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Abstract—This paper is concerned with a design method for 

modeling Incremental Granular Model (IGM) based on 

Linguistic Model (LM) and Polynomial Regression (PR) from 

data set obtained by complex yacht hydrodynamics. For this 

purpose, we develop a systematic approach to generating 

automatic fuzzy rules based on Context-based Fuzzy C-Means 

(CFCM) clustering. This clustering algorithm builds information 

granules in the form of linguistic contexts and estimates the 

cluster centers by preserving the homogeneity of the clustered 

data points associated with the input and output space. 

Furthermore, IGM deals with localized nonlinearities of the 

complex system so that the modeling discrepancy can be 

compensated. After performing the design of 2
nd

 order PR as the 

first global model, we refined it through a series of local fuzzy if-

then rules in order to capture the remaining localized 

characteristics. The experimental results revealed that the 

presented IGM showed a better performance in comparison to 

the previous works for predicting the hydrodynamic 

performance of sailing yachts. 
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I. INTRODUCTION 

During the last decade, it is advantageous to combine 
several computing techniques synergistically, rather than 
exclusively, resulting in the construction of complementary 
hybrid intelligent systems in confronting real-world application 
domains such as modeling, control, and optimization for 
complex engineering problems [1]. Among these approaches, 
the neuro-fuzzy and soft computing as a computational 
approach to learning and machine intelligence is a widely used 
computing framework based on the concepts of fuzzy model, 
neural networks, data clustering, and several stochastic 
optimization methods for computational intelligence. Here, 
neural networks provide learning abilities and a connectionist 
structure to fuzzy systems. Fuzzy systems provide neural 
networks with a structural framework with human knowledge 
and reasoning. A considerable number of these studies have 
been conducted to generate automatic fuzzy if-then rules using 
clustering techniques from given numerical training data sets 
[2-4]. On the other hand, Linguistic Model (LM) has been 
researching to present a nonlinear and complex characteristic 
based on Context-based Fuzzy C-Means (CFCM) clustering 
[5]. In contrast to the context-free clustering methods such as 
FCM clustering [6], subtractive clustering, and mountain 
clustering, the CFCM clustering is to generate clusters 
preserving homogeneity of the clustered patterns in connection 

with their similarity in the input and output variables [7]. The 
studies associated with this clustering approach are LM [5], 
RBFN(Radial Basis Function Networks)-CFCM [8], LM with 
learning [9], TSK(Takagi-Sugeno-Kang)-LM [10], and 
Incremental Model (IM) [11]. In this paper, we develop the 
Incremental Granular Model (IGM) for predicting complex 
hydrodynamic performance of sailing yacht. The presented 
IGM is based on LM and Polynomial Regression (PR) to 
capture the localized nonlinear characteristics. First, we build a 
PR which could be treated as a preliminary construct. Next, all 
modeling discrepancies are compensated by a collection of 
rules that become attached to the regions of the input space 
where the error is localized. The experiments are achieved by 
the data set obtained from the complex yacht hydrodynamics. 
The prediction of resistance of the ship at the initial design 
stage is of a great value for evaluating the ship’s performance 
and for estimating the required propulsive power [12]. We 
compared the effectiveness of the presented IGM with the 
previous works such as RBFN, LM, RBFN-CFCM, and IM. 
This paper is organized as follows. In Section 2, we describe 
the architecture of CFCM clustering and LM as a framework 
of user-centric system modeling. In the Section 3, we present 
the proposed IGM based on LM and PR. In Section 4, we 
present the prediction problem of the hydrodynamic 
performance of sailing yachts [13] and the experimental 
results. Finally, concluding comments are given in Section 5. 

II. CFCM CLUSTERING AND LINGUISTIC MODEL 

The CFCM clustering as an interesting variant of the fuzzy 
c-means is realized via individual contexts as shown in Fig. 1. 
Each linguistic context has defined semantics that can be 
interpreted as a large negative error, medium negative error, 
etc in the design of IGM.  

Let us consider a certain fixed context Wj described by 
some membership function. The data point in the output space 
is associated with the corresponding membership value. Let us 
introduce a family of the partition matrices induced by the l-th 
context and denote it by U(Wl) 
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where wlk denotes a membership value of the k-th datum 
implied by the l-th context. The underlying objective function 
is as follows 
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where vi denotes the i-th cluster center. The J is minimized 
under the constraints imposed by (1) as follows 

Min Q subject to U(Wl), l=1, 2, …,p                                   (3) 
The minimization of J is realized by iteratively updating the 

values of the partition matrix and the cluster centers. The 
successive updates of the partition matrix are completed as 
follows 
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where uik is the partition matrix induced by the l-th context. 
The cluster centers are as the following expression   
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Fig. 1. Concept of context-based fuzzy clustering 

In the design of the LM, we consider the contexts to be 
described by triangular membership functions being equally 
distributed in the error space E with the 1/2 overlap occurring 
between two successive fuzzy sets. Each context generates a 
number of induced clusters whose activation levels are 
afterwards summed up as shown in Fig. 2. 

 
Fig. 2. Architecture of the LM 

Assuming the triangular form of the contexts, the result is a 
triangular fuzzy number E as follows  

nn2211 ....WWWE                       (6)  

We denote the algebraic operations by ,  to emphasize 

that the underlying computing operates on a collection of fuzzy 
numbers. As such, E is characterized by its three parameters 
that are a modal value, the lower bound, and upper bound.   

III. INCREMENTAL GRANULAR MODEL (IGM) 

The PSO method is one of swarm intelligence methods for 
solving the optimization problems. The PSO algorithm 
proposed by Kennedy is performed by social behavior of bird 
flocking or fish schooling. The character of PSO easily can 
handle fitness function for solving complex problems. 
Furthermore, it can control a relationship between global and 
local search. Here, each particle adjusts information of location 
with experience of them and their neighborhood. It can form 
the answer of optimum in short time. As the velocity of particle 
movement of PSO is only demanded, it is easy to be 
embodiment and brevity of a theory. The basic element of PSO 
is simply as follows IGM performs localized nonlinearities of 
the complex and nonlinear system so that the modeling 
discrepancy can be compensated. After performing the design 
of 2nd order Polynomial Regression (PR) as the first global 
model, we refined it through a series of local fuzzy if-then 
rules in order to capture the remaining localized characteristics. 
Fig. 3 shows the main design process of the IGM. Firstly, we 
decide upon the granularity of information to be used in the 
development of the model such as the number of contexts and 
the number of clusters formed for each context. The design 
procedure of IGM is as follows 
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[Step 1] Design PR in the input and output space. PR is the 

extended form of the well-known Linear Regression 

(LR) in which the relationship between the 

independent variables xk and dependent variable y is 

modeled as an 2nd order polynomial. PR fits a 

nonlinear relationship between the value of xk and the 

corresponding conditional mean of y. On the basis of 

the original data set, a collection of input-error pairs, 

(xk, ek) is obtained. 

[Step 2] Produce linguistic contexts in the error space of the 

regression model E1, E2, …, Ep. The distribution of 

these fuzzy sets is obtained through the use of 

statistical distribution or fuzzy equalization while the 

fuzzy sets are characterized by triangular 

membership functions with a 0.5 overlap between 

neighboring fuzzy sets. 

[Step 3] Perform CFCM clustering in the input-output space 

from the linguistic contexts produced in the error 

space. 

[Step 4] Compute the activation levels of the clusters induced 

by the corresponding contexts and their overall 

aggregation through weighting by fuzzy sets of the 

context leading to the triangular fuzzy number of 

output, E = F(x; E1, E2, …, Ep). 

[Step 5] The output of the IGM is then combined with the 

output of the linear part. The result is a shifted 

triangular number Y = z   E.  
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Fig. 3. Main design process of IGM based on PR and LM 

IV. EXPERIMENTAL RESULTS 

In this experiment, we use to predict hydrodynamic 
performance of sailing yachts from dimensions and velocity. 
The well-known Holtrop and Mennen method [14] is widely 
used as the initial design stage of ships for estimating the 
resistance of the ships. This method provides a prediction of 
the total resistance’s components. The total resistance of a ship 
has been subdivided as follows 

ATRBWAPPFtotal RRRRRkRR  )1( 1       (7) 

FR : Frictional resistance according to the ITTC-1957 friction 

formula 

)1( 1k : Form factor describing the viscous resistance of the 

full form in relation to FR  

APPR : Resistance of appendages 

WR : Wave-making and wave-breaking resistance 

BR : Additional pressure resistance of bulbous bow near the 

water surface 

TRR : Additional pressure resistance of immersed transform 

stern 

AR : Model-ship correlation resistance. 

The form factor of the hull the prediction formula is as the 
following equation 
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Here, BR  is the prismatic coefficient based on the 

waterline length L and lcb is the longitudinal position of the 

centre of buoyancy forward of 0.5L as a percentage of L. RL  is 

a parameter reflecting the length of the run. In this example, six 
input variables are composed of longitudinal position of the 
center of buoyancy, prismatic coefficient, length-displacement 
ratio, beam-draught ratio, length-beam ratio, and Froude 
number as shown in Fig. 4. The output variable to be predicted 
by the six input variables is residuary resistance per unit weight 
of displacement. The overall data set consists of 308 full 
experiments, which were performed at the Delft Ship 
Hydromechanics laboratory. These experiments include 22 
different hull forms. 

 
Fig. 4. Six input variables 

We randomly divide the data set into training and test data 
with 60%-40% ratio in the normalized input space between 0 
and 1, respectively. The experiments perform 10 runs. The 
training data set is used for model construction, while the test 
set is used for model validation. Thus, the resultant model is 
not biased toward the training data set and it is likely to have a 
better generalization performance with respect to new data. 
Firstly, 2nd order PR is performed in the input and output space. 
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After that, the regression error is obtained as the histogram 
shown in Fig.5. Fig. 6 visualizes six linguistic contexts to 
perform CFCM clustering. These contexts are produced by the 
use of statistical distribution. Here, we assume that the number 
of cluster per each context is the same. 

 
Fig. 5. Histogram of error obtained by PR 

 
Fig. 6. Six linguistic contexts obtained in the error space 

Fig. 7 shows comparison results between the desired and 
model output for both the training and test data sets, 
respectively. As shown in Fig. 7, it is obvious that the proposed 
IGM has good approximation and generalization performance. 
Table 1 lists the mean of RMSE and the number of rules for 
the training and test sets, respectively. In the design of IGM, 
we obtained the best results in three contexts and two clusters 
in each context for CFCM clustering as listed in Table 1. 
Although the conventional LM has a structured knowledge 
representation in the form of fuzzy if-then rules, it lacks the 
adaptability to deal with a complex and nonlinear model. 
Moreover, we obtained each best RMSE result through the 
construction of RBFN, LM, RBFN-CFCM, and IM in trial and 
error as listed in Table. 1. 

 
Fig. 7. Approximation and generalization performance for training and test 

data set (solid line: actual output, dotted line: model output) 

The augmented granular modification of the model was 
realized by experimenting with the two essential parameters 
controlling the granularity of the construct in the input and 
output space, that is “p” and “c”. The corresponding results are 
summarized in Table 2 and 3. Fig. 8 visualizes the uncertain 
prediction values from upper and lower output obtained from 
the proposed IGM. As a consequence, the experimental results 
revealed that the presented IGM yielded a better performance 
in comparison to RBFN, LM, RBFN-CFCM, and IM for 
predicting the hydrodynamic performance of sailing yachts as 
shown in Table 1 and Fig. 8. 

TABLE I.  COMPARISON RESULTS OF THE RMSE AND THE NUMBER OF 

RULES 

Methods no. rule 
RMSE 

(training) 

RMSE 

(test) 

Linear 

regression 
- 8.6690 9.3006 

RBFN 6* 13.6393 14.9378 

LM [5] 6(p=3,c=2) 10.3391 11.7420 

RBFN-CFCM 

[8] 
10*(p=5,c=2) 8.1735 9.7952 

IM [11] 12(p=6,c=2) 6.4082 7.8182 

The proposed 

IGM 

6(p=3,c=2) 3.9333 4.4344 

8(p=4, c=2) 4.0367 4.5022 

10(p=5,c=2) 4.0030 4.5290 

12(p=6,c=2) 3.9298 4.4811 
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TABLE II.  RMSE (MEAN) - TRAINING DATA 

 
No. of contexts (p) 

3 4 5 6 

No. of 

clusters 

per 

context 

(c) 

2 3.9333 4.0367 4.0030 3.9298 

3 3.9599 3.9589 3.9546 3.8690 

4 3.9428 3.8716 3.8399 3.7762 

5 3.8243 3.8109 3.7325 3.7190 

6 3.8064 2.7643 3.6775 3.6542 

TABLE III.  RMSE (MEAN) – TESTING DATA 

 
No. of contexts (p) 

3 4 5 6 

No. of 

clusters 

per 

context 

(c) 

2 4.4344 4.5022 4.5290 4.4811 

3 4.5054 4.5114 4.5705 4.5190 

4 4.5435 4.5418 4.5965 4.5835 

5 4.5182 4.5858 4.5875 4.6137 

6 4.5814 4.6392 4.5997 4.5943 

 

Fig. 8. Prediction performance with uncertain output 

V. CONCLUSIONS 

We developed the incremental granular model with 
uncertainty output based on polynomial regression and 
linguistic model realized by the context-based fuzzy c-means 
clustering. Furthermore, we dealt with an incremental model to 
deal with localized nonlinearities of the system so that all 
modeling discrepancies can be compensated. This incremental 
model is quite different from one frequently used in 
conjunction with fuzzy modeling with the predominant concept 
of a rule-based architecture. The experimental results on 
complex yacht hydrodynamics revealed that the presented 
method showed a good approximation and generalization 
ability in comparison to conventional other methods. Thus, 
these results lead to the conclusion that incremental granular 
model can be represented as the prototypes that exhibits certain 
characteristics of the complex system to be modeled. 
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