | x* —w; ||>= Zp(k | s)(zf — wiy)>. (1)
neurons, which is called "information enhancement”. In infor-
mation enhancement, we tried to enhance competition between ) ] ]
neurons by focusing on specific input neurons [48], [49]. OnT he firing ratep(k | s) is considered to be the importance of
the other hand, we have combined information maximization irfhe kth input neuron for theth input pattern. The output from
input neurons and output neurons, which are separately definéfl output neuron is computed by

k=1

[50]. Those methods have shown improved performance for | x* —w; |2

several problems. However, they are not always effective for vj = exp (—22J> , (2)
taking into account the combined effect of input and output g

neurons. In this double competition, we suppose two typesvheres denotes a spread parameter and defined by

of actions, namely, competition and mutual interaction. In the 1

competition, input as well as output neurons compete with o= —, (3)
each other. In addition, we suppose some interaction between B

input and output neurons. Concretely, when an input and outpyyhere 3 is larger than zero. By normalizing theutput, we
pattern fire in the same way, the interaction between themaye the firing rate
s n2
exp (7 [ES ;av;JH )

becomes stronger.
M [|x* —wo ||2 (4)
In Section 2, we first explain the correspondence between 2 m=1€XP (‘ 202 )
information maximization and competitive learning. We &X-\ve should also compute the colleatioutput from the neu-

plain the concept of double competition to include input and : g .
output neurons. Then, we try to present the informationJ O™ In the self-organizing maps, the collective outputs are

theoretic learning method to realize double competition bydeterm!ned by distances from the winner. The winngris
; : ; ; determined by

using the free energy. Finally, we explain how to estimate

the firing probabilities of input neurons. In Section 3, we

present two experimental results from the well-known maching=ollowing the formulation of SOM, we compute the distance

learning database. Using a principal component analysis, Weetween the winner and the other neurons by
try to show that class structure can be clarified by using

the present method. However, we point out that topological p ( | r; —re |2>
joo T€XP\ —— 55 |

c1 = argmax; v;. (5)

preservation may be sacrificed for this better visualization. 22, 6)
Thus, it is important to more closely examine the relations "
between better visualization and topological preservation.  wherer; denotes the position of thgh neuron orthe output

map ando,q, is the spread parameter. Thus, the expected

Il. THEORY AND COMPUTATIONAL METHODS output is approximated by this function
A. Double Competition Gls) bje @)
§) = —F—"—.
Competitive learning has been considered to be one of " Z%;l Gmes
the most important learning methods in neural networks [51],
22|Page
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this purpose, we first compute the outputs from ftleneuron

o ( i (7~ wkf)?) |

202
Normalizing this output, we have the estimated firing rates

(13)

03
= (14)
Zm:l UJS'
By using p(j | s), we have the outpufrom the kth input
neuron

P (_zj”imu [ 5)(a wkj>2> s

202

PG |s) =

Network architecture for the information-theoretic self-organizing 11€N, we have the firing rate of ttigh input neuron
maps whereonly connection weights from a winner at the center are plotted.

%
i O
Putting this firing ratep(k | s) in the equation (1), (2), we

p(k|s)= (16)

Learning should be performed to reduce the difference bebavethe distance considering input neurons,

tween actual and expected outputs. We represent this difference

by using the Kullback-Leibler divergence

(8)

In addition to this KL divergence, we havother errors

L
Ix* = wj =Y ok | s)(@} — wiz)*.
k=1

17

1.
A. Experiment Outline

RESULTS ANDDISCUSSION

which must be minimized, namely quantization errors between We applied the method two data sets, namely, the glass and

connection weights and input patterns

M

S
Q = Sp) S pG | )lx - w2

1

()

Fixing this quantization errors and minimizing the KL-
divergence, we have the optimal firing rates

s _wall2
a(j | s)exp (— L)

pr(ils) = S %) exp (—W) (10)
We have the following equation called "free eggt
2N 1oy S° o | x —w, |

F =20 ;bg;q(j | s)exp <_W> . (11

Finally, by differentiating the free energy, we cabtain
the re-estimation formula

X G etk | s)x
Tl epk]s)

(12)

dermatology data. Both were taken from the well-known ma-
chine learning database [62]. The number of input neurons and
patterns for the glass data were 214 and 10, respectively. The
number of input neurons and patterns for the dermatology data
were 366 and 34, respectively. All the data were normalized
to range between zero and one. For quantitative evaluation,
we used the well-known quantization and topographic errors.
There have been many attempts [12], [13], [14], [15], [16],
[17], [18] to measure map quality quantitatively. Among them,
both errors are very simple and easy to implement. For
visual evaluation, we used the principal component analysis
(PCA) to summarize connection weights. As mentioned in the
introduction section, there is difficulty in interpreting SOM
knowledge, a number of methods have been developed to
clarify the knowledge [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29]. In this study, we used the PCA for clarification,

in particular for simplifying the knowledge. It is easy to
demonstrate the performance by using the techniques specific
to the SOM, such as the U-matrix. However, we used the
PCA so that the present results could be widely interpreted
and reproduced.

B. Glass Data
1) Firing Rates of Input NeuronsFirst, we examine how

As shown in the equation (10), connection weights are modithe firing rates could be changed by increasing the paranieter

fied to make the actual outputs closer to expected outputs.

C. Estimating Firing Rates of Input Neurons

To obtain connection weights;;, we must estimate the
firing rates of input neurong(k | s) in the equation (1). For

www.ijarai.thesai.org

or by increasing information content in input neurons. When
the parameter3 was increased from one in Figure 2(a) to
three in Figure 2(c), little change in the firing rates could be
seen. When the parametewas increased from four in Figure
2(d) to eight in Figure 2(f), the firing rates became gradually
differentiated. When the parametgrwas increased from ten
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in Figure 2(g) to 14 in Figure 2(i), highemnd lower firing rates C. Dermatology Data

becomes clearer. Finally, when the paramétavas increased o )

from 16 in Figure 2(j) to 20 in Figure 2(l), the clearest firing 1) Firing Rates of Input Neurons:We applied the
rates could be seen. Input neurons No.6 and No.8 had tHaformation-theoretic method to the well-known data set of
highest firing rates, while input neuron No.5 had the lowesthe dermatology from the machine learning database. Figure 6
firing rate. The results show that when the paramgtavas  Shows the firing rates of input neurons when the paraméter

increased, the firing rates became gradually clearer. was increased from one (a) to 15 (i). Even if we increased
the parameters beyond this point, little change could be

2) Results of PCA for Connection Weight&gure 3 shows seen in the firing rates. When the parametewas one in
the results of the PCA for connection weights by the SOMFigure 6(a), the firing rates were almost uniform. When the
and the information-theoretic method with double competition parameter3 was two and three in Figure 6(b) and (c), small
Figure 3(a) shows the results of PCA by using the conventionathanges in the firing rates appeared. When the paramieter
SOM. We can see that a condensed group could be seen eras increased from five in Figure 6(d) to nine in Figure 6(f),
the right hand side of the map, and the remaining connectiodifferences between higher and lower rates became larger.
weights were scattered widely on the left hand side of theNhen the paramete$ was increased from 11 in Figure 6(g)
map. When the parametet was two and three in Figures to 15 in Figure 6(i), higher and lower firing rates were at their
3(b) and (c), connection weights were close to those by théargest.
conventional SOM in Figure 3(a). When the paramétavas
increased from four in Figure 3(d) to eight in Figure 3(f), 2) Results of the PCA for Connection Weightsgure 7
a group on the right side began to separate from the other§hows the results of the PCA for connection weights by the
When the paramete$ was increased from 10 in Figure 3(g) SOM (a) and the information-theoretic method with double
to 14 in Figure 3(i), two explicit groups of connection weights competition when the parametgr was increased from one
on the left and right hand sides began to form. Finally, wher(b) to 15 (i). By using the SOM, as shown in Figure 7(a),
the parametef was increased from 16 in Figure 3(j) to 20 in connection weights seemed to be divided into three groups
Figure 3(l), connection weights were separated into two group¥ith weak boundaries. When the parametewas one and

on the left hand side and right hand side. In addition, anotheihree in Figures 7(b) and (c), the results of the PCA were
group could be seen in the middle of the map. almost equivalent to that by the SOM in Figure 7(a). When

) . ~ the paramete3 was increased from five in Figure 7(d) to
Figure 4 shows the results of PCA by the information-nine in Figure 7(f), a distinct group became separated on the
theoretic methods without considering input neurons. Whenight hand side of the map. When the parametevas further
the parametef was increased from two in Figure 4(a) to 20 in increased from 11 in Figure 7(g) to 15 in Figure 7(i), three
Figure 4(c), a condensed group on the right hand side remaingftoups were clearly separated.
the same, but connection weights on the left hand side became
more scattered. These results show that when the parameter Figure 8 shows the results of the PCA by the information-
B was increased, input patterns were separated into expliciheoretic method without considering input neurons. When the
groups by using the information on input neurons. On the otheparameter3 was increased from one in Figure 8(a) to nine
hand, without considering input neurons, explicit groups couldn Figure 8(b), three groups became more apparent. Then,
not be expected. even when the parametgrwas increased from nine in Figure
o _ 8(b) to 15 in Figure 8(c), the results of the PCA remained
3) Quantization and Topographic ErrorsWe have seen aimost the same. The results of the PCA by the information-
that class structure is clearer by using the |nforma“on'theore“ﬂ]eoretic method without Considering input neurons were infe-
method with double competition. The next step is to quantifyrior to those by the information-theoretic method with double

the map quality obtained using this method. Figure 5(a) showgompetition in terms of class structure. This shows that the
the quantization errors by the information-theoretic methodnformation of input neurons is critical in clarifying class

with double competition in red, without considering input strycture.

neurons in blue, and SOM in black. The information-theoretic

method without considering input neurons showed a sharp 3) Quantization and Topographic Errord=igure 9 shows
decrease in quantization errors, while the quantization errorthe quantization and topographic errors when the paranseter
by SOM and the method with double competition had rela-was increased from one to 15. Figure 9(a) shows quantization
tively higher errors. Topographic errors using the information-errors by the SOM in black, the information-theoretic method
theoretic method without considering input neurons werewith double competition in red, and without considering input
quite large. On the other hand, topographic errors did nobheurons in blue. By using the information-theoretic method
increase when using the information-theoretic method withwithout considering input neurons, the quantization errors
double competition. The decrease in quantization errors andecreased sharply from the beginning onwards. On the other
increase in the topographic errors by the information-theoretiband, by using the information-theoretic method with double
method without considering input neurons can be inferred frontompetition, quantization errors increased and became larger
free energy equation (18) (for more detailed discussion, sethan that by the conventional SOM. Figure 9(b) shows to-
the discussion section). On the other hand, quantization angbgraphic errors when the parametgerwas increased from
topographic errors did not change excessively with the doublene to 15. By using the information-theoretic method without
competition information-theoretic method, and were close tcconsidering input neurons, the topographic error increased
the errors obtained by the conventional SOM. Thus, it carsharply and eventually became much larger than the error ob-
be said that the introduction of information on input neuronstained by the conventional SOM. On the other hand, by using
attenuated the operation of the free energy. the information-theoretic method with double competition, the
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Fig. 2.  Firing rates of input neurons likle information-theoretic method with double competition when the paranjeteas increased from one (a) to 20
(t) for the glass data.

topographic error increased less than by using the informatiorhave introduced the firing rates of input neurons in the learn-
theoretic method without double competition. The behavioling procedure of the self-organizing maps. We succeeded in
of the information-theoretic method without considering inputdetermining the re-estimation formula for connection weights.
neurons can be inferred from the free energy equation (18). BWe applied the method to two well-known data sets from the
introducing the firing rates of input neurons, this tendency wasnachine learning database, namely, the glass and dermatology
attenuated. When using the information-theoretic method witldata. In both data sets, we succeeded in extracting clearer class
double competition, the quantization and topographic errorstructure, particularly by detecting clear class boundaries for
did not increase or decrease to the extent observed when usitige both data sets.

the information-theoretic method without considering input .. o .
neurons. g inp In addition, we could see that quantization and topographic

errors were inversely related when we used the method without
] ] considering input neurons. This inverse relation can be pre-
D. Discussion dicted by examining the free energy equation. The free energy

1) Validity of Methods and Experimental Resulis: this equation in its expanded form appears as the following
paper, we have proposed a new type of information-theoretic s M
method which takes into account the firing rates of input neu- F = Zp(s) Zp*(j | s)||x* — Wj||2
rons. We have so far shown that competitive learning as well = =
as self-organizing maps aim to maximize mutual information 5 M "Gl s)
between input patterns and output neurons [59], [60], [61]. 2 . pUls
However, little attention has been paid to information content 20 le(s) le(] [ 5)log q(j |s)’ (18)
in input neurons. In particular, we have not fully used any = !
information on input neurons in learning processes. Thus, weecalling that the spread parameteiis defined by usinghe
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Fig. 3. Results by PCA for connectiameights by double competition for the glass data.
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Fig. 4. Results by PCA for connectiameights without considering input neurons for the glass data.

other parameteg. errors should decreased as well. This is shown in Figure 5(b)
o — 1 (19) and 9(b). The introduction of input neuron firing rates in the
B learning processes attenuated this tendency.

When the parametet was increased, and tispread parameter

o was decreased, the first term of the free energy becamg¢,mation-theoretic method, namely, the estimation of firing
more effec_tlve._ This means that quantization errors decreaseflaq of input neurons and degradation in terms of quantization
as shown in Figures 5 (a) and 9(a). On the other hand, whegy 4 topographic errors.

the parameteps is decreased and the spread parametés

increased, the effect of the second term of the free energy First, there is a problem with estimating the firing rates
becomes dominant. The second term is the KL divergencef input neurons, which must be computed in order to realize
is used to imitate the collective behavior of output neuronscompetitive processes. However, in the computation of compet-
Thus, when the paramete? is decreased, the topological itive neurons, we must insert the firing rates of input neurons

2) Problems of the MethodThere are two problems of this

ijarai - P
www.ijarai.thesai.org 26|Page



0.2

0.05

Fig. 5.
(in blue) for the glass data.

(IJARAL) International Journal of Advanced Research in Artificial Intelligence,

Double competition

Without considering input neuorns

5 10
Beta

(a) Quantization errors

15

0.05

20

- 4 ’
L
/
’
Without considering iffput neuorns
’
, =
/
’
/
’
0 5 10 15 20
Beta

(b) Topographic errors

004 004 0.04
0.03 paaprroasnsmsnrmrmretenposnd 003 Lo S SALSSAAA 003 JWW\/\
p(k)
0.2 0.02 0.02
0.1 20 30 0.1 20 30 0.1 020 3
Input neuron (b) Beta=2 (c) Beta=3
(a) Beta=1
0.04 0.04 0.04
0.03 0.03 0.03
p(k)
0.02 0.02 0.02
0.01 20 30 00 020 3 0.1 0 20 3
(d) Beta=5 (e) Beta=7 (f) Beta=9
0.04 0.04 0.04
0.03 0.03 0.03
p(k)
0.2 0.2 0.02
001
0 20 30 0.1 0 20 30 0.01 020 30
() Beta=11 (h) Betz=13 (i) Beta=15

Fig. 6.

Firing rates of inpuheurons when the parametérwas increased from one to 20 for the dermatology data.
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Quantization and topographic errdmg SOM in black, information-theoretic with double competition (in red) and without considering input neurons

into the equation (1). In Section II.C, we briefly presentedwithout considering input neurons. We must explain why and
how to estimate the firing rates of input neurons. Howeverhow the degradation occurred and try to improve quantization
in the estimation of the firing rates, we must insert the firingand topographic errors.
rates of competitive neurons into the equation (2). We should

thus more carefully examine whether the firing rates of input

3) Possibilities of the MethodThe method presented in

neurons can be stabilized for the precise computation of thgyis paper can be considered as a new input variable selection
information content, and for producing stable self-organizingn som. and opens up the possibility of having competition
in all components of neural networks. First, this method is
an extension of the self-organizing maps which takes into
Second, we have a problem of degradation in terms ofccount the importance of input neurons or input variables.
guantization and topographic errors. In Figures 5 and 9The competition between input neurons can be considered
guantization and topographic errors increased, though they digs the introduction of the importance of input variables in
not reach extreme values as was the case with the methdade self-organizing maps. As is well known, variable se-

maps.
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lection has played important roles in learning, in particular Second, there is the possibility of having competition
in supervised learning [63], [64]. In unsupervised learning,among all components in neural networks. In the present model
such as SOM, the criteria to choose important variables havef a neural network, in addition to input and output neurons,
not been determined. However, in the information-theoretidhere are connection weights from the input neurons to output
method, the criteria to measure the importance of neuronseurons. If it is possible to take into account the competition
is naturally introduced: the importance is measured in termbetween all these connection weights, much better performance
of information content in neurons. When this information of a network can be expected. This means that in a neural
increases, the importance of the neurons becomes larger. Wietwork, every component competes with each other to most
use the importance of input neurons to visualize input patternsfficiently process outside stimuli.

by SOM, as it plays an important role in this regard. Thus, it

is important to examine relations between the importance of

input neurons and the visualization of SOM.
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for the dermatology data.

IV. CONCLUSION [6]

In this paper, we have introduced an information-theoretic
method considering information in input neurons to realize [7]
competitive learning as well as the self-organizing maps. When
mutual information is maximized between neurons and input
patterns, just one neuron wins the competition. Namely, mutual[s]
information maximization corresponds to competitive learning.
However, we can imagine that any component in a neural
network should contain information on input patterns. Thus, [°]
we tried to take into account input neurons in addition to
the output or competitive neurons usually used in competitive
learning. We applied the information-theoretic method to the[m]
self-organizing maps by adding cooperation processes to com-
petitive learning. Then, we applied the information-theoreticy; 1
methods to two well-known data sets, namely, glass and derm ]
tology data sets from the machine learning database. We found
that by increasing information in input neurons, connection
weights tended to be divided into clear groups. In addition, the13]
inverse relation between quantization and topographic errors
which was observed in the information-theoretic competitive
learning without considering input neurons, was neutralized4
by considering these input neurons. However, quantization and
topographic errors tended to degrade map quality when usirlq5
the information-theoretic method. Thus, we should examin ]
how and why this deterioration occurred in terms of quantiza-
tion and topographic errors to realize the information-theoretic,
method with better quantization and visualization performance.
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