
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.6, 2015

35 | P a g e

www.ijarai.thesai.org

Gram–Schmidt Process in Different Parallel

Platforms
(Control Flow versus Data Flow)

Genci Berati

Tirana University, Department of Mathematics

Tirane, Albania

Abstract—Important operations in numerical computing are

vector orthogonalization. One of the well-known algorithms for

vector orthogonalisation is Gram–Schmidt algorithm. This is a

method for constructing a set of orthogonal vectors in an inner

product space, most commonly the Euclidean space Rn. This

process takes a finite, linearly independent set S = {b1, b2, …,

bk} vectors for k ≤ n and generates an orthogonal set S1 = {o1,

o2, …, ok}. Like the most of the dense operations and big data

processing problems, the Gram–Schmidt process steps can be

performed by using parallel algorithms and can be implemented

in parallel programming platforms. The parallelized algorithm is

dependent to the platform used and needs to be adapted for the

optimum performance for each parallel platform. The paper

shows the algorithms and the implementation process of the

Gram –Schmidt vector orthogonalosation in three different

parallel platforms. The three platforms are: a) control flow

shared memory hardware systems with OpenMP, b) control flow

distributed memory hardware systems with MPI and c) dataflow

architecture systems using Maxeler Data Flow Engines

hardware. Using as single running example a parallel

implementation of the computation of the Gram –Schmidt vector

orthogonalosation, this paper describes how the fundamentals of

parallel programming, are dealt in these platforms. The paper

puts into evidence the Maxeler implementation of the Gram–

Schmidt algorithms compare to the traditional platforms. Paper

treats the speedup and the overall performance of the three

platforms versus sequential execution for 50-dimensional

Euclidian space.

Keywords—Gram-Schmidt Algorithm; Parallel programming

model; OpenMP; MPI; Control Flow architecture

I. INTRODUCTION

Classifications of parallel programming paradigms are
mostly related to the hardware architectures.

The paradigms of parallel programming can be divided
generally into two categories: process communicates [1] and
problem decomposition [2].

Process communication is correlated to the instruments by
which parallel processes communicate and share sources to
each other. The most common forms of process interaction are
shared memory and message passing between processes.
Shared memory is an efficient instrument for passing data
between programs by accessing that same shared memory.
Algorithms may run on a single processor in sequential or on
multiple separate processors in sequential way or in parallel. In
shared memory model, parallel tasks share a global address

space which they read and write to asynchronously. In shared
memory systems the code can create threads each of them can
access the same variable in parallel.

Message passing is a concept from computer science
related mostly with distributed memory architectures for the
parallel programming platforms that is used extensively in the
design and implementation of modern software applications; it
is very important for some models of concurrency and object-
oriented programming. In a message passing model, parallel
tasks exchange data and communicate through passing
messages to one another. Either shared or distributed can be
based Control Flow [3] Von Newman traditional architecture.

The paper deals with three different programming
platforms (OpenMP, MPI and Maxeler). These three platforms
can be grouped in two different architectures, in Control Flow
(OpenMP and MPI) and Data Flow (Maxeler) architectures.
These two different computing architectures are compared and
analyzed in this paper by choosing a typical dense operations
and big data problem which is the Gram – Schmidt process.

Is chosen Gram Schmidt classic algorithm for a 50-
dimensional inner product space. The algorithm has operations
rising in a significant progression from step to step. If we have
a set S1={o1, o2, …, on} of orthogonal vectors as basis for the
inner product space L, then we can express any vector of space
L as a linear combination of the vectors in S1:

Let as have an arbitrary basis {b1, b2, … , bn} for an n-
dimensional inner product space L. The Gram-Schmidt
algorithm constructs an orthogonal basis {o1, o2, … , on} for
L. In our paper we take the arbitrary basis {b1, b2, … , b50}
for an 50-dimensional inner product pace L and after
performing the Gram-Schmidt algorithm into a sequential
machine platform, OpenMP platform, MPI platform and
Maxeler controlfolw machine we than constructs an orthogonal
basis {o1, o2, … , on} for L each time. The paper intends to
compare the performance of the parallel platforms and to
measure the speedup for each platform. The characteristics of
the algorithms regards to the number of nested loops and the
numbers of operations for iteration will define the best
platform to recommend.

The reason why is selected the Gram – Schmidt algorithm
is the time complexity. This algorithm complexity is O(n

3
).

The operations in each iteration of the process rise
progressively, so it is of large interest to study the behavior in
different parallel programming platforms.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.6, 2015

36 | P a g e

www.ijarai.thesai.org

II. GRAM–SCHMIDT ALGORITHM

To obtain an orthonormal basis for an inner product space
L, we use the Gram-Schmidt algorithm to construct an
orthogonal basis. For R

n
 with the Euklidean inner product (dot

product), we of course already know of the orthonormal basis
{(1, 0, 0, …, 0), (0, 1, 0, … , 0), … , (0, … , 0, 1)}. For more
abstract spaces, however, the existence of an orthonormal basis
is not obvious. The Gram-Schmidt algorithm is powerful in
that it not only guarantees the existence of an orthonormal
basis for any inner product space, but actually gives the way of
construction of such a basis.

Fig. 1. Graphic representation of the Gram – Schmidt orthogonalisation

The Gram – Schmidt algorithm can be expressed in n steps
to be performed. The algorithm steps are:

1 for i = 1 to n
2 vi = ai
3 for i = 1 to n
4 rii = ||vi||
5 qi = vi/rii
6 for j = i + 1 to n
7 rij = qi vj
8 vj = vj – rijqi

This algorithm is implemented in C++ code using
Code::Blocks programming platform. This platform is chosen
because it is portable to the parallel programming platforms.

III. GRAM – SCHMIDT VECTOR ORTHOGONALISATION

ALGORITHM (SEQUENTIAL IMPLEMENTATION)

We implemented the steps mentioned in the previous
section in the Code::Blocks

1
with C++ compiler. In our

implementation, we take k=n=50, where k is the number of the
linear independent vectors and n is the dimension of the
Euclidian space. The C++ program code of Gram – Schmidt
algorithm for a 50 dimensional inner product space, in our
example named space L, for k=50, looks like:

1 Code::Blocks, “A free C, C++ and Fortran IDE”.

http://www.codeblocks.org/

#include <cstdlib>
#include <iostream>
#include <math.h>
using namespace std;
double b[50][50];
double r[50][50], q[50][50];
int main(int argc, char *argv[]) {
int i, j;
for (int i=0; i<50; i++)
for (int j=0; j<50; j++)
{b [i][j]=rand() % 10;}
int k;
for (k=0; k<50; k++){
r[k][k]=0; // equivalent to sum = 0
for (i=0; i<50; i++)
r[k][k] = r[k][k] + b[i][k] * b[i][k]; //rkk = sqr(a0k) + sqr(a1k) + sqr(a2k)
r[k][k] = sqrt(r[k][k]); //
cout << endl << "R"<<k<<k<<": " << r[k][k];
for (i=0; i<3; i++)
{q[i][k] = b[i][k]/r[k][k];
cout << "q" <<i<<k<<": "<<q[i][k] << ", ";}
for(j=k+1; j<50; j++)
{r[k][j]=0; for(i=0; i<50; i++) r[k][j] += q[i][k] * b[i][j];
cout << endl << "r"<< k <<j<<": " <<r[k][j] <<endl;
for (i=0; i<50; i++) b[i][j] = a[i][j] - r[k][j]*q[i][k];
for (i=0; i<50; i++) cout << "b"<<j<<": " << b[i][j]<< ", "; }}
system("PAUSE");
return EXIT_SUCCESS;}

Fig. 2. Sequential Gram – Schmidt vector orthogonalisation. Program code

in C++ (Code::Blocks)

The average execution time of this sequential algorithm is
around 110 seconds. Now let’s see in the next session the
parallel implementation of this algorithm in OpenMP

2
 parallel

platform for C++.

IV. THE GRAM–SCHMIDT VECTOR ORTHOGONALISATION

ALGORITHM FOR OPENMP PLATFORM

A parallel program is composed of parallel executing
processes. A task-parallel model [4] focuses on processes , or
threads of execution . These processes sometimes share the
same sources, which emphasizes the need for communication
between those processes. Task parallelism is a natural way to
express message-passing communication between processing
units. It is usually classified as MIMD/MPMD or MISD [5].

A parallel model consists of performing operations on a
data set which usually regularly structures in an array. A set of
tasks will operate on this data, but independently on separate
partitions. In a shared memory system, the data will be
accessible to all tasks, but in a distributed-memory system it
will divide between memories.

Parallelism is usually classified as SIMD/SPMD (Single
Instruction-Multiple Data)/(Single Program-Multiple Data) [6].

2 OpenMP Specifications. http://www.openmp.org/blog/specifications



1b



2b



1o



21
bprojectionw



2o

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.6, 2015

37 | P a g e

www.ijarai.thesai.org

The systems are categorized into two categories. [7] The
systems of the first category were characterized by the isolation
of the abstract design space seen by the programmer from the
parallel, distributed implementation. In this, all processes are
presented with equal access to some kind of shared memory
space. In its loosest form, any process may attempt to access
any item at any time. The second category considers machines
in which the two levels are closer together and in particular,
those in which the programmer's world includes explicit
parallelism [8]. This category discards shared memory based
cooperation in favor of some form of explicit message passing.

A classical shared memory parallel platform is OpenMP.
OpenMP (Open Multiprocessing) is an API that supports
multi-platform shared memory multiprocessing programming
in C, C++ and Fortran programming language. OpenMP

3
 is an

application program interface providing a multi-threaded
programming model for shared memory parallelism; it uses
directives to extend sequential languages It consists of a set of
compiler directives, library routines, and environment variables
that influence run-time behavior.

OpenMP uses a portable, scalable model that gives
programmers a simple and flexible interface for developing
parallel applications for platforms like a standard desktop
computer or supercomputer. After the configuration of the
Code:: Blocks for OpenMP, we implemented on this platform
our algorithm. The code is parallelized for our nested loops as
below:

#include <cstdlib>
#include <iostream>
#include <math.h>
#include <omp.h>
using namespace std;
double b[50][50];
double r[50][50], q[50][50];
int main(int argc, char *argv[]) {
int i, j;
#pragma omp parallel for
for (int i=0; i<50; i++)
for (int j=0; j<50; j++)
{b [i][j]=rand() % 10;}
int k;
#pragma omp parallel for
for (k=0; k<50; k++){
r[k][k]=0; // equivalent to sum = 0
for (i=0; i<50; i++)
r[k][k] = r[k][k] + b[i][k] * b[i][k]; //rkk = sqr(a0k) + sqr(a1k) + sqr(a2k)
r[k][k] = sqrt(r[k][k]); //
cout << endl << "R"<<k<<k<<": " << r[k][k];
#pragma omp parallel for
for (i=0; i<3; i++)

3 OpenMP Specifications. http://www.openmp.org/blog/specifications/

{q[i][k] = b[i][k]/r[k][k];
cout << "q" <<i<<k<<": "<<q[i][k] << ", ";}
for(j=k+1; j<50; j++)
{r[k][j]=0; for(i=0; i<50; i++) r[k][j] += q[i][k] * b[i][j];
cout << endl << "r"<< k <<j<<": " <<r[k][j] <<endl;
for (i=0; i<50; i++) b[i][j] = b[i][j] - r[k][j]*q[i][k];
for (i=0; i<50; i++) cout << "b"<<j<<": " << b[i][j]<< ", "; }}
system("PAUSE");
return EXIT_SUCCESS;}

Fig. 3. OpenMP Gram – Schmidt vector orthogonalisation. Program code in

C++ (Code::Blocks)

For directive in the code above splits the for-loop, so each
thread in the current team handles a different portion of the
loop. The main directive used is “#pragma omp parallel for”.
This statement is used to open the switch of OpenMP in this
algorithm code. Only small changes in C++ sources code are
required in order to use OpenMP. So each thread gets a
different section of the loop, and they execute their own
sections in parallel. We executed this code in the quad core
computer where we before executed the sequential algorithm.
The average execution time is 30 seconds. Significant speedup
is reached for the Gram Schmidt algorithm when we use
OpenMP parallel features. By trying this C++ code for
OpenMP in PC with different number of cores and the
execution time is shown in the table 1, is made a speedup
analysis.

V. THE GRAM–SCHMIDT VECTOR ORTHOGONALISATION IN

MPI

Message Passing Interface (MPI) is a standardized and
portable message-passing system designed. The standard
defines the syntax and semantics of a core of library routines
useful to a wide range of users writing portable message-
passing programs [9] in different programming languages such
as Fortran, C, C++ and Java. Message passing this model uses
communication libraries to allow efficient parallel programs to
be written for distributed memory systems. These libraries
provide routines to initiate and configure the messaging
environment as well as sending and receiving data packets.
Currently, the most popular high-level message-passing system
for scientific and engineering applications is MPI (Message
Passing Interface)

4
.

We executed the code in a cluster with four computers with
the same parameters like the quad core in which we executed
the sequential algorithm and OpenMP code. The average time
of execution is 22 seconds. The C++ code adopted for using
the MPI library for parallelization of our Gram Schmidt vector
orthogonalisation algorithm. Both platforms OpenMP and MPI
are control flow based architectures. The figure 2 below show
the control flow design architecture.

4 Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/index.html

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.6, 2015

38 | P a g e

www.ijarai.thesai.org

Fig. 4. Control Flow architecture design (source Maxeler)

#include <cstdlib>
#include <iostream>
#include <math.h>
#include <mpi.h>
using namespace std;
double b[50][50];
double r[50][50], q[50][50];
int main(int argc, char *argv[]) {
int i, j, rank, nrprocs, count, start, stop;
MPI_Init(&argc, &argv);
// get the number of processes, and the id of this process
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
// we want to perform 50 iterations in total. Work out the
// number of iterations to perform per process...
for (int i=0; i<50; i++)
for (int j=0; j<50; j++)
{b [i][j]=rand() % 10;}
int k;
for (k=0; k<50; k++){
r[k][k]=0; // equivalent to sum = 0
for (i=0; i<50; i++)
r[k][k] = r[k][k] + b[i][k] * b[i][k]; //rkk = sqr(a0k) + sqr(a1k) + sqr(a2k)
r[k][k] = sqrt(r[k][k]); //
cout << endl << "R"<<k<<k<<": " << r[k][k];
for (i=0; i<3; i++)
{q[i][k] = b[i][k]/r[k][k];
cout << "q" <<i<<k<<": "<<q[i][k] << ", ";}
for(j=k+1; j<50; j++)
{r[k][j]=0; for(i=0; i<50; i++) r[k][j] += q[i][k] * b[i][j];
cout << endl << "r"<< k <<j<<": " <<r[k][j] <<endl;
for (i=0; i<50; i++) b[i][j] = a[i][j] - r[k][j]*q[i][k];
for (i=0; i<50; i++) cout << "b"<<j<<": " << b[i][j]<< ", "; MPI_Finalize();}}
system("PAUSE");
return EXIT_SUCCESS;}

Fig. 5. MPI Gram – Schmidt vector orthogonalisation. Program code in C++

(Code::Blocks)

VI. THE GRAM–SCHMIDT VECTOR ORTHOGONALISATION IN

MAXELER

Dataflow architecture [10] is a computer architecture that
differs in significant contrasts to the traditional Control Flow -
Von Neumann architecture. Dataflow architectures do not have
a program counter, or (at least conceptually) the executability
and execution of instructions is based on the availability of
input arguments to the instructions, so that the order of
instruction execution is unpredictable: I. e. behavior is
undetermined

5
.

Dataflow machines have been around for more than two
decades. Implementation challenges left the technology hidden
for many years, but last five years the data flow parallel
programming is becoming more and more a technological
reality. One of the dataflow machines is the Manchester
Dataflow Machine (MDFM) using single-assignment language
SISAL. Another successful dataflow machine is Maxeler
machine. The Gram – Schmidt algorithm is implemented to the
MPC-X Series

6
 machine.

The implementation process of our algorithm includes the
adaption of the C++ host code for export to the MPC module.
The Data Flow Engine (DFE) part of an accelerated solution
itself contains two components: one or more Kernels,
responsible for the data computations; and a single Manager,
which orchestrates global data movement for the CPUs, DFEs
and Kernels+Memory inside. Hence, accelerating an
application requires the user to write three program parts:
Kernel(s), A Manager, and a CPU application. The Kernel and
the Manager is created by writing programs in MaxJ: an
extended form of Java adding operator overloading. Using
MaxCompiler requires only minimal familiarity with Java. A
developer executes a MaxCompiler-based program to produce
a “.max file” containing the DFE configuration, meta-data and
SLiC functions. The CPU application is compiled and linked
with the .max file, SLiC and MaxelerOS, to create the
application executable.

Fig. 6. Data Flow architecture design (source Maxeler)

5 http://en.wikipedia.org/wiki/Dataflow_architecture, Retrieved on 21 April

2015
6 https://www.maxeler.com/products/mpc-xseries/, Retrieved on 20 January

2015.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.6, 2015

39 | P a g e

www.ijarai.thesai.org

VII. RESULTS

This paper was dealing the behavior of parallel Gram –
Schmidt vector orthogonalization algorithms with respect to
OpenMP, MPI and Maxeler platform. The results we found are
satisfactory. The number of input data size increased Maxeler
gives very good performance. Nevertheless, the performance
factor presented here is the execution times and speedup of the
implementations for same input data size realized in the
parallel programming models.

The speedup achieved by a parallel application varies for
different programming models. The models chosen in this
paper are only considered from the speedup perspective.

The results of the execution time of the algorithms in three
machines are shown in figure 7. In this figure is shown the time
in seconds in sequential (column 2) in OpenMP (column 3),
MPI (column 4) which are Control Flow based architecture. In
the figure 7 is shown also the speedup reached in OpenMP
(column 5), speedup reached in MPI (column 6) and the
speedup reached in the Maxeler machine (column 7). In
Maxeler machine, the speedup is high, but limited and
independent to the memory performance.

Fig. 7. Execution time analysis

VIII. CONCLUSIONS

For Gram – Schmidt vector orthogonalisation the parallel
approach demands rethinking algorithms, adaption of the
programming approach and environment and underlying
hardware. There are a lot of possibilities to effectively create
parallel version of the algorithms. To be efficient and to have
the optimal performance in algorithm execution is very
important to select the proper platform related to the contextual
problem. In our example is pretty obvious that the Maxeler
technology is the most efficient platform. The Maxeler

machine spends some initial time for transfer from host to
DFE, but control time is extremely slow compare to processing
time. Data Flow architecture offers significant capabilities to
accelerate scientifically numerical computations, such as the
Gram – Schmidt vector orthogonalisation. Improvements in
Maxeler and bus technology indicate that Data Flow will
increase their lead over general purpose processors over the
next few years. In this paper is shown that Maxeler machine
with its software system are not wedded to von Neumann
architectures nor to the von Neumann execution model.
Maxeler platform works very well for calculating Gram –
Schmidt vector orthogonalisation reaching a significant
speedup.

This paper is addressed to the programmers, by providing
taxonomy of parallel language designs. They can decide which
language to use for contest of their project.

REFERENCES

[1] Gregory r. Andrews, ACM Computing Surveys, “Paradigms for Process

Interaction in Distributed Programs”, Vol 23, No 1, March 1991, page
50-52

[2] Stephen Boyd, Lin Xiao, and Almir Mutapcic, Notes for EE392o,
Stanford University, Autumn, 2003: , “Notes on Decomposition
Methods”, page 1

[3] Micah Beck, Keshav Pingali, Department of Computer Science Cornell
University, Ithaca, NY 14853, “From Control Flow To Dataflow”, page
2

[4] Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt and Franc¸ois Irigoin,
“ Task Parallelism and Data Distribution: An Overview of Explicit
Parallel Programming Languages”, page 10-16

[5] W, F, McColl, “A General Model of Parallel Computing”,
programming research group, Oxford University materials, page 6

[6] Mark A. Nichols, Howard Jay Siegel, Henry G. Dietz, “Data
Management and Control-Flow Aspects of an SIMD/SPMD Parallel
Language/Compiler”, page 224-225

[7] Christoph Kessler, Jörg Keller, “Models for Parallel Computing:
Review and Perspectives”, PARS, Mitteilungen, December 2007, ISBN
0177-0454, page 3

[8] Manar Qamhieh, Serge Midonnet, “Experimental Analysis of the
Tardiness of Parallel Tasks in Soft Real-time Systems”, 18th Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP), May
2014, page 5-6

[9] Board of Trustees of the University of Illinois, “Introduction to MPI”,
2001 page 16

[10] ARTHUR H. VEEN, Center for Mathematics and Computer Science
“Dataflow Machine Architecture”, ACM Computing Surveys,
December 1986, Vol. 18, No. 4, December 1986, page 2

Memory

(Sequential

Program)

Execution

Time

(OpenMP

Program)

Execution

Time

(MPI

Program)

Execution

Time

Speed up

Seq/OpenMP

Speed up

Seq/MPI

Speed up

Seq/Maxeler

1MB 120 60 55 2.00 2.18 20

2MB 90 28 30 3.21 3.00 20

4MB 70 20 25 3.50 2.80 20

8MB 60 15 23 4.00 2.61 20

