(1JARAL) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.11, 2014
Extended Paper from Science and Information Conference 2014

Realising Dynamism iMediaSense
Publish/Subscrib®&lodel for Logical-Clustering in
Crowdsourcing

Hasibur Rahman Rahim Rahmani, Theo Kanter

Department of Computer and Systems Scie(iD&Y/)
Stockholm University
Nod Buildning, SE16407 Kista, Sweden

Abstract The upsurge of social networks, mobile devices, (IoT) will empower human tepontaneously participate in the
Internet or Web-enabled services have enabled unprecedented crowdsourcing Sociatnetworksareanticipatedo cortribute to
level of human participation in pervasive computing which is this cause as welfor example, a tweet feed can be considered
coined as crowdsourcing. The pervasiveness of computing devices a5 sensor datfl1]. This surge of social networksnobile
leads to a fast varying computing where it is imperative to have a devices, Internet or Wetnabled swices have enabled
model for catering the dynamic environment. The challengeof unprecedentetevel of human participation inrewdsourcing
efficiently distributing context information in logical-clustering which has been brandeds “ h u rratimeloops e n's orn g ”
in crowdsourcing scenarios can be countered by the scalable citizen sensor networkg§l2, 13. This phenomenon has
MediaSense PubSub model. MeidaSense is a proven scalableallowed us to encountevas1t amount ofreaktime crowd
Pub_Sub model for static environmer_n. However, the scalabilit)_/ of sourced d@m from distributed context sources Ericsson
MediaSense as PubSub model is furtherchallenged by its envisions a world which is connected in réale with people

viability to adjust to the dynamic nature of crowdsourcing. . hi d : ive id hich |
Crowdsourcing does not only involve fast varying pervasive USINg thingsaround udo createnew innovative ideasvhich is

devices but also dynamidiistributed and heterogeneouscontext ~ Known as the Networked Society [T]his Networked Society
information. In light of this, the paper extends the curent ~ Can be viewedsanotherway of defining the mwdsourcing
MediaSense PubSub modeihich can handle dynamic logica- ~ In @ nutshell, the followings are the properties and
clustering in crowdsourcing The results suggest that the requirements forrowdsourcing

extended MediaSensés viable for catering the dynamism nature

of crowdsourcing, moreover, it is possible to predict the near T People

optimal subscription matching time and predict the time it takes 1 Pervasive devices

to update (insert or delete) contexiDs along with existing

published contextIDs. Furthermore, it is possible to foretell the 1 Internet or Wekenabled services

memory usagen MediaSensePubSub model . .
y usag 1 Surroundinghings

Keyword$ Internet; crowdsourcing pervasive computing; q Context Information
context information dynamism; contextID; logical-clustering
Publish/Subscribe; MediaSense Although gowdsourcings gaining poplarity very fast and
this, however,brings forth many challenges in the retine
I INTRODUCTION distributed systems communicatiorSharing heterogeneous

The penetration of pervasive deviceesalatingand the context information obtained from distributedurcess one of
rate of proliferation is always on the rise. Th&avasveness of them[4, 5, 11]. Publish/SubscribéubSub) modelhasperhaps
computing devices hasaved the way where any situation canemerged as most populand efficientform of communication
be sensed and analyzed anywhere for anythihis directly System to sharing ubiquitous context informati®abSub is an
corresponds tthe distributed dissemination and acquisition of enabler for reatime context informatiosharingand providing
contextinformation from physical objects. This has becomemeans of notification for distributesteviced4, 5,6, 7, 11]. By
possibleby and largedueto spontaneous human participation leveraging the PubSub in theowdsourcingnodelcanunravel
from online communitywhich is most popularly known as the challenge of sharing context information in+téak [18].
crowdsourcing. This trend of oowdsourcing has been
facilitated by the deployment of pervasive devices along with
increasing popularitgf Internetenabledservices anthe trend
is expected taipsurge For instance, billions of mobile devices
are already in use today and Ericsson predicts th&8080
billion mobile devices will be in use by 2020 [1]. This coupled
with increased deployment of sensors in the Inteohdthings

Research in pervasive computing has resulted in
MediaSenseand was originally developedby the research
group calledmmersive Networking ascontext sharing platform
in the nternetof-Things domainbased orpeerto-peer (p2p
technologieq2, 3]. MediaSense can run on any platform that
runs JAVA. However, the promise and potential of

48|Page
www.ijarai.thesai.org

(1JARALI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.11, 2014
Extended Paper from Science and Information Conference 2014

MediaSensenakes it a good candidate to utilitdbeyond the anything anywhereand anytime Human participation in real
mentioned scope. It hathe potential to be utilized in time crowdsourciyg is further highlighted in [2, 13].
crowdsourcingdomain MediaSense isneopen source platform Demirbas et al. in [JJlalso illustrated crowdourced sensing
which can be used for re@iine and scalable seamless contextand they showed Twitter as an example of achieving this.
sharing[2, 3]. Ericsson [1] predicts that in future people will be connected
along with things and will producennovative ideas through
the Networked Society. All these researches show that
heterogeneous context will be generated from distributed
sources in redime. In light of this,one ofour previous paper
proposed the idea of logiealustering based on canit
similarity [14] andwe further demonstrated its performarine

5]. The definition of context bybey AK (2001, [17]) is
idely accepted, based on thisir definition of context is:
ensor’s flow packets that describe the current situation of the

In respnse to the challenge of sharing context
information in crowdsourcing our previous paper presented
the scalable MediaSense platformths PubSulbmodel [18].
Results suggestedthat MediaSense platforns very fast,
efficient and capable of supporting largeale system.
However,as crowdsourcing evolve around pervasive device
andpervasive computing is always changing and this dynami
nature of pervasive computing further challenges the scalability,

of PubSub model. A PubSub model must cope with the fagf,o,» Athough our initial proposal concentrategnerally
varying anytime, anywhere computing. crowdsourcingThe o “\yireless sensor networkscenario and flow:sensors
distributed objects with heterogeneous context sources demaH wever, our approach has the ingredients to suit the

scalartélii ::o_rphputil?]g nwhen Igeéectir;]g kﬁ:igangesh andn at(\j,\j/ufgr&gowdsourcinq)latform as wellSimilar context ighe basis for
ggﬁaect'g'ty. bimcd a dgt]r?mrzjsert'gna ayl;[q gelsel{c%nazf S bOS logicakclustering. Context similarity is calculated based on
VI, wieen, | : : u Ubsimilar flow of context of flow sensors [14, 15Dur proposal

Itﬁmssi‘(’:alIet((:i'istrlivlbzrtzgvki;’tT(I)n?::eall losgIzilﬁlrlcj)itiirelggsinll?svorll\éisce i'mplies that heterogeneous context generated from distributed
pny y gically sy ' ources would be logically clustered based on context

is mandated that we investigat® stabilty in case of failure of similarity. The main goal of ouresearch was to provide a
opeﬂ(])f the sklnks.c;l'he rfr;atuwr.ﬁl ctwestlontanahg haﬁ)ptr)eln’s) o(n:e mean for managing huge context information in a proficient
of the SINKS1S dowrtk : e system be Stables Lan panner.The challenge oftering clusteringdentification has
MediaSense still be able to synchronize without failed sink(S)g .oy addressed in our previous paper [18] by employing a

Therefore, this mandates that we further examinepu Submodelin MediaSense. Thispensup the floodate for

l\/le d ibla S;I_n se’s St Ctﬁ : fa ? | | The &iT is nfsh iMg e "Austering [YentifiCatoftHii*PUHSub would act
0 enable reaime response 1o the fast varying nature o like a driving wheel fotogical-clusteringconcept.
crowdsourcing.The massive scale of context information in

crowdsourcing requireadjustingto the dynamic environment Zaslavsky in[19] portrayed that key to efficient pervasive

along with efficient and scalable acquisition, dissemination,computing ie.cr owdsour ci ng i s t o
and management. This paper particularly enlightens behavior and furtonality. This underpins the need for
Medi aSense’ s i mpact as Pudbulbi cmbdehs’'f orc apdaybnia mitcy t o
crowdsourcing environment. environments. An application cannot be called scalable if it

fails to address the aforementioned scenario. This was ffurthe
discussed inZQ] that it is inconvenientfipervasive system is
static i.e. if not dynamic.

The rest of the paper is organized fabows: section Il
showsthe related work, séon Il outlinesthe motivation of
the work, section IVdraws the approach while section V
demonstrates the evaluation of the work, finally section VI . MOTIVATION

I h ly hi he f k : . .
concludes the paper andefly hints at the future wor Theunprecedented power and promise of pervasive devices

Il. RELATED WORK capitalized by humanwill lead the future pervasive
environmentHuge amount of heterogeneous data i.e. context

feasibility of using Publish/Subscribenodel for mobile information generatedrom crowdsourcingnecessitates proper

" .. mana@gement; and logicatlustering of context is one of the
systems [4] where they focused on scalability and mobilityy ., nicies to manage cortteinformation proficiently and
issues; for mobile crowdsensing which focused on +tale

X ; share resources remotelyhus enabling heterogeneous
data delivery and saving energy.[And othershave proposed o oneranility [#]. This approach can evére applied to the
g'ﬁgreﬂt) methods dto dlﬂrgplemebr;_t hF;JJ%SUhDJ ex?mplg,Le Networked Society concept where similar ideas from
thu Sg_”renit)mpgsgli Vr\:/s Sbequlijb IS S tsirr: $_Iyspesng ’7]t’iliz onnected people cdpe categorized into a cluster meaning
DSMSObO c(’j u tsh' u SCI e’th ysse (do PAI)?DLIéS €¢hat clustering will bedone based on similar context i.e. ideas
implerr;eﬁfeedrulei]:)?agetljngmmﬁiggnalgérit]r[lma& for PubSub However,solution to thePubSub of contextDs was missing
model None of the above mentionenodel alone offers the M the existing proposal Therefore, lie primary motivation of

; — this work is to address the PubSub issuethaf proposed
advantages that MediaSense ofesshighlighted before logicalclustering conceptn logicalclustering, each cluster is

Franco in [0 portrayed that spontaneous human identified as contexID and published on the Internet so that
participation i.e. mwdsourcingis pivotalfor future pervasive other interested entities can subscribe to the cofilexthe
computing. The human engagement in distributedidea of logicaisink was utilized to control the enormous
collaboration would enrich therhan networks which will number of entities in a smalscale network. Logicadink
implement the idea of sensing, actuating amdémputing implies that sinks willoe physically distributed but logically

Related wdk in the aforementioned scenariocused on

49|Page
www.ijarai.thesai.org

(1JARALI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.11, 2014
Extended Paper from Science and Information Conference 2014

synchronized. PubSub is the enablerdocomplishingogicak
sink. In our previous paper 81, we adopted MediaSense as
PubSub enabler in logicalustering. This approacsolved the
PubSub issuéor both fronts i.efor disseminatior{publishing

of contextiDs in the Internet and for logicatsink
synchronization Fig. 1 (elaboratedfurther in next section)
shows the incorporation of MediaSense into the logical
clustering conceptDiversity and heterogeneity are notly
related to the context information but also to the environmen
itself. Our previous paper dealt with tiséatic scenario where
only regular publish/subscribe items have been addressed. The @

Registered
as UCl

Logical-Sink MediaSense

paper did not take into consideration of dynamic situation

where it might require to alter or update ttentextIDs along

with regularpublish/subscribe. This motivated usrwestigate _ . _

further the MediaSense credibility whether it can match th&'d- 3 ©ur approach to utilizblediaSense

demand of crowdsourcing dynamisin. addition, it has been MediaSense implementation to adjust to the approach i.e.

observedhat MediaSense initially takes some time to match %Sing MediaSense as PubSubdelis highlighted

subscription compared with other distributed system such as ’

PARDES system, therefore, another goal of this paper is t&. MediaSense

identify the reason behind this delay and propose a potential pediaSense usesp2p infrastructure and implemented in

solutionto the problemWith the ever increasing smartdevices jaya . Distributed Context eXchange Proto¢PICXP) is used

and increasing popularity of intelligent systems, it is desirablgy gisseminte information between all the entities that are

to have a model which can preditie outcome in some ging the platformMediaSense can offer reiine context

capacity. Andthis paper willalso explore if it is possible 0 gharing and context entity is referred to as Universal Context

predict the PubSub messages pecondand the memory |gentifier (UCI) in MediaSense. An entity requitesresolving

consumption for which the MediaSense was evaluated in thgis UC| in order tofetch context information, but before an

previous paper. Finally, it is unknown what happens when ongnity can fetch context information the entity that holds the

of the physical sinksiown and logicaisink synchronization, context information needo be registered. Fig. 2 gives @ea

stability will further be evaluated. of how this mechanism wask Entity A registers a UCI in

MediaSensaising the Registtar classand entity B resolves

V. APPROACH the UCI by using the Resolver clas® fetch context

Firstly, this section briefly discusses how MediaSensenformation associated with the resolved UBh entity can

works and follows by modifications made to the current register more than one UCI. However, the only drawback with

MediaSensas that an entity needs to know the UCI prior to

resolving.

Logical-sink Logical-sink

B. MediaSense as PubSub in logical-clustering
MediaSense The contribution of this paper begins wititoption of
MediaSense into logicallustering conceptThis subsection
describes the approach anuodifications made to the
MediaSense platform totfinto the proposalCurrently, an
entity registers the host ID and hash key along with the UCls.
Host ID and hash key remain unchangedaf@articularentity.
Contaxt The idea is thaa logicalsink registerstself asUCI andthe
Information contextlDs associated withthe logicalsink asU C | daga.
Other logicalsink resided remotely resolves the UCI and
fetches the contextDs. This is shown in fig.3. Logicatsink
collectsdata i.e.context informatiorfrom distributedsources
e.g. sensors, mobile deviceand other physical objects that
producecontext informationand is responsible for creating the
contextlIDs based on the context similaritfsee fig. 1)
Logicatsink needs to be synchronized as well i.e. chaimga
physical sink should be sghronized with other physical
sink(s). This synchronization could be achieved by the
MediaSense PubSubodeltoo. Fig.4 illustrates this. In this
later case, a physical sink would be registered as UCI and
changes inside éhsink would be shared with other physical
sinks over MediaSense. Therefore, our approach would be
Fig. 2. MediaSense registering and regog UCI evaluated for both these purposes.

Logical-sink

Fig. 1. MediaSense as PubSotodelin logicalclustering

Resolves
uci

Registers
ual

Entity A MediaSense Entity B

50|Page
www.ijarai.thesai.org

(IJARAI)

International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.11, 2014
Extended Paper from Science and Information Conference 2014

However, the current MediaSense implementation does
support the registration of context information along with th
UCI at the same time. Rather it collects context informatio
and this is sent over MediaSense as a messagemEti®d
wouldincurdelayin our approaclas there might be millions of
contextlDs to be published and subscribetience, the
MediaSense platforrhas been modifieth a mannetthat the
context information can be registered at the same time as U
Therefore, whenever a logiesink is registered, its context
information is also registered in paralld@his will further
enable faster and redime g/nchronization of context
information. And, changes in the logicadink can be updated
using the MediaSense Updater claBgy. 5 & 6 show the
algorithms for UCI and context information registration an
resolve.Algorithm for registration first begins with initializing
MediaSense platform and starting the MediaSense bootstr
MediaSense bootstrap needs to be initiated onbe inside a
network. As we assume that MediaSense entities are already
and running, sdime to set MediaSense up i®t included in
the evaluation.The algorithm next checks if the UCI is

Algorithm UCIRegistration

Initialize MediaSense platform
Run the MediaSense bootstrap
/ measurement starts from here
if UCI is not registered
Invoke Registrator class
Initialize registration and add UCI
invoking Medi aSensePl atformds
Add context information
else if
Invoke Update class
Initialize Updating and update UCI
invoking Medi aSensePl atformds
Update context information
end if

end UCIRegistration

registered. UCI is updated witmew and old context
informationt if UCI is already registered. Otherwise, UCI is
registeredalong with its context informéon. The registered

Fig. 5. Algorithm for UCI and context information registration

UCI can be deleted and a logisiihk in essence can register
multiple UCIs at the same tim&his gives us flexibility;for
example, an entity acting as both physk&iak (part oflogicak
sink) and logicalsink (while communicatingother logical
sink§ can communicate with othegntities using different
UCIs. The registered UCls are saved on the MediaSen
platform which means the context information is never, kst
long asthe UCI isnotdeletedwhen an entity dies or fails. This
guaranteego central point of failure.

Fig. 6 shows the algorithm for resolving UCI. The
algorithm firstresolveghe contexinformation from the UCI if
it exists.The algorithm then fetches contdkits until the list is
empty. The contextD that is to be subscribed is then checke
against the fetched contelds anda notification message can
be sento the subscription requestathen matchs found. If
the UCI is being requested to be resolisedorexisentthen a

message notifies that U@bes noexist
Physical Physical

MediaSense

Algorithm UCIResolve

Initialize MediaSense platform
/I measurement starts from here
if UCI exists
Invoke Resolver class
Initialize resolve and resolve UCI
invoking Medi aSensePl atformds
Resolve context information
- ID list is not empty
getcontext -1ID
if list contains context

while context

-1D
subscription matched
end if
end while
else if
UCI does not exist
end if

end UCIResolve

Fig. 4. MediaSense as PubSub for logisaik synchronization

Fig. 6. Algorithm for UCI and context information resolve

V. EVALUATION

This section firstbegins with highlighting the need for
modification and then exhibithe evaluation of MediaSense as
a PubSutmodel

5l|Page

www.ijarai.thesai.org

egi ste

hpdat e

esol ve

(1JARALI) International Journal of Advanced Research in Artificial Intelligence,

The evaluation can bdivided into threeparts: (i) PubSub

published contextD is matched for subscriptiprand (ii)

PubSub for logicasink synchronization for which all the

changes are plished b the other physicalinks, and (ii)
dynamic behavior of MediaSense

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

three PCs with onC acting as host sink armgémainingtwo
for the contexdDs sharing in logicatlustering for which each as recipient sinks. All three PCs have similar RAM size but the
recipient sinks have different processdrhe results have been
obtained by simulating multiple times and the average results
have beerpresentedSubscription matching time is shown in

TABLE I. REQUIRED TIME FOR PUBLISHING
of published Current Modified % improvement
contextIDs MediaSense | MediaSense °1mp
1000 7.34 ms 4.17 ms 76
10000 8.93 ms 5.37 ms 66
100000 10.74ms 6.23 ms 72
200000 11.65 ms 6.69ms 74

Required time for publishing (in ms)

/ s ; s
S . oo o

--%- Current
--+- Modified

0.5 1

1.5

2

2.5

Number of published context-IDs | 14°

Fig. 7. Publishing time differencen MediaSensécurrent vs. modified)

A. Current vs. Modified MediaSense

In current MediaSensdf we want to share contedDs
then each contexD would need to be registered as UCI. This
will sustain delay. Table Il summarizes the time required t
publish items i.e. contexbs on current and modified
MediaSense platform. It can be clearly seabat current
MediaSense takes longer time compared to the modifie
MediaSenseif we publish contextDs as UCIs. Hence, it is
efficient to register contextDs as context information and sink
as UCI. This way we can achieve nearly 74 % improvemen
Fig. 7further illustrates this.

B. MediaSense for logical-clustering

The PubSub model that we proposed initially for logical
clustering could senchaximum1000messages/sdor PubSub

events However,

logarithmic scale and in millisecos{ms).

Fig. 8 shows Medi aSense’ s perfo
number of published contedDs. This result isobtainedfor
bothpublished and subscribed durati@ontextIDs have been
generated randomly using UUIIR JAVA. For thisparticular
scenario, eaclof the published contextD is matched for
subscription on the recipient sinkis.can be seen that both
sinks givealmostsimilar resultsNo significantfluctuationin
terms of performancéMediaSense provide€BubSubmessages
per second céround 29111789,and931 for contextIDs size
of 10K, 50K, and 100Krespectively.Although it is apparent
thatthe performanceeduceswith the increase size of contex
ID, but PubSublowersonly by onethird while themagnitude
of the contexiD increased by tefold. This is due to theafct
that timefor resolving UClincreasesvhen we want to publish
and subscribdarger size. Moreoversubscription matching
alwaysvitiates when published item increasas can be seen
from previous examples of PubSi®, 7, 8, 9. This can be
understood from the fact that with the increased sife
published itemthe matching takes longer time.

Fig. 9 shows the subscription matchifigr contextIDs in
MediaSense.Again almost identical performance for both
sinks. Subscription matching duration understandably ingease
with the size of conteXDs. The result suggests thabrf
hundredfold increase in the contedd size, matching dation
increases only by 86 %.

Fig. 10 shows subscription matching time for a single
contextID. The 'th contextID is matched from-gize of the
contextID. Surprisingly, sinks have slightly different result for
this scenario. The differenctargely can be seen at the
begiming (for 100K) andfor 1 million. The onemillionth
QontextID took 8.76 ms to match with the published context
IDs. While most of the PubSub systems are centralized and do
agt scale well in the distributed computinige PARDESarge

ale PubSub system in][& a distributed PubSub system
which showed that one publication can be matched in 4.25 ms
for 200K subscriptions, although for our approach we are
Fnatching subscription against published items and result
illustrates thatit takes 7.71 ms to match00,008" item for
200,000 published itemm reattime. This increase perhaps

we have achieved Dbetter

result with

due to time requik to resolve UCI with large contedds (see

further fig. 14)

and result is the average foultiple simulationsThis givesan
increase of 24 % which outperforrs our former idea It

clearly shows that MediaSensan be an efficient PubSub
rest of this subection will

model The

demonstrate

performance of MediaSense for various scenaaind under
assumption that all the MediaSerestitiesare alreadyp and
running In order toevaluateits performance we havesed

However, if we analyze fig.1lit can be observed that the
MediaSense. It can supp@s high as 3537 messages/sec. Thisncreaserate for subscription matching is much higher in
result has beenbtained by running the PubSub for Twed

PARDES compared to MediaSense. The matching

increases nominally for MediaSense. It increaseménely 7%

rate

when contexiDs increase from 500K to 1 million and from 1
million to 2 million. As for PARDESwe see that it increases
by 54%, 89%, and 125% when subscriptions increase from
25K to 50K, 50K to 100K, and 100K to 200K respectively.
Since PARDES did not show its results beyond 200K and if we
take the minimum increase rate which is 54% and plot them,

www.ijarai.thesai.org

B2|Page

(1JARALI) International Journal of Advanced Research in Artificial Intelligence,

then we see that PARDES overtakes MediaSense from 5(
and beyond. MediaSense sho98% improvement compared
to PARDES for 2 billioncontextlIDs matching. This result
signifies that our approach is easily suitable for lescme
PubSub scenarioand scale very efficiently with nominal
increase in matchingluration in a distributed largscale
scenario The scalabilityefficiency can furtherbe seen from
table Il and lll.1t is mentioned earlier that for all the PubSul
systems, PubSuimessages/sec decreases with the increase
published items. Le Subscribe system is a very efficient a
fast PubSub system as outlined in [6, 7], but our approach
outperformed its counting algorithm as table Il and:dhfirm.
MediaSense achieves ahkigh as 2058% increase in
subscription matching and 1200% increase in PubS
messages/sec. Although Le Subscribe has other algoritt
which performs better compared to its counting algorithm, b

Time for subscription matching (in ms)

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

-
N
1

-
—_

-
(=)

©

[e2]

(o))

~
T
gl
<

2 4 6 8 10
Number of subscribeable context-IDs ¥ 10

the other algorithms eliminate a portion of subscriptiams
achieve this.This contradicts our approach and we ot
eliminate any contextID (i.e. subscription), hence other
algorithms were not considered for comparisond A&ve have
shown that our approach perms better compared to other
approaches

The above scenarios have been evaluated on the sar
network and with same Internet speed. In order to verify
whether Internet speed plays a significant role in the
MediaSense performanceie have tested our approach in a
different network with on¢hird slower Internet speedkig. 12
illustrates this case. The result demonstrates that Internet do
play a role in determining the performantaterestingly, the
fluctuation mostly varies between 5K and 20K. As for %01
100K, the fluctuation is insignificanFor example, for the size
of 10K, network2 (with low speed) shows 31 % performance
reductionswhile for the 100K size, thdecreasés merely 3 %. -
This indicates that although with lowinternet speed Fig.
MediaSense demonstrates slight performanesluction
however, the deease rate is marginal

Time for subscription matching (in ms)

S —
Time for subscription matching (in ms)

Average number of PubSub context-IDs/cecond

2000
15001
1000
; i i i i
5000 2 4 6 8 10
Number of published context-IDs x 10%

Fig. 8. MediaSense PubSub messages per second

Fig. 9. MediaSense subscription matching

[T ——

7.5 __.____f__.._..__.__i__.._..__.__.__..

Sink-1
--%- Sink-2

0 0.5 1 1.5 2

Number of subscribeable context-ng(105

10.MediaSense subscription matching 'taritem

o --- PARDES

N ¥ i ; --=- MediaSense
0 05 1 1.5 2

Number of subscribeable context-IDs x 106

Fig. 11.Subscription macthing time comparisons

B3|Page

www.ijarai.thesai.org

(1JARALI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.11, 2014
Extended Paper from Science and Information Conference 2014

store 100Gsubscription with 39 KB of memory. This gives an
11216 % improvement in terms of memory usage for this
particular scenario. However, this is not always the e&se
illustrated in table IV The table further shows the comparison
between these three PubSafodels. MediaSense and Le
Subscribe growlinearly. Table IV also reflects this where
Medi aSense’s % i mprovement <con
the comparison is stable with Le Subscribe in terms of memory
requirements. MediaSense betters Le Subscribe an&SoP
respectivel by 163% and minimum by 451%.

w
(4}
[=]
o

Network-1
-7~ Network-2 |

3000}
2500
2000 .':
1500 I;‘:

L 5 5 :

Average number of PubSub context-IDs/cecond

TABLE IV. MEMORY USAGE
‘ i i i : # of Le %
5005 > 4 3 8 (context MediaSense ngs S Subscribe | improveme-
Number of published context-IDs x 10" IDs () (Counting) nt
Fig. 12.MediaSense PubSub messages per second in different Internet speed 1000 0.038MB 4.3MB 11216/ -
1 million 37.1 MB 381.46MB 97.66MB 928 /163
TABLE II. SUBSCRIPTION MATCHING
#of 2 million 74.38 MB 762.94MB 195.31MB 926 /163
context Le Subscribe MediaSense | % improvement .
IDs (Counting) 5 million 185.97 MB 1024MB 488.28 MB 451 /163
500 K 85 ms 14.76 ms 476
1 million 350ms 16.22 ms 2058 - :
--+- MediaSense H
1000(--+~-ToPsSS <K
--+-Le Subscribe| = | .
TABLE IlI. PuBSUB MESSAGE$SEC | 4519
T 800 s o
of Le Subscribe . % =
> MediaSense . =
contextIDs (Counting) improvement S 600
j=2)
15K 621 3151 407 ' E T
>]
1 million 7 91 1200 z U =
5 g ,i 163%
C. MediaSense for logical-sink = g e T X
As for logicatsink i.e. synchronization of physical sinks __V____:;f ---------- g
matching for publishedtems is not required. In order to 1 2 3 4 5 6
6

synchronize each physical sink, only the changes need to be . Number of pubjished context-IDs

retrieved in other sinksAnd, depending on the nature of ry 13 Mediasense memory usage
changs and need, each physical sméuld decide whether to
save the changes in a file or as UCI ba MediaSenseAnd,
since no matching operation required in this cMediaSense
can provide as high as 9032 event changes per sédugrds a
further improvement by factaf nearly3 compared to PubSub
messagesper second.This overwhelming number rkas
MediaSense a very competent and efficient tool fopSeib
modelin crowdsourcing especially for the purpose of logieal
clustering.

E. UCI resolved delay analysis

We have seen in figlO & 11 thatcontextID matching
takesbit long time initially and we further assumed that this
could be due to the timéhat sink takes to resolves UCI. We
have seen from figlO & 11 that sbscription matching grows
linearly but initially takes some time. If the time required to
resolve UCI an be ignored then this could result in faster
subscription matching which is desirable in &ale
computing. The following figures (fig. 14 & 15) further discuss

; ; i . First, fig. 14 shows the comparison for subscription
Memory usage plays an important part in the PubSul'® iSsue .
model evaluation as highlighted by earliesearches [7, 8, 9]. maiching between UCI res@d and without UCI resolved.
MediaSense is very efficient in terms of memory usage as wellhe result in this particular figure has been simulated for

Fig. 13 confirms this. Memory usage grows linearly. 37 MB of CONtextID matchingfor everypublished contextD. The result

memory is required in order to store 1 million cont®s. IS out ofthe blue for us, we did not expect thissult Our

ToP p ; L ; assumption was that _wi_thout UcCl resolveauld reSL_JIt in
(tﬁe Sciunﬁr?g l;?gg:i(i:]%w\a\/eaéndgs],cﬁggd ﬁ] %figlg]egm faster contextD subscription matching. However, MediaSense

usage was shown in [7]). requi.re_d very large memory sizes, f&emonstrated almost identical performance for both scenarios.
example, TOPSS occupied minimum of 4400 KB memory to For example, MediaSense demonstrated only 23%
store 1000 subscriptions, and in our approach it is possible tacreased subscription matching time for UCI resolved

D. MediaSense memory usage

b4|Page
www.ijarai.thesai.org

(1JARALI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.11, 2014
Extended Paper from Science and Information Conference 2014

compared to withat UCI resolved for 5K published context However, without UCI resolved clearly outperforms other
IDs. Moreover, this subscription matching time reduces tapproach. The improvement percentagagsificant It betters
almost 0% if the published contelfd is increased to 100K. the UCI resolving by 338% and 114% respectively for 100K
This could be understood from the fact that as we are matchiramd 2 million contextDs. However, it leads to another
for each published contedd and time for subscription is research question if we ignore the UCI resolving then how do
matching is short(measured in mspas well as for UCI other sinks resolve the contdikis? This could be done by
resolving. Therefore, with the increase of published contextemploying adptability and awareness in MediaSense which is
ID, the resulting subscription matching is independent of timgyart of our future work.

required for UCI resolving. Nonetheless, if we novamine E Dynamic MediaSense PubSub

fig. 15 we can see the significance of discarding required tim _ _ _
for UCI resolving. The previous evaluations have been explored for static

. - . 4 scenario which means it did not consider the dynamic
Fig. 15 shows the subscription matching required'for — opyironment. This subection will examine if MedSense can
contextID from i-size of the contexD. Fig. 11 also showed fifi| the demand of crowdsourcing dynamisfine current
the result for this scenario. Fig. 15 cleatfpws the difference. \jegiaSensallowsa UCI to be updated and deleted, however,
Since pervasive computing is a dynamic environraedtmore gjnce the MediaSense had been modified to fit into logical
often than not it is desirable to match a contxas fast as ¢jystering oncept, therefore, the MediaSense has been further
possible with minimal delay. This motivated us to look into deytended toadaptto crowdsourcing dynamism. The extended
solution for finding a faster approach for cortéX matching. pediaSense now can be used to insert and delete any eontext
ID anytime. The remainder of this sgbction examinethe

'g 12r- 3 MediaSense platforms p e r ffor contex#Ds msertion
£ T and deletion scenarios.
o'l e -_
E ,v""‘”é 7
210 e
E -~ —a-
S o9 c 28
= =
o S
g s 524
= w
[£
é | - H : I
@ 7 With UCI resolved 222
E v : -+~ Without UCI resolved =
~ 6 i @
0 2 4 6 8 10 &
Number of subscribeable context-IDs 44* DR -
<
Fig. 14.Subscription matching with and without resolved UCI - - i
18 i i Time for context-1D insertion
0 2 4 6 8 10
fg 10 Number of inserted context-1Ds x10°
= Fig. 16.Average time for contexD insertion(l)
28
5 s
26 2
5 £
a | b £ = 2.95
§ 4 ___________ e g
.g e =
o | % | O T SS——
5 2r =
@ v With UCI resolved =
E 0 ~=- Without UCI resolved © 2.85
0 05 1 15 2 E
Number of subscribeable context-IDs x 10° [}
@ : i i
Fig. 15.'th Subscription matching with and without resolved UCI =z i . - —
275 Time for context-ID insertion
Fig. 15 exhibits thisThe figure shows the subscription -0 2 4 6 8 10

matching from 100K to 2 million. Both results i.e. for both Numberiof stored context;IDs =, 1ot

with and without UCI resolved qualitatively reveals similar Fig. 17.Average time for contextD insertion (Il)
performance.

55|Page
www.ijarai.thesai.org

(1JARALI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.11, 2014
Extended Paper from Science and Information Conference 2014

2.9 P Geloton This result is |r_1deed beneficial fpr dyr_1am|c crowdsourcing
as we want tacquireoutcome faster in redime.
2.8
27 TABLE V. INSERTIONTIME % INCREASE
of context
26 IDs increase ngto 13320 20K to 50K to igota
50K 100K

% increasein
average time 15 6 4 5 40
for insertion

R
(<]

I
~

Average time for deletion (in ms)

G. Prediction in MediaSense evaluation

In the above results, it has been observed in many scenarios
3 4 5 & 7 8 9 10 that the results tend to follow a specific pattern. For example, it
Number of deleted context-IDs x10° has been revealed by fig. 11, 14 & 15 that subscription
matching grows linearly and so does the memory growth as
observed by §. 13 and table IV.

Fig. 16 shows the contekd insertion scenario for an Therefore, the objective of this sskctionis to examine

already resolved UCIAs expected, the time for insertion and propose some formulas where it can be possible to predict
increases wit the increased number of cont®t When the {he outcome of the result. Since the izl crowdsourcing is

number of .conte_xtD .is.increased from 1K to, average ti.me for dynamic and it is imperative that the system ieab pre
contextID insertion isincreased by @%. The increase is Not gaterminethe outcome. This intelligence in the MediaSense
substantiatompared to increase in number which is a 9900%ystem would give us flexibility in terms of predictisgch as
upsurge More importany and perhaps significantly, this {ime for subscriptiomatching, memory occupation, efable
contextID insertion follows a specific paitn for most cases. v portrays the published time percentage increase when the
For examplewhen the number of conted is increased number o_f contextDs_ is increased. The observation indicates
from 5K to 10K the averagéne for insertion increases 6. that published time increases between -4%% for a 100%
The same goes true for 10K to 20K ieases antbr 50K to ~ Increase in the contekDs S|ze_.A_nd if we further analyze_
100K. Therefore, we can conclude that a 100% increase fable VIl we observe that this increase for published time
contextID insertion would employ abo&s increasesn time foIIO_N a sp(_acn‘lc_ [@attern. For example, for each 100% increase
(see table \V)This phenomenon could be very significant givenPublished time increases by about 5£1%. Even when we have
that in dynamic reaime crowdsourcing it is always great 400%increases then MediaSense demonstratesnd 16%-
advantageous to predithe outcome beforehand. Therefore, 18% increase. Hencanalyzing the above resuttse following
with this pattern we can always predict the time required foformula for MediaSense publishedme increasecan be
contextID insertions. Fig. 16 has been evaluated with veryritten:
small stored contexD, and in fig. 17 we further investigate if
dready stored contextD for a UCI has any impact on average
contextID insertion. Thus we increase the number of stored
contextID in a UCI from 1 to 100K and the average time for
contextID insertion varies mereligy around 36 and varies by

[N
w

[
a0
N

Fig. 18.Average time for conteXD deletion

0°Y uv p8ObP... (1

WhereP_T; is the published time increase ands is the
percentage increase factor (for example, for a 100% increase
P_I; would be 1 and for a 400% increaBel; would be 4).
Although byusing eq. 1, it might not be always possible to
Opredict exact published time increase, however, we can at least
predict nearest valués for subscription matchintable VIII
indicates that it varies always. This is understandable from the

Fig. 18 shows the contedd deletion. This result is very fact that while subscribing for a contexD, MediaSense
surprising for us and it was totally unexpected. Our assumptidpatties with bandwidtiwhile resolving UCl,and it might not
was that average time for deletion of contéxtwould grow provide any stable equation. Nevertheless, we can at least
with the increase of number of contd®t Surprisingly, the provide an equation which can provide us a near optimal value
average time decreases when number ofestiid to be for subscription matching. Theeation can be written as:

the increase instored contextD and does not offer a
bottleneck for contextD insertion.

deleted increaseslowever, if we closely investigate and look “vi puL UDP %)
at the fig. 18 then we find out the time decrease is very ' o
minimal. The decrease is almost negligible when confxo "YO is the subscription matching increase. Egn. 2 is true

be deleted increased from 1K to 50K (only 4%) and the sate ionly when each published conté®t is matched, but as fdh

just 22% when contextD to be deleted increased from 1K to contextID subscription macthinffom i-size of the contexiD,
100K. This assures that MediaSense does not consume tih@ subscription matching increases by about 10% in most
much time to delete conteids. cases as indicated by table IX.

56|Page
www.ijarai.thesai.org

(1JARALI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.11, 2014
Extended Paper from Science and Information Conference 2014

TABLE VI. PUBLISHED TIME % INCREASE(I) VI. CONCLUSION
of The growing popularity of rowdsourcingin pervasive
contextIDs | 1K) 5K | 10K | 20K | 25K | 50K | 100K computing gives rise to many challenges. Sharing context
Increase to to to to to to to . . :
ok | 10Kk | 20k | 30k | 50K | 100K | 200K mformgtlon in reaJtllme is one of thenfor examplg in logical
o clustering scenario The challenge of sharing context
% increase
in information |_sunraveleoby employing MellaSe_n_se as PubSub
published | ° 6 5 4 4 4 6 model. MediaSense demonstrated very efficienfop@ance
time for the PubSub purpose and it performs better than existing
PubSub modsl and requires only 9.59 ms to match two
TABLE VI, PUBLISHED TIME % INCREASE(]]) millionth published contextD, furthermee the memory

requirement is very lowHowever the resultsare analyzed

ftDc;fi‘;c(’:?te'ZX; 10k | 25K 10 only for staticenvironmentThe contribution of thigxtended
1Kto | 2Kto | =0 100K paper begins withextending MediaSenseto counter the
5K 10K 5ok dynamic nature of logicatlustering for crowdsourcingThe
paper first proposes a $ation for reducing the delay to
% increasein 18 17 16 subscription matching. The solution works very well fibr
published time 12 item subscription matching, however, when each published
item is subscribed then the solution does not offer any
TABLE VIIl. SUBSCRIPTIONMATCHING % INCREASE(]) imprqvem_ent. Nevertheless, fdhe 'th itgm case th_e new
solution improvesby 114% for twemillionth published
of context contextID which could be hugely significant in dynamic
IDs increase | 1K | 2K | 5K 13)K Zf(’)K 5100'3}20 crowdsourcing. However, this solution brings forth a new
o | e | o | 25k | 0k research question: if we ignore the UCI resolving then how do
% increase other sinks resolve the contefds? This could be countered
in by employing adaptability and awareness in MediaSense which
subscription | 2 | 20 18 19 15 14 is part of our future work.
matching As for updating published conteMds i.e. inserting or
deleting contextDs from an existing UCI. The resushows
TABLEIX. SUBSCRIPTIONMATCHING % INCREASE(I) average time for insertion is just 5% for 100% increase in
7 of contextiDs contextIDs. The deletion of contexD demonstrated a
increase im surprising behavior, while deletion time was expected to rise
100K | Zoon0 | P00k tod g5 with the escalationof contextID but the result indicated the
m opposite. In addition, based on the acquired results few
% increasein formulas have been presentéd predict the outcome for
SL{’:;&"?;'S” 10 ° ° 1 publish and subscribe contdfas time and for memory usage.

The formulas could be very significant in dynamic logical

It is also possible to predict the memory usage iclusterlng since it would helpotregulate the outcome

MediaSense. This can be seen from the fig. 13 and table | _eforehand.
The memory usage grows linearly and minimdifiediaSense Although MediaSense did live up to its expectation as
memory usage corresponds to the following equation: scalable PubSub model for both static and dynamic

o . vironments but itwiability can be further examined. For
U m&roysp (KB) whereNc 4= 5 0.0 0. (igample: adaptability and awareness in MediaSemseave
Where,M, is the memory usage am i is the total number prior knowledge of UCI before resolvingind how it will
of contextID to be published. B perform on devices with limited computational capabilities.
. . L _ Crowdsourcing heavily involves mobile devices; therefore
_As mentioned earlier that one of the objectiveis 1o § | a S perfsrmeanceon mobile devices willalso be
paper is to examine if MediaSense remains stable when one Qf,|ored. Thus themobility, energy(e.g. onandroid devices)
the physical sinksdown, according to ourfinding it does jsgues of MediaSensgong with performance idevices with
remain stable (the results are not shown here due to paggiied computationatapabilities(such as omaspberrypi) can
limitation). be examined.

From the above results, it ifearMediaSense can adjust t ACKNOWLEDGMENT
the dynamic nater of crowdsourcing environment and fulfill
the mentioned demand without any performance degradation. The work is partially supported by funding from the
Moreover, it is also possible to predict the outcome ofurop@&n Union FP7 MobiS projectWe would also like to
MediaSense PubSub result which makes MediaSense mdi&ank Mr. Jamie Walters andir. Johan Eliasson for their
attractive as a PubSub made feedback about extending MediaSense.

57|Page
www.ijarai.thesai.org

(1

(2]

(3]
(4]

(5]

(6]

(71

8l

9]

[10]

(1JARALI) International Journal of Advanced Research in Artificial Intelligence,

REFERENCES [11]
[online] 5G Radio Access, Research and Vision:
http://lwww.ericsson.com/res/docs/whitepapershgmpdf [Last

Accessed: 0&ebruary2014]

T. Kanter, S. Forsstrom, V. Kardeby, J. Walters, U. Jennehag and P
Osterber g. ,—anf IMenki od Bimgs Platform for Scalable [12]
and Decentrallzed Cont ext Sharing
Seventh International Conference on Digital Teteominications, pp.

27-32, April 2012.

[online] MediaSense | The Internet of Things
http://www.mediasense.s¢lLastAccessed: O&ebruary2014]

G. Cugola and H. JacobsehUsi ng Publ i sh/a®tobs 413]
Mobil e Systems”, I n ACM
Communications Review, vol. 6, pp-28, October 2002
I P. Zar ko, A. Antonic and K.

for energyefficient mobile crowdsensing". In Proceedings of th&é20
ACM conference on Pervasive and ubiquitous computing adjunct
publication (UbiComp '13 Adjunct)Zurich, pp. 10991110, September

Platform

2013. (15]
J. Pereira, F. Fabret, _F. Llirbat, and D. ShasBéicient matching for
web-based publish/subscribe systeni¥th International Conference,
CooplS 2000, Eilat, Israel, Septembes,&000. (16]

F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K A. Ross, and D
Shasha, “Filtering al gorithms
publ i sh/ subscri be sy s200& AGM SIGMDD
international conference on Management of data (SIGMOD '01), 2001 [18]

Ashayer, G.; Leung, H.K.Y.; Jacobsen;Al, "Predicate matching and
subscription matching in Publish/Subscribe systems," Distributed
Computing Systems Workshops, 2002. Peatiegs. 22nd International

Conference on, vol., no., pp.539,546, 2002 [19]
E. Fidler. PADRES: A Distributed ConteBased Publish/Subscribe
System. PhD thesis, University of Toronto, 2006.

F. Zambonel | i, “Pervasive ur b &l

Chal | e201d ¢EEE (PERCOM Workshops), pp. 5383, March
2011.

SI GMOBI L

i 'Cﬂj&élﬁg of Flowg:eﬁ'sgré— EXT)lB t(n&

Vol. 3, No.11, 2014
Extended Paper from Science and Information Conference 2014

M. Demirbas, M.A. Bayir, C.G. Akcora, Y.S. Yilmaz, H.
Ferhatosmanogju "Crowd-sourced sensing and collaboration using
twitter," World of Wireless Mobile and Multimedia Networks
(WoWMoM), 2010 IEEBnternational Symposium on a, vol., npp.1-

9, June 2010

M.K. Boulos, B. Resch, D.N. Crowley, J.G. Breslin, G. Sohn, R.
Balfd "€dnt 1A Pihke, cbT JEzd er sKfe
citizen sensing and sensor web technologles for “public’ and
environnental health surveillance and crisis management: trends, OGC
standards and application exampletnternational journal fo health
geographics, 10(1), 67, 2011.

heth & grﬁqt en Sensing, Social Signals, and Enriching Human
% rnt omﬁlutlngftEE voI 13 noé pp.87,92, July

ahman,Bsaeuhdo

| K
obebeeny, RS g 1 oW

DHTs ", I'n Proceeding(s) of 4t h I ni
Generation Infamation Technology, 2013 ICNIT, June 2013.

R. Rahmani , H. Rahman, and T.- Kant e
Clustering of FlowSensor s " , The I nternationa

Science Issues (IJCSI), Vol. 10, Issue 5, No 2, September 2013.

A. Tootoonchiany . Ganj ali, ‘"Hyper Fl ow:
for OpenFlow”, Proceedings of

A Di
the 2

W&@em mhpK e h@POddiron" UnEET sutedyndi pggs@nd
Pr o WiEWiQus GpgRuting'5: 224, o

H. Rah man , R. Rah maniling Sealable T. |
Publish/Subscribe for Logic&lustering in Crowdsourcing via

Medi aSense”, | EEE Science and Infor
27-29, 2014, London, UK
A. Zasl avsky, “Adaptibility and I nt

Comput i ng 'tkshopNs&iEs olVGonterRwareMobile Database
Management, Brown University, Providence;Z=lJanuary, 2002

M.c r Miwlda D Wir ¢ i Q g:Tadj sppf-&v@reSeryice Amar
Adaptation i a Pervasive Computing
Conferenceon Mobile UquUIIOUS Computing, Systems, Services and
Technologies, 2009

B8|Page

www.ijarai.thesai.org

http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf
http://www.mediasense.se/

