
(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 4, No.8, 2015 

1 | P a g e  

www.ijarai.thesai.org 

Wavelet Compressed PCA Models for Real-Time 

Image Registration in Augmented Reality 

Applications

Christopher Cooper 

College of Engineering 

North Carolina State University, 

Raleigh, NC, 27695 

Kent Wise 

SGS Inc. 

The Woodlands, TX, 77381 

John Cooper 

Department of Chemistry and Biochemistry 

Old Dominion University, 

Norfolk, VA, 23529 

Makarand Deo* 

Department of Engineering 

Norfolk State University, 

Norfolk, VA, 23504

 

 
Abstract—The use of augmented reality (AR) has shown great 

promise in enhancing medical training and diagnostics via 

interactive simulations. This paper presents a novel method to 

perform accurate and inexpensive image registration (IR) 

utilizing a pre-constructed database of reference objects in 

conjunction with a principal component analysis (PCA) model. 

In addition, a wavelet compression algorithm is utilized to 

enhance the speed of the registration process. The proposed 

method is used to perform registration of a virtual 3D heart 

model based on tracking of an asymmetric reference object. The 

results indicate that the accuracy of the method is dependent 

upon the extent of asymmetry of the reference object which 

required inclusion of higher order principal components in the 

model. A key advantage of the presented IR technique is the 

absence of a restart mechanism required by the existing 

approaches while allowing up to six orders of magnitude 

compression of the modeled image space. The results 

demonstrate that the method is computationally inexpensive and 

thus suitable for real-time augmented reality implementation. 
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Wavelet Compression; Augmented Reality; Image Classification 

I. INTRODUCTION 

The utilization of augmented reality (AR) in the medical 
field provides multiple opportunities to enhance the access to 
and effectiveness of patient-specific medical information 
[1][2]. Using real-time AR systems allows the overlay, 
manipulation, and visualization of the various types of medical 
images acquired by MRI and tomography procedures (e.g., 
tissue, charge density, blood flow, etc.)[3][4]. Hence AR-based 
visualization techniques have been increasingly employed in 
safer medical practices for better understanding and accurate 
diagnostics. Creating an interactive 3D virtual model 
containing multiple dimensions of information, which can be 
manipulated and visualized in concert, provides immediate 
opportunities for high-quality medical training. Furthermore, 
the advanced AR-guided medical procedures have the potential 
to decrease the invasiveness and increase the safety and 
accuracy of a surgery by enhancing a surgeon’s ability to 

utilize medical imagery during the operation [1][5]. The first 
step to achieving these goals however, is a robust and real-time 
registration of high resolution images [6]. This paper presents a 
novel registration method which is accurate and 
computationally inexpensive. 

Image registration (IR) is the process of aligning two 
similar images, taken at different times or by different sensors, 
in order to correctly overlay an independent image [7]. IR 
techniques typically fall into two categories: feature-based [8] 
and intensity-based [9]. The former method relies on the 
detection and successful tracking of distinct image features, 
such as lines, corners, and contours, while the latter method 
determines a transformation using all of the image data. Each 
of these techniques relies on an optimization component, which 
determines the optimal spatial transformation, and a similarity 
metric, which compares the resemblance of the transformed 
scene image and the model image [7, 10]. Spatial 
transformations can be either rigid or non-rigid. Rigid 
transformations are composed of translation and rotation in 
three directions, for a total of six degrees of freedom. Non-rigid 
transformations account for these changes as well as those in 
the actual structure or anatomy of the object [11]. 

Initial IR techniques such as the iterative closest point 
(ICP) algorithm have produced incorrect transformations due 
to incoming image noise and prealignment errors [12]. One 
optimization approach to increase convergence range and avoid 
erroneous local optima is the use of hierarchical multi-scale, 
however down-sampling of images often suppresses key 
differences, leading to an absence of distinctive features in 
similar objects [11]. In response to these errors, evolutionary 
computation (EC) has been used to help alleviate the complex 
problems of image processing, most noticeably the need for a 
good initial estimation of the transformation. These models, 
included in the broader field of metaheuristics, rely on 
computational models of evolutionary processes to create 
populations of solutions [13]. One such example is the scatter 
search (SS) technique, which is a metaheuristic-based method 
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used in both feature-based and intensity-based methods [10]. 
Use of this technique provides noticeable advantages in the 
accuracy of transformations and eliminates prealignment error. 
Nevertheless, even IR techniques with metaheuristics rely on a 
restart mechanism when transformations become low quality. 
This is a result of the refinement process, which optimizes the 
previous transform in order to produce the new spatial 
transform for the incoming model image. Since optimizing a 
low-quality transformation is unlikely to produce a high-
quality transformation, it is necessary to restart the algorithm 
and acquire a new initial transformation [10]. Recently, more 
advanced IR techniques have been proposed based on Speeded 
up Robust Features (SURF), optical flow method, and marker-
free IR method [14][15]. However, these existing methods 
require extensive computations to achieve real-time IR which 
is a major concern that limits their use in real-time AR systems. 

In this paper, a novel IR technique which is capable of 
achieving higher accuracy with substantially reduced 
computational time is presented. This was achieved by creating 
a database of compressed vectors from reference images of an 
object at all possible viewing angles and then constructing a 
corresponding principal component analysis (PCA) model 
prior to image registration. The proposed approach offers 
multiple benefits over existing methods. There is no need for 
an initial estimation or camera calibration, and furthermore, 
since the model operates independently for each incoming 
frame, there is no need for a restart mechanism. A systematic 
performance analysis of the proposed method is presented in 
this paper. 

II. METHODS 

A. Creation of Virtual Object Database 

Current IR methods involve taking an existing image and 
transforming it in real time. With the use of high speed flash 
storage, it is now feasible and competitive to eliminate this 
transformation step, and simply recall previously generated 
high-resolution images. In this study, the virtual 2D images 
used in the registration process were generated from 3D 
imaging data prior to the real time registration process. A 
detailed 3D model of canine heart anatomy, derived from high 
resolution diffusion tensor magnetic resonance imaging 
(DTMRI) was used as the virtual object. A Virtual Object 
Database (VOD) was created by manipulating the orientation 
of the virtual heart model as a function of three orthogonal 
angles of rotation. Theoretically, there are an infinite number 
of possible orientations and hence 2D image views; however 
the ability to distinguish between similar orientations (2D 
images) decays as the change in an angle approaches zero 
degrees. Therefore, it is possible to represent an object within a 
pre-defined angular resolution with a limited number of image 
orientations. The degree of resolution, however, directly 
impacts the number of images needed in the VOD of 2D 
images. A total of 22,104 images were generated that fully 
represented all non-degenerate object orientations at 10° angle 
increments. At 5° resolution, a total of 186,624 images were 

generated. Since the virtual object was implemented in digital 
form, a high-resolution database was programmatically created 
using MATLAB software. 

 
Fig. 1. This flow diagram shows the process of identifying the orientation of 

a reference object in the reference image and using it to correctly place a virtual 

heart image. The steps are: a) placement of 3D reference object in the scene, b) 

acquisition and processing of the reference 2D image, c) scaling of 2D image, 
d) wavelet transformation and compression of the 2D image, e) prediction of 

best match using PCA model, and f) registration and display of the appropriate 

virtual object image. A unique feature of this method is the absence of a restart 
mechanism 

B. Creation of Reference Image Database 

The first step in the proposed augmented reality method 
(shown in Figure 1) was registering an appropriate reference 
object in the scene to the appropriate 2D image from the VOD. 
Since the VOD was predetermined, the process was simplified 
as it only requires knowledge of the rotation of the reference 
object, its location within the scene, and the requisite scaling.  
In order to facilitate accurate determination of the three angles 
of rotation, the reference object must be appropriately 
designed.  Although previous work has shown that this 
theoretically requires a reference object which has a minimum 
of four non-planar points [16], the results of this paper 
(described in Section 4) demonstrate that the accurate 
determination of the three orthogonal angles of rotation is 
highly dependent upon the asymmetry of the object such that 
as the asymmetrical complexity increases, the model accuracy 
increases as well. 

Five reference objects (Objects I-V) with varying degrees 
of distinctive asymmetry (Figure 2) were created using a CAD 
software to study their effectiveness for precise object tracking 
based on optimal number of PCs required. 
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Fig. 2. The reference objects shown above are used to represent an increase in 

asymmetry for the reference object. The reference objects are a) Object I: 

Symmetric Spheres, b) Object II: Asymmetric Spheres, c) Object III: Three 
Shapes, d) Object IV: Multishape, and e) Object V: Dice 

The first three reference objects possess only three distinct 
axes of asymmetry. Object I (Fig. 2a) contains bonds of equal 
length, resulting in a high degree of symmetry around the axes 
of rotation. It is worth noting that these symmetry elements are 
present in the 3D space of the real object.  Object II (Fig. 2b) is 
similar, but all of the bond lengths are unique.  In 3D space, 
this change results in the loss of all symmetry elements except 
for Identity.  In Object III (Fig. 2c), two of the spheres have 
been replaced by unique shapes (a cube and a top). Object IV 
(Fig. 2d) possesses five axes extending from a cube where one 
axis has a highly complex structure attached to the end of the 
axis.  Finally, Object V (Fig. 2e), a dice, has six perpendicular 
axes of asymmetry, created by a distinct number on each face.  
The numbers, which range from 2 to 7, were selected for their 
asymmetry, and hence the numbers 0, 1, and 8 were avoided 
since they possess symmetry elements other than the Identity. 

The 3D reference objects were created as “.stl” files using 
Solid Edge, and reference images of the various rotations of 
each object were obtained in MATLAB in 10° increments for 
each of the three axes. The reference objects were also printed 
using a 3D printer and were used to acquire test images using a 
web camera at various object rotations and camera-to-object 
distances. Creating the reference object as a CAD file allows 
the Reference Image Database (RID) to be programmatically 
generated in the same manner as the VOD, while the ability to 
3D print the object allows the generation of a physical 
reference object with high similarity to the RID.  This approach 
ensures a high degree of correlation between the computer-
generated images in the RID and the images of the reference 
object in the scenes that are acquired in real time. 

C. Creation of Compressed Wavelet Vector Representation 

(CWVR) Database 

In order to minimize the number of real-time calculations 
required for image registration, the resolution of the images in 
the RID was lowered and then the images were compressed 
further using a wavelet transform. This allowed each image in 
the RID to be represented by a compressed wavelet vector 
which was orders of magnitude smaller in number of pixels.  
These compressed wavelet vectors were arranged into a 

reference database which was used to construct the PCA model 
and to carry-out real-time calculations.  Construction of the 
compressed wavelet vector reference (CWVR) database 
involved two steps: i) reference image scaling and ii) wavelet 
transformation and compression. 

1) Image Scaling 
Although the CAD file used to generate the RID provides 

high resolution, the results show that a lower resolution allows 
for faster processing while still allowing for sufficient 
information to maintain PCA model accuracy. Hence the 
resolution of the images in the RID was maintained at 64x64 
pixels. Due to the calibration-free approach of the proposed 
model, there is no incoming information about the distance 
between the reference object and the camera. As such, a scene 
with a large camera-to-object separation will display a small 
reference object (low pixel resolution), while a scene with a 
small camera-to-object separation will display a larger one 
(high pixel resolution). In each case, however, the orientation 
of the reference object remains unchanged.  Hence, if the 
object is appropriately scaled, and the scaled image possesses 
sufficient resolution, the numerical values of three distinct 
rotation angles can be determined from the PCA model.  
However, to preserve the scaling required for image 
registration, it is necessary that both the reference object 
images in the RID and in the scene be scaled in a similar 
manner. To achieve this, the incoming scene image was either 
up-sampled or down-sampled to the same resolution as the 
RID. 

In both cases (scene and RID), the image was restricted to 
only the contents of a rectangular bounding box using the 
topmost, leftmost, rightmost, and bottommost points of the 
reference object. The horizontal scaling (  ) required for image 
registration was defined as: 

   
       

 
 (1) 

where    is the index of the rightmost side of the bounding 
box of the scene image,    is the index of the leftmost side of 
the bounding box of the scene image, and   is the horizontal 
pixel resolution in the RID.   Similarly, the vertical scale (  ) 
was defined as: 

   
       

 
 (2) 

where    is the index of the topmost side of the bounding 
box of the scene image,     is the index of the bottommost side 
of the bounding box of the scene image, and   is the vertical 
pixel resolution in the RID (same as horizontal). 

2) Wavelet Transform and Compression 
Each scaled image was subsequently stripped into a single 

vector by unfolding the rows of the image. A wavelet 
transform with four wavelets and scaling functions [17] was 
applied to the resulting vector. The Daubechies family of 
orthogonal wavelets was chosen due to their extensive use in 

a) b) c) 

d) e) 
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data compression.  Specifically, the Daubechies wavelet filter 
with 8 taps and 4 vanishing moments was selected (also 
referred to as a D8 or db4 referring to the N=2A relationship 
between the number of taps, N, and the number of vanishing 
moments, A) as a reasonable compromise between image 
resolution and compression efficiency.  The advantage of the 
wavelet transform is that it preserves both the frequency and 
the position information of the image vector (i.e., the function 
is not translationally invariant as is the case with most Fourier 
transform methods) [18]. Moreover, the use of discrete wavelet 
transform (DWT) is computationally efficient.  Due to the 
nature of the reference object image, the dominant and 
requisite information was contained almost completely in the 
low frequency wavelet coefficients. Thus, the final step of 
compression involved truncating the high frequency wavelet 
coefficients to achieve image compression while preserving the 
lowest 1024 coefficients that retain essential information 
needed to determine the object orientation. As shown in Figure 
3, the original input sample image (Panel A) and the 
reconstructed compressed image after wavelet transform (Panel 
B) were almost identical, but the latter required 75% less data 
for creation and storage. A slight blurring of sharp edges in the 
compressed images due to the loss of the high frequency 
components is evident in the figure but this had an insignificant 
impact on the accuracy of the PCA model. 

D. Constructing the Principal Component Analysis (PCA) 

Model 

Once the CWVR database was created, it was then used to 
construct a PCA Model [19]. The use of a PCA model 
provided two distinct advantages. First, it allowed the CWVR 
for all images of the reference object to be described using a 
multi-dimensional eigenvector space that accounted for the 
greatest variance of the underlying data structure.  Second, it 
enabled each CWVR to be mapped into the eigenvector space 
by using a single scalar value (eigenvalue or score) for each 
eigenvector. Since the number of eigenvectors (more 
commonly referred to as principal components) required to 
account for the majority of variance was considerably less than 
the length of the CWVR, a significant further compression of 
the data dimensionality was achieved.  For example, if the 
CWVR contained 1024 data points, and the variance was 
described by 10 principal components, then a compression of 
100-fold was achieved since each CWVR could now be 
represented by only 10 eigenvalues within the space of the 
PCA model. 

 
Fig. 3. Two images a) before wavelet compression and b) after wavelet 

compression are shown. The differences in the images are minimal, however, 

the amount of information required to reconstruct the image after compression 

is significantly smaller, and is used as the basis of the CWVR database 

The PCA model was constructed by creating a data matrix 
 , where each row of the matrix corresponds to a CWVR, and 
the number of rows is equal to the number of reference images. 
The data matrix was then decomposed using a singular value 
decomposition algorithm: 

       (3) 

where   is an     orthonormal matrix,   is an      
eigenvalue matrix with all zero off-diagonal elements, V

T 
is an 

orthonormal     matrix,    is the number of reference 
images and   is the length of the CWVR.  Each row of matrix 
   

is an eigenvector or principal component (PC), thus the 
resulting number of principal components is equal to the length 
of the CWVR.  Since    is an orthonormal matrix, all of the 
PC row vectors are orthogonal and define a multivariate space 
containing the compressed images.  The coordinates of each 
compressed image within this multivariate space was given by 
the rows of a scores matrix,  , which is simply: 

     (4) 

where   is a     matrix. Thus the scores reflect where 
each sample lies on the PC axes.  However, since the PCs were 
sorted in decreasing order of variance, the majority of the 
variance was described by the first few PCs and the higher 
order PCs were dominated mostly by noise.  This allowed the 
PCA model to be constructed by truncating to the number of 
columns ( ) in the scores matrix,  , and the loadings matrix,  : 

           (5) 

Where    is an approximation of the compressed image 

data, and   and    have     dimension (   ).   indicates 
the transpose.  Figure 4 illustrates the matrix order reduction 
obtained while solving the Eqn. 5. 

E. Image Registration 

Since this was a rigid image registration method, there were 
six degrees of freedom which had to be determined in order to 
accurately display a virtual object in the scene image. These 
included three degrees of freedom in translation and three 
degrees of freedom in rotation. 

 
Fig. 4. The equation for creation of the PCA model is shown where n 

corresponds to the number of images in the PCA model and m corresponds to 
the length of the compressed wavelet vector representation (CWVR) of each 

image. The solid polygons correspond to the data matrix X, the scores matrix S, 

and the loadings (principal component) matrix VT. The dashed polygon boxes 
correspond to the retained columns (k) of S and V which are used to construct 

an approximation (X′) of the data matrix to generate the PCA model 

a) b) 
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The translation that occurred between two images was 
determined by using the information acquired during the image 
scaling process. By comparing the geometric mean of the 
bounding box surrounding the reference object between the 
model and scene image, the translation on the two axes (which 
are parallel to the sides of the image) was determined. 
Translation along the third axis was accounted for by scaling 
the virtual object image according to the scale of the incoming 
reference object image. This was performed using the 
horizontal and vertical scale ratios given by Eqn. 1 and Eqn. 2, 
respectively. 

The rotation around three orthogonal angles was 
simultaneously determined by using the PCA model as 
discussed earlier. An image of the reference object in an 
incoming scene was processed in the same way as that of the 
CWVR database. The PCs of the unknown object orientation 
were then calculated using the resulting CWVR (y) and the 
reference object PCA Model (i.e., the truncated matrix      ) 
by solving Eqn. 6 for the scores vector  : 

         (6) 

Since the PCs are orthogonal, [     ]     .  This yielded 
a trivial solution for determining the scores for unknown 
compressed images: 

            (7) 

where      corresponds to the scores vector containing the 
coordinates of a new compressed image in PCA space and 
     is the CWVR for the new image.  The significance of 
Eqn. 7 is that regardless of the size of the image database used 
to create the PCA model, the model of the image space was 
described by a     matrix, where   is the number of PCs and 
  is the length of the CWVR.  Thus for an image database at 
10 degree resolution (total 22,104 images) where each original 
image was defined by 1024x 1024 pixels (      ), a PCA 
model containing 22 principal components (    ) yielded a 
compression of the database by six orders of magnitude. 

Although it is possible for the new image to contain an 
exact match with the scores of the database, this probability 
was limited by the angular resolution of the database.  For this 
reason, the best match was taken as the nearest neighbor 
(smallest distance) in PC model space, where the distance from 
nearest neighbors was calculated as the sum of the squares of 
the score differences: 

   ∑     
        

       
 

    

 (8) 

where   is the distance,   is the maximum number of PCs 
in the model, and   is the score for a particular PC for the new 
image being predicted and a neighboring images contained in 
the PCA model.   Since each vector in the CWVR database 
was indexed to the angles of rotation of its reference image, 
identifying the best match also identified the corresponding 
values for rotation about three different axes. 

Each reference object was tested using PCA Models 
constructed using a PC space ranging from one to 50 PCs in 
order to determine the optimal number of PCs for that  object. 
The optimum number of PCs was chosen as the minimum PC 
number where adding an additional PC did not yield a 
statistically significant decrease in the standard error of the 
model predictions. This was determined by Malinowski’s F-
test [20]. Malinowski's F-test assumes that the sum of the 
eigenvalues can be decomposed into either parts which are 
significant or noise, and that the significant eigenvalues 
provide an estimate of the true number of principal components 
needed. If there are a maximum of   possible principal 
components (the minimum of either the number of samples or 
the number of variables), then the F-statistic for the s

th
 

eigenvalue (  ) is: 

   
  

∑         
 

     

 
(9) 

and the maximum PC is taken as that having the minimum    

value. 
The best match for an acquired image was restricted to a 

reference object image within the CWVR database (10° angle 
increments) and as such, an angle error of less than or equal to 
±5° is considered accurate.  Thus for an incoming sample 
image with a 45° rotation on a particular axis, a correct match 
is either 40° or 50° in that same angle.  Figure 5 illustrates one 
example of the largest error for an incoming scene image with 
X-axis rotation =45°, Y-axis rotation =315°, Z-axis rotation 
=0° (henceforth written as: 45°, 315°,0°) (panel a) and the 
corresponding best RID correct match through the PCA 

 
Fig. 5. Shown is an example of the largest error for a correct match given the 

selected angular resolution (10° increments) of the reference image database. 

The images shown are a) the scene image (45° 315° 0°),  and b) the best RID 

match through PCA analysis (40° 310° 0°).  The corresponding registered heart 
images are shown in c) and d). As seen, the difference between the two Object 

V images and their respective heart images is barely perceptible, but could be 

further reduced by using a higher angulation resolution (i.e. 5° increments) 

a) 
b) 

c) 
d) 
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analysis (40°, 310°, 0°). As seen, the difference between the 
two Object V images and their respective heart images is 
barely perceptible, but could be further reduced by using a 
higher angulation resolution (i.e. 5° increments). 

The performance of the object matching algorithm was 
assessed by percent error ( ) calculated as: 

   
 

 
     (10) 

Where   was the number of incorrect angle matches over a 
certain tolerance of error for a given PCA  model and   was 
the total number of angles (or three times the number of images 
tested). 

III. RESULTS 

The percent standard errors for each reference object model 
as a function of the number of PCs are plotted in Figure 6.  
Each model reaches an apparent minimum percent error after 
reaching an optimum number of PCs, implying that the 
additional PCs are no longer providing significant additional 
information.  For all objects, the error dropped significantly for 
the initial PCs after which the accuracy does not improve 
noticeably for higher order PCs. It was observed that the 
accuracy improved with extent of asymmetry in the objects 
with  the most symmetric object (Object I) giving the highest 
error and the most asymmetric object (Object V) giving the 
lowest error regardless of the number of PCs included. 

Table I lists the number of optimal PCs needed for each 
type of reference object.  It was observe that as the asymmetry 
of the reference object increases, the number of PCs required to 
describe the variance of the CWVR database increases.  Thus 
the highly symmetric object (Object I) required only 9 PCs, 
while the most asymmetric object (Object V) required 29 PCs. 
The table also provides percent errors for each reference object 
PCA model at the optimum PC number. The percent errors are 
broken down into three categories: 15° (the percent of incorrect 
predictions exceeding an error of 15°), 10° (percent of 
incorrect predictions exceeding an error of 10°), and 5° 
(percent of incorrect predictions exceeding an error of 5°).  
Also shown for each object PCA model is the root mean square 
of the distances between the reference and sample images 
where an error less than or equal to 5° is considered  accurate. 
As can be observed, the results showed a significant increase in 
both accuracy and the optimum number of PCs as the 
complexity of the asymmetry in the reference objects 
increased. 

The errors shown in Table I and Figure 6 both correspond 
to errors in the predicted angle vs. the actual angle of rotation.  
However, since each object possesses 3 orthogonal angles of 
rotation, it is possible for each image mismatch to correspond 
to one or more improper angles. The actual number of incorrect 
images and incorrect angles for each of the 672 tested samples 
is given in Table II. 

 

 
Fig. 6. The graph shows the percent standard error of the PCA model for each 

reference object as a function of number of retained PCs. Initially the error 
decreases rapidly with each addition of a PC, however, after a certain number 

of PC’s the resulting decrease in error becomes minimal, implying that the 

inclusion of further PC’s is no longer providing significant information to the 
PCA model. Reference objects with higher degrees of asymmetry yield 

correspondingly lower errors once the minimal number of PCs is reached 

TABLE I.  EFFECT OF REFERENCE OBJECT ASYMMETRY ON PCA 

OPTIMAL PC# AND PCA MODEL ERROR 

Object 

Optimal 

Number of 
PCs 

Percent 

Error (5°) 

Percent 

Error (10°) 

Percent 

Error (15°) 

Average 

RMS 

Object I 9 63.79% 61.71% 56.35% 62.9964 

Object II 12 39.63% 30.26% 28.47% 31.9440 

Object III 14 21.58% 11.86% 9.62% 12.4449 

Object IV 24 16.82% 8.48% 5.26% 6.7919 

Object V 29 0.79% 0.00% 0.00% 0.1022 

TABLE II.  THE NUMBER OF INCORRECT IMAGE AND ANGLE PREDICTIONS 

(AT 5°) WHEN PREDICTING THE 671 UNIQUE SAMPLES 

Object 
Optimal 
Number of PCs 

Incorrect 
Images 

Incorrect 
Angles 

Average 

Object I 9 498 1286 2.582 

Object II 12 330 799 2.421 

Object III 14 224 435 1.942 

Object IV 24 189 339 1.794 

Object V 29 9 16 1.778 

As the asymmetry increased for the first four objects, the 
number of image mismatches decreased monotonically from 
498 to 189.  For the Object V PCA model, however, there was 
a precipitous decrease to only 9 incorrect images. Table II also 
gives the average number of incorrect angles per sample, and 
shows that as the average number of incorrect angles in each 
image mismatch decreased with an increase in asymmetry in 
the objects.  One example of an image mismatch for Object II 
is shown in Figure 7.  Panel a) corresponds to a test sample 
(60°, 50°,  210°) and Panel b) corresponds to the PCA 
predicted match (140°, 230°, 90°).   
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As can be seen, although the object possesses no symmetry 
in 3D space, there still exist combinations of distinct angle 
rotations which yield 2D views which are nearly identical.  
This predicted mismatch problem was further exacerbated 
upon image compression. Figure 8 shows one example for 
Object III after compression and scaling.  The  image with  
rotations  (10°, 180°, 80°) (Panel A) was wrongly recognized 
as (0°, 0°,  40°) (Panel B), leading to an error of 230°. At the 
lower resolution, the image differences approach the noise 
limit. 

For Object V, the highest error mismatch is shown in 
Figure 9 (reconstructed from their respective CWVRs).  
Despite the low resolution, the images are clearly 
distinguishable with the rotations of (90°, 90°, 285°) in Panel 
A, and that of (100°, 80°, 290°) in Panel B.  The relatively 
small angle error combined with the visually distinguishable 
features of the two images suggests that the cause of the 
mismatch was rooted in the PC model itself.  Indeed, a plot of 
the % variance attributable to each PC (Figure 10) indicated 
that the higher order PCs for object V constituted a significant 
amount of variance (Figure 10, inset) when compared to that of  
more symmetric object (Object II).  This is consistent with the 
finding that more PCs are required to effectively describe the 
modeling space of objects with greater asymmetry (Figure 6).  
It also suggests that using an F-test may not be a reliable 

 
Fig. 7. An image mismatch resulting from PCA model of the Asymmetrical 

Spheres reference object.  The images are shown at high resolution prior to 

compression. The left image (x-axis rotation = 60°, y-axis rotation = 50°, z-axis 
rotation 210°) is very similar, even at high resolution, to the right database 

image (x-axis rotation = 140°, y-axis rotation = 230°, z-axis rotation = 90°); 

however the angles are significantly different. This is a result of the loss of 
information as one moves from 3D to 2D space 

method to determine the optimum number of PCs since the 
percentage of incorrectly identified object images beyond 29 
PCs is relatively small  (1.34%; 9 out of 672 images).  When 
the Object V PC model is expanded to 45 PCs, the number of 
image mismatches dropped to 6 (0.89% incorrect) and no 
mismatches at 200 PCs.  Thus the error in the Object V PCA 
models appears to originate in the ability of the PCA model to 
describe the asymmetry and not in the lack of distinguishable 
asymmetry.  Since the truncation of PCs for a given model is 
part of the data compression, it suggests the need to balance 
compression in an effort to maintain the asymmetric properties 
required for accuracy.  This is not noteworthy in case of more 
symmetric objects since the error remains high even for a 
significantly larger number of PCs (see Figure 6). Although a 
higher degree of asymmetry requires a higher number of PCs 
to maintain accuracy, the overall compression is still 
significant.  For example, the original sample image contains 
over 1 million pixels, and conversion to a 64x64 image results 
into 4096 pixels. It is further reduced to 1024 pixels after 
wavelet compression and truncation.  Thus even when using 

200 PCs to represent the image, provides an additional   factor 
of 5 in data compression and yields a total data compression of 
over 5000 per image. With regards to the image database space 
(22,103 images x 1024 x 1024 = 23 billion coordinates), the 
PCA model compression (200 PCs x 1024 length of CWV = 
204,000 coordinates) still results in five orders of magnitude 
compression. 

 
Fig. 8. The figure shows an example of a PCA predicted image-mismatch for 

the Object III PCA model.  The images are shown after scaling and image 

compression.  The differences between the top image (10°, 180°, 80°) and the 

bottom database image (0°,0°,40°) are almost indistinguishable at the lower 
resolution, where they approach the noise limit 

 
Fig. 9. An example of the maximum error obtained using a PCA model with 

29 retained principal components for Object V is shown. The images are a) the 

sample image (90°, 90°, 285°), b) the best match (100°, 80°, 290°), c) the heart 

image corresponding to the sample image, and d) the heart image 

corresponding to the best match. Since the images are visually distinctive, it 

can be reasoned that the error lies in the PC model itself and indicates the need 
for additional PCs if more accuracy is required 

The PCA models for each object were constructed using 
22,103 images (i.e., 22,103 vectors in the CWVR database).  
Figure 11 shows the PCA space defined by these images at 
various orders of PCs for Object V (Fig. 11d-e) and Object II 
(Fig. 11a-c).  The panels A and D show contents of the images 
extracted in the first three principal components (X, Y and Z 
axes).  As can be seen, the plot for Object II (Panel a) exhibits 
a great deal of structure.  Indeed, if the points in the plot are 
considered as a solid object, a 3-fold improper axis of rotation 
exists (S3).  For the Object V plot (Panel d), the defined space 
is less structured, and although not spherical, is significantly 

a) b) 

a) b) 

a) b) 

c) d) 
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more homogeneous.  As higher PC numbers are used to define 
the axes, the spread in the PC scores decreased for both 
objects, as expected. 

IV. DISCUSSION 

The paper presents a novel image registration method using 
pre-processed database of compressed image vectors spanning 
all possible image rotations and scaling. This method uses a 
combination of discrete wavelet transform to compress the 
images without losing any valuable information and principal 
component analysis to construct an accurate estimation model. 
This approach significantly reduced the computations and 
enabled real-time processing for seamless medical augmented 
reality applications. 

The computational benefits of this approach are achieved 
by utilizing additional computational time prior to image 
registration for processing already acquired reference image 
database using a reference object with distinct and complex 
asymmetric properties. By acquiring reference object images  

 
Fig. 10. The graph shows the relationship between %variance and the retained 

PC number for Object V and Object II. The graph inset shown in the top right 

shows that the Object V PCA model still contains a significant amount of 
variance at higher order PCs when compared to the PCA models of the more 

symmetric reference objects. This indicates that more PCs are required to 

accurately reflect the higher degree of asymmetry and is supported by the 
observation that inclusion of 200 PCs in the Object V PCA model eliminates 

all mismatches 

from multiple viewpoints, a comprehensive model can be 
developed using  principal component analysis which 
accurately matches an incoming image whose angles of 
rotation (with respect to the viewer) are not known, with a 
corresponding reference image. Since the reference image is 
indexed to the angles of rotation, image registration is 
straightforward and only requires scaling and positioning.  
Alternatively, these indexed angles can be used to determine an 
appropriate transform of the 3D virtual heart model into 2D 
image space. The advantages of the former are - 1) the bulk of 
the computations (generating high resolution heart images, 
building the reference image database, and constructing the 
PCA models) are carried out only once and in advance so that 
the real-time IR is computationally inexpensive; and 2) the 
current trend in computing storage is the use of high speed 
flash interfaced to the CPU via a high speed bus (e.g. PCIe) 
which allows extremely fast image recall.  Thus the IR time of 
this algorithm remains superior to the existing method while 

offering the advantage of a higher resolution rendering upon 
registration. 

The robust nature of the model presented in this paper is 
created due to the use of a predefined, asymmetric reference 
object which is present in the incoming image. Unlike other 
methods, where tracked features are chosen in real time 
[8,9,21], in this method, the tracked features are predetermined. 
This significantly enhances the speed and accuracy of image 
registration at the cost of creating a more rigid technique which 
requires the presence and visibility of a specific reference 
object. Traditional IR methods rely on the creation of 
mathematical transformations to track features in scene images 
which are cumbersome  to use with higher resolution images, 
and require "good" features which can be easily tracked [22] 
[23]. Intensity-based IR is one way to bypass this requirement, 
but these methods still employ a mathematical transformation, 
which ultimately increases the amount of real-time 
computation necessary for image registration [9]. Intensity-
based IR methods also require a computationally expensive 
restart mechanism to obtain an optimal transform instead of 
trying to refine a bad transformation [10]. The proposed 
method, however, does not refine previous transforms, 
eliminating the need for a restart mechanism altogether. 

 
Fig. 11. The figure shows the PC space of the PCA model for Object V (right) 

and Object II (left) using different combinations of PCs for the axes of the 

space. The top images show the scores for the 1st (x-axis), 2nd (y-axis), and 3rd 
(z-axis) PCs. The middle images show the scores for the 4th, 5th, and 6th PCs; 

and the bottom images show the scores of 27th, 28th, and 29th PCs. A three-fold 

axis of improper rotation (S3) can be seen in the Object II PCA space for the 
first 3 PCs (top left), while the similar PCA space for Object V is more 

homogenous (top right) 

The significant difference of the proposed method 
compared to other IR techniques makes it difficult to draw a 
direct comparison. Nevertheless shape-based image retrieval 
techniques have often utilized PCA in order to reduce data 
dimensionality and decrease computation time. Image retrieval 
methods have demonstrated that more complex shapes are 
easier to use with PCA analysis [24], and the principal 
component descriptors are preferable to other methods of 
image identification and retrieval [25]. Content based image 
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retrieval (CBIR) is a popular technique that utilizes such 
methods to search and retrieve images from large databases 
[26]. Typically employed to manage large volumes of digital 
images, this technique is similar to the proposed method which 
is repurposed as an IR method. 

When uniform PCA space is encountered in a model, it is 
common to convert from a PCA classification method (as used 
in this paper) to a principal component regression (PCR) 
method [27] in order to derive more quantitative results (e.g., 
the ability to quantitatively interpolate between the modeled 
angles).  Although it is beyond the scope of the present work, 
construction of a PCR model for this implementation of 
augmented reality would involve the multivariate regression of 
the scores of a PCA model against the angles of rotation.  This 
could also be accomplished with a partial least squares model 
using a PLS-2 algorithm [28]. The more homogenous 
clustering for the Object V PCA model would suggest a greater 
likelihood of success of such quantitative modeling when using 
a higher degree of reference object asymmetry.  This further 
exemplifies the importance of introducing complexity into the 
asymmetry of reference objects. 

V. CONCLUSIONS 

This paper presents a novel image registration technique 
involving image compression and PCA modeling based on the 
use of reference objects with complex asymmetry. The design 
provides a method to eliminate the real-time computational 
costs of performing geometric transforms and by using PCA 
classification, operates without the need for a restart 
mechanism. The method was validated using 672 object 
images to test a PCA model created from 22,103 reference 
images. The asymmetry of the reference objects was found to 
highly correlate with the accuracy of the image registration.  In 
particular, for highly asymmetric objects, the accuracy was 
predominantly dependent upon the inclusion of enough 
principal component vectors to accurately describe the 
asymmetry of the objects described in the PCA model space.  
For higher symmetry objects, the inclusion of higher PC order 
models had little to no impact on the accuracy. Future studies 
could further investigate the properties and uses of complex 
asymmetry to enhance the accuracy of image registration 
methods. Since the majority of image processing in this 
method is done prior to the real-time process, and the data 
compression resulted in significant reduction in memory 
requirements, the proposed method is well suited for real-time 
medical augmented reality applications. 
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