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Abstract—Important operations in numerical computing are 

vector orthogonalization. One of the well-known algorithms for 

vector orthogonalisation is Gram–Schmidt algorithm. This is a 

method for constructing a set of orthogonal vectors in an inner 

product space, most commonly the Euclidean space Rn. This 

process takes a finite, linearly independent set S = {b1, b2, …, 

bk}  vectors for k ≤ n and generates an orthogonal set S1 = {o1, 

o2, …, ok}. Like the most of the dense operations and big data 

processing problems, the Gram–Schmidt process steps can be 

performed by using parallel algorithms and can be implemented 

in parallel programming platforms. The parallelized algorithm is 

dependent to the platform used and needs to be adapted for the 

optimum performance for each parallel platform. The paper 

shows the algorithms and the implementation process of the 

Gram –Schmidt vector orthogonalosation in three different 

parallel platforms. The three platforms are: a) control flow 

shared memory hardware systems with OpenMP, b) control flow 

distributed memory hardware systems with MPI and c) dataflow 

architecture systems using Maxeler Data Flow Engines 

hardware. Using as single running example a parallel 

implementation of the computation of the Gram –Schmidt vector 

orthogonalosation, this paper describes how the fundamentals of 

parallel programming, are dealt in these platforms. The paper 

puts into evidence the Maxeler implementation of the Gram–

Schmidt algorithms compare to the traditional platforms. Paper 

treats the speedup and the overall performance of the three 

platforms versus sequential execution for 50-dimensional 

Euclidian space. 
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I. INTRODUCTION 

Classifications of parallel programming paradigms are 
mostly related to the hardware architectures. 

The paradigms of parallel programming can be divided 
generally into two categories: process communicates [1] and 
problem decomposition [2]. 

Process communication is correlated to the instruments by 
which parallel processes communicate and share sources to 
each other. The most common forms of process interaction are 
shared memory and message passing between processes. 
Shared memory is an efficient instrument for passing data 
between programs by accessing that same shared memory. 
Algorithms may run on a single processor in sequential or on 
multiple separate processors in sequential way or in parallel. In 
shared memory model, parallel tasks share a global address 

space which they read and write to asynchronously. In shared 
memory systems the code can create threads each of them can 
access the same variable in parallel. 

Message passing is a concept from computer science 
related mostly with distributed memory architectures for the 
parallel programming platforms that is used extensively in the 
design and implementation of modern software applications; it 
is very important for some models of concurrency and object-
oriented programming. In a message passing model, parallel 
tasks exchange data and communicate through passing 
messages to one another. Either shared or distributed can be 
based Control Flow [3] Von Newman traditional architecture. 

The paper deals with three different programming 
platforms (OpenMP, MPI and Maxeler). These three platforms 
can be grouped in two different architectures, in Control Flow 
(OpenMP and MPI) and Data Flow (Maxeler) architectures. 
These two different computing architectures are compared and 
analyzed in this paper by choosing a typical dense operations 
and big data problem which is the Gram – Schmidt process. 

Is chosen Gram Schmidt classic algorithm for a 50-
dimensional inner product space. The algorithm has operations 
rising in a significant progression from step to step. If we have 
a set S1={o1, o2, …, on} of orthogonal vectors as basis for the 
inner product space L, then we can  express any vector of space 
L as a linear combination of the vectors in S1: 

Let as have an arbitrary basis {b1, b2, … , bn} for an n-
dimensional inner product space L. The Gram-Schmidt 
algorithm constructs an orthogonal basis {o1, o2, … , on} for 
L.  In our paper we take the arbitrary basis {b1, b2, … , b50} 
for an 50-dimensional inner product pace L  and after 
performing the Gram-Schmidt algorithm into a sequential 
machine platform, OpenMP platform, MPI platform and 
Maxeler controlfolw machine we than constructs an orthogonal 
basis {o1, o2, … , on} for L each time. The paper intends to 
compare the performance of the parallel platforms and to 
measure the speedup for each platform. The characteristics of 
the algorithms regards to the number of nested loops and the 
numbers of operations for iteration will define the best 
platform to recommend. 

The reason why is selected the Gram – Schmidt algorithm 
is the time complexity. This algorithm complexity is O(n

3
). 

The operations in each iteration of the process rise 
progressively, so it is of large interest to study the behavior in 
different parallel programming platforms. 
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II. GRAM–SCHMIDT ALGORITHM 

To obtain an orthonormal basis for an inner product space 
L, we use the Gram-Schmidt algorithm to construct an 
orthogonal basis.  For R

n
 with the Euklidean inner product (dot 

product), we of course already know of the orthonormal basis 
{(1, 0, 0, …, 0), (0, 1, 0, … , 0), … , (0, … , 0, 1)}. For more 
abstract spaces, however, the existence of an orthonormal basis 
is not obvious. The Gram-Schmidt algorithm is powerful in 
that it not only guarantees the existence of an orthonormal 
basis for any inner product space, but actually gives the way of 
construction of such a basis. 

Fig. 1. Graphic representation of the Gram – Schmidt orthogonalisation 

The Gram – Schmidt algorithm can be expressed in n steps 
to be performed. The algorithm steps are: 

1 for i = 1 to n  
2 vi = ai  
3  for i = 1 to n  
4  rii = ||vi||  
5  qi = vi/rii 
6  for j = i + 1 to n  
7  rij = qi vj  
8  vj = vj – rijqi 

This algorithm is implemented in C++ code using 
Code::Blocks programming platform. This platform is chosen 
because it is portable to the parallel programming platforms. 

III. GRAM – SCHMIDT VECTOR ORTHOGONALISATION 

ALGORITHM (SEQUENTIAL IMPLEMENTATION) 

We implemented the steps mentioned in the previous 
section in the Code::Blocks

1
with C++ compiler.  In our 

implementation, we take k=n=50, where k is the number of the 
linear independent vectors and n is the dimension of the 
Euclidian space. The C++ program code of  Gram – Schmidt 
algorithm for a 50 dimensional inner product space, in our 
example named space L, for k=50, looks like:  

                                                           
1 Code::Blocks, “A free C, C++ and Fortran IDE”. 

http://www.codeblocks.org/ 

#include <cstdlib> 
#include <iostream> 
#include <math.h> 
using namespace std; 
double b[50][50]; 
double r[50][50], q[50][50]; 
int main(int argc, char *argv[]) { 
int i, j; 
for (int i=0; i<50; i++) 
for (int j=0; j<50; j++) 
{b [i][j]=rand() % 10;} 
int k; 
for (k=0; k<50; k++){ 
r[k][k]=0; // equivalent to sum = 0 
for (i=0; i<50; i++) 
r[k][k] = r[k][k] + b[i][k] * b[i][k]; //rkk = sqr(a0k) + sqr(a1k) + sqr(a2k) 
r[k][k] = sqrt(r[k][k]);  //   
cout << endl << "R"<<k<<k<<": " << r[k][k];  
for (i=0; i<3; i++)   
{q[i][k] = b[i][k]/r[k][k]; 
cout << "q" <<i<<k<<": "<<q[i][k] << ", ";} 
for(j=k+1; j<50; j++)  
{r[k][j]=0; for(i=0; i<50; i++) r[k][j] += q[i][k] * b[i][j]; 
cout << endl << "r"<< k <<j<<": " <<r[k][j] <<endl; 
for (i=0; i<50; i++) b[i][j] = a[i][j] - r[k][j]*q[i][k]; 
for (i=0; i<50; i++) cout << "b"<<j<<": " << b[i][j]<< ", "; }} 
system("PAUSE"); 
return EXIT_SUCCESS;} 

Fig. 2. Sequential Gram – Schmidt vector orthogonalisation. Program code 

in C++ (Code::Blocks) 

The average execution time of this sequential algorithm is 
around 110 seconds. Now let’s see in the next session the 
parallel implementation of this algorithm in OpenMP 

2
 parallel 

platform for C++. 

IV. THE GRAM–SCHMIDT VECTOR ORTHOGONALISATION 

ALGORITHM FOR OPENMP PLATFORM 

A parallel program is composed of parallel executing 
processes. A task-parallel model [4] focuses on processes , or 
threads of execution . These processes sometimes share the 
same sources, which emphasizes the need for communication 
between those processes. Task parallelism is a natural way to 
express message-passing communication between processing 
units. It is usually classified as MIMD/MPMD or MISD [5]. 

A parallel model consists of performing operations on a 
data set which usually regularly structures in an array. A set of 
tasks will operate on this data, but independently on separate 
partitions. In a shared memory system, the data will be 
accessible to all tasks, but in a distributed-memory system it 
will divide between memories. 

Parallelism is usually classified as SIMD/SPMD (Single 
Instruction-Multiple Data)/(Single Program-Multiple Data) [6].  

  

                                                           
2 OpenMP Specifications. http://www.openmp.org/blog/specifications 
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The systems are categorized into two categories. [7] The 
systems of the first category were characterized by the isolation 
of the abstract design space seen by the programmer from the 
parallel, distributed implementation. In this, all processes are 
presented with equal access to some kind of shared memory 
space. In its loosest form, any process may attempt to access 
any item at any time. The second category considers machines 
in which the two levels are closer together and in particular, 
those in which the programmer's world includes explicit 
parallelism [8]. This category discards shared memory based 
cooperation in favor of some form of explicit message passing. 

A classical shared memory parallel platform is OpenMP. 
OpenMP (Open Multiprocessing) is an API that supports 
multi-platform shared memory multiprocessing programming 
in C, C++ and Fortran programming language. OpenMP 

3
 is an 

application program interface providing a multi-threaded 
programming model for shared memory parallelism; it uses 
directives to extend sequential languages It consists of a set of 
compiler directives, library routines, and environment variables 
that influence run-time behavior. 

OpenMP uses a portable, scalable model that gives 
programmers a simple and flexible interface for developing 
parallel applications for platforms like a standard desktop 
computer or supercomputer. After the configuration of the 
Code:: Blocks for OpenMP, we implemented on this platform 
our algorithm. The code is parallelized for our nested loops as 
below: 

#include <cstdlib> 
#include <iostream> 
#include <math.h> 
#include <omp.h> 
using namespace std; 
double b[50][50]; 
double r[50][50], q[50][50]; 
int main(int argc, char *argv[]) { 
int i, j; 
#pragma omp parallel for 
for (int i=0; i<50; i++) 
for (int j=0; j<50; j++) 
{b [i][j]=rand() % 10;} 
int k; 
#pragma omp parallel for 
for (k=0; k<50; k++){ 
r[k][k]=0; // equivalent to sum = 0 
for (i=0; i<50; i++) 
r[k][k] = r[k][k] + b[i][k] * b[i][k]; //rkk = sqr(a0k) + sqr(a1k) + sqr(a2k) 
r[k][k] = sqrt(r[k][k]);  //   
cout << endl << "R"<<k<<k<<": " << r[k][k];  
#pragma omp parallel for 
for (i=0; i<3; i++)   

                                                           
3 OpenMP Specifications. http://www.openmp.org/blog/specifications/ 

{q[i][k] = b[i][k]/r[k][k]; 
cout << "q" <<i<<k<<": "<<q[i][k] << ", ";} 
for(j=k+1; j<50; j++)  
{r[k][j]=0; for(i=0; i<50; i++) r[k][j] += q[i][k] * b[i][j]; 
cout << endl << "r"<< k <<j<<": " <<r[k][j] <<endl; 
for (i=0; i<50; i++) b[i][j] = b[i][j] - r[k][j]*q[i][k]; 
for (i=0; i<50; i++) cout << "b"<<j<<": " << b[i][j]<< ", "; }} 
system("PAUSE"); 
return EXIT_SUCCESS;} 

Fig. 3. OpenMP Gram – Schmidt vector orthogonalisation. Program code in 

C++ (Code::Blocks) 

For directive in the code above splits the for-loop, so each 
thread in the current team handles a different portion of the 
loop. The main directive used is “#pragma omp parallel for”. 
This statement is used to open the switch of OpenMP in this 
algorithm code. Only small changes in C++ sources code are 
required in order to use OpenMP. So each thread gets a 
different section of the loop, and they execute their own 
sections in parallel. We executed this code in the quad core 
computer where we before executed the sequential algorithm. 
The average execution time is 30 seconds. Significant speedup 
is reached for the Gram Schmidt algorithm when we use 
OpenMP parallel features.  By trying this C++ code for 
OpenMP in PC with different number of cores and the 
execution time is shown in the table 1, is made a speedup 
analysis. 

V. THE GRAM–SCHMIDT VECTOR ORTHOGONALISATION IN 

MPI 

Message Passing Interface (MPI) is a standardized and 
portable message-passing system designed. The standard 
defines the syntax and semantics of a core of library routines 
useful to a wide range of users writing portable message-
passing programs [9 ] in different programming languages such 
as Fortran, C, C++ and Java. Message passing this model uses 
communication libraries to allow efficient parallel programs to 
be written for distributed memory systems. These libraries 
provide routines to initiate and configure the messaging 
environment as well as sending and receiving data packets. 
Currently, the most popular high-level message-passing system 
for scientific and engineering applications is MPI (Message 
Passing Interface)

4
. 

We executed the code in a cluster with four computers with 
the same parameters like the quad core in which we executed 
the sequential algorithm and OpenMP code. The average time 
of execution is 22 seconds. The C++ code adopted for using 
the MPI library for parallelization of our Gram Schmidt vector 
orthogonalisation algorithm. Both platforms OpenMP and MPI 
are control flow based architectures. The figure 2 below show 
the control flow design architecture. 

                                                           
4 Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/index.html 
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Fig. 4. Control Flow architecture design (source Maxeler) 

#include <cstdlib> 
#include <iostream> 
#include <math.h> 
#include <mpi.h> 
using namespace std; 
double b[50][50]; 
double r[50][50], q[50][50]; 
int main(int argc, char *argv[]) { 
int i, j, rank, nrprocs, count, start, stop; 
MPI_Init(&argc, &argv); 
// get the number of processes, and the id of this process 
MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
MPI_Comm_size(MPI_COMM_WORLD, &nprocs); 
// we want to perform 50 iterations in total. Work out the  
// number of iterations to perform per process... 
for (int i=0; i<50; i++) 
for (int j=0; j<50; j++) 
{b [i][j]=rand() % 10;} 
int k; 
for (k=0; k<50; k++){ 
r[k][k]=0; // equivalent to sum = 0 
for (i=0; i<50; i++) 
r[k][k] = r[k][k] + b[i][k] * b[i][k]; //rkk = sqr(a0k) + sqr(a1k) + sqr(a2k) 
r[k][k] = sqrt(r[k][k]);  //   
cout << endl << "R"<<k<<k<<": " << r[k][k];  
for (i=0; i<3; i++)   
{q[i][k] = b[i][k]/r[k][k]; 
cout << "q" <<i<<k<<": "<<q[i][k] << ", ";} 
for(j=k+1; j<50; j++)  
{r[k][j]=0; for(i=0; i<50; i++) r[k][j] += q[i][k] * b[i][j]; 
cout << endl << "r"<< k <<j<<": " <<r[k][j] <<endl;     
for (i=0; i<50; i++) b[i][j] = a[i][j] - r[k][j]*q[i][k]; 
for (i=0; i<50; i++) cout << "b"<<j<<": " << b[i][j]<< ", "; MPI_Finalize();}} 
system("PAUSE"); 
return EXIT_SUCCESS;}  

Fig. 5. MPI Gram – Schmidt vector orthogonalisation. Program code in C++ 

(Code::Blocks) 

 

VI. THE GRAM–SCHMIDT VECTOR ORTHOGONALISATION IN 

MAXELER 

Dataflow architecture [10] is a computer architecture that 
differs in significant contrasts to the traditional Control Flow - 
Von Neumann architecture. Dataflow architectures do not have 
a program counter, or (at least conceptually) the executability 
and execution of instructions is based on the availability of 
input arguments to the instructions, so that the order of 
instruction execution is unpredictable: I. e. behavior is 
undetermined 

5
. 

Dataflow machines have been around for more than two 
decades. Implementation challenges left the technology hidden 
for many years, but last five years the data flow parallel 
programming is becoming more and more a technological 
reality. One of the dataflow machines is the Manchester 
Dataflow Machine (MDFM) using single-assignment language 
SISAL. Another successful dataflow machine is Maxeler 
machine. The Gram – Schmidt algorithm is implemented to the 
MPC-X Series 

6
 machine. 

The implementation process of our algorithm includes the 
adaption of the C++ host code for export to the MPC module. 
The Data Flow Engine (DFE) part of an accelerated solution 
itself contains two components: one or more Kernels, 
responsible for the data computations; and a single Manager, 
which orchestrates global data movement for the CPUs, DFEs 
and Kernels+Memory inside. Hence, accelerating an 
application requires the user to write three program parts: 
Kernel(s), A Manager, and a CPU application. The Kernel and 
the Manager is created by writing programs in MaxJ: an 
extended form of Java adding operator overloading. Using 
MaxCompiler requires only minimal familiarity with Java. A 
developer executes a MaxCompiler-based program to produce 
a “.max file” containing the DFE configuration, meta-data and 
SLiC functions. The CPU application is compiled and linked 
with the .max file, SLiC and MaxelerOS, to create the 
application executable. 

Fig. 6. Data Flow architecture design (source Maxeler) 

                                                           
5 http://en.wikipedia.org/wiki/Dataflow_architecture, Retrieved on 21 April 

2015 
6 https://www.maxeler.com/products/mpc-xseries/, Retrieved on 20 January 

2015. 
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VII. RESULTS 

This paper was dealing the behavior of parallel Gram – 
Schmidt vector orthogonalization algorithms with respect to 
OpenMP, MPI and Maxeler platform. The results we found are 
satisfactory. The number of input data size increased Maxeler 
gives very good performance. Nevertheless, the performance 
factor presented here is the execution times and speedup of the 
implementations for same input data size realized in the 
parallel programming models. 

The speedup achieved by a parallel application varies for 
different programming models. The models chosen in this 
paper are only considered from the speedup perspective. 

The results of the execution time of the algorithms in three 
machines are shown in figure 7. In this figure is shown the time 
in seconds in sequential (column 2) in OpenMP (column 3), 
MPI (column 4) which are Control Flow based architecture. In 
the figure 7 is shown also the speedup reached in OpenMP 
(column 5), speedup reached in MPI (column 6) and the 
speedup reached in the Maxeler machine (column 7). In 
Maxeler machine, the speedup is high, but limited and 
independent to the memory performance. 

 
Fig. 7.  Execution time analysis 

VIII. CONCLUSIONS 

For Gram – Schmidt vector orthogonalisation the parallel 
approach demands rethinking algorithms, adaption of the 
programming approach and environment and underlying 
hardware. There are a lot of possibilities to effectively create 
parallel version of the algorithms. To be efficient and to have 
the optimal performance in algorithm execution is very 
important to select the proper platform related to the contextual 
problem. In our example is pretty obvious that the Maxeler 
technology is the most efficient platform. The Maxeler 

machine spends some initial time for transfer from host to 
DFE, but control time is extremely slow compare to processing 
time. Data Flow architecture offers significant capabilities to 
accelerate scientifically numerical computations, such as the 
Gram – Schmidt vector orthogonalisation. Improvements in 
Maxeler and bus technology indicate that Data Flow will 
increase their lead over general purpose processors over the 
next few years. In this paper is shown that Maxeler machine 
with its software system are not wedded to von Neumann 
architectures nor to the von Neumann execution model. 
Maxeler platform works very well for calculating Gram – 
Schmidt vector orthogonalisation reaching a significant 
speedup. 

This paper is addressed to the programmers, by providing 
taxonomy of parallel language designs. They can decide which 
language to use for contest of their project. 
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1MB 120 60 55 2.00 2.18 20 
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4MB 70 20 25 3.50 2.80 20 
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