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Abstract—This research aims to calculate the execution time 
for software modules, using Particle Swarm Optimization (PSO) 
and Parallel Particle Swarm Optimization (PPSO), in order to 
calculate the proper time. A comparison is made between 
MATLAB Code without Algorithm (MCWA), PSO and PPSO to 
figure out the time produced when executing any software 
module. The proposed algorithms which include the PPSO 
increase the speed of executing the algorithm itself, in order to 
achieve quick results. This research introduces the proposed 
architecture to calculate execution time and uses MATLAB to 
implement MCWA, PSO and PPSO. The results show that PPSO 
algorithm is more efficient in speed and time compared to 
MCWA and PSO algorithm for calculating the execution time. 

Keywords—Particle Swarm Optimization; Parallel Particle 
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I. INTRODUCTION 
Testing is a crucial phase that is performed during 

software development. It is a primary technique which is used 
to gain consumer confidence in the software. It is conducted 
by executing the program developed with test inputs and 
comparing the observed output with the expected one [1, 2]. 
Testing is the writing and applying all software tests to ensure 
the confidence in the operation of the program. Testing is the 
phase of development that is carried out after the main coding 
efforts [3]. 

Execution time is the time during which software is 
running. Calculating execution time is very important in many 
fields, such as; medical system, army system, and airlines 
system … etc., Where any time delay in these software 
misfortunes may occur. 

This research selects primary studies that published 
between 2005 and 2015, while searching many electronic 
databases in order to determine if similar work had already 
been performed, and locates potentially relevant studies. 

C. Mao [4] proposed a search-based test data generation 
solution for software structural testing using particle swarm 
optimization (PSO) technique. A. Windisch, S. Wappler and j. 
Wegener [5] applied a particle swarm algorithm for 
evolutionary structural testing. R. Ding and H. Dong [6] 
proposed a hybrid particle swarm genetic algorithm to apply 
in software testing using case automate generations. A. S. 
Andreou, K. A. Economides and A. A. Sofokleous [7] 
proposed an enhanced testing framework that combines data 

flow graphs with genetic algorithms (GA) to generate 
optimum test cases. P. Palangpour, G.K. Venayagamoorthy, 
and S.C. Smith [8] presented a pipelined architecture for 
hardware particle swarm optimization (PSO) implementation 
to achieve much faster execution times than possible in 
software. A. Mansoor [9] developed AI technique based on 
genetic algorithm for the optimization of software test data. M. 
Syafrullah and N. Salim [10] proposed a new approach based 
on particle swarm optimization techniques in order to improve 
the accuracy of term extraction results. J. H. Andrews, T. 
Menzies, and F.Li [11] described a system that is based on a 
genetic algorithm (GA) to find parameters for randomized unit 
testing that optimize test coverage. J. CHANG and J. Pan [12] 
presented a Parallel Particle Swarm Optimization (PPSO) 
algorithm and a three communication strategies. D. Arora, A. 
S. Baghel [1] presented a method that uses genetic algorithm 
and particle swarm optimization for optimizing software 
testing by finding the most error prone paths in the program. 

The method used here in this research is to calculate 
execution time for software modules, this could be achieved 
by using the Particle Swarm Optimization (PSO) techniques, 
as the each population in each iteration search for best 
execution time through particles in this population, and finally 
compare the best solution to produce the best execution time, 
also the use of parallel particle swarm optimization helps to 
run the populations and particles in distributed processing 
systems to help find the best solution in parallel, then selecting 
the best execution time. It is very crucial phase for any 
software to determine its quality and ability to meet 
requirements, which could be achieved through test this 
software, testing as a phase of software engineering process, 
literally takes about 40~50% of the development efforts in 
software houses [13].  

It is noteworthy that life critical software could use more 
efforts and resources, if it is not tested perfectly, the software 
may cause dangerous consequences as timetable delays, cost 
overrun. Also software community aims to deliver high 
quality software to customers, to ensure that the software will 
run perfect with no delays in execution time, as this is the aim 
of this research is to calculate the execution time [14, 15, 16]. 
Also the proposed algorithm in this research is done 
automatically through a testing tool that produces the results 
of execution time, also trials have been done and the results of 
sample code is depicted below in implementation part. 
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The paper is organized as follows: in part II an 
introduction and brief description of PSO algorithm, in part III 
brief description of the two types of PPSO techniques, in part 
IV description of the proposed PSO and PPSO algorithms, 
followed by the implementation in part V, and then analysis 
and results in part VI, the conclusion and future work in part 
VII. 

II. PARTICLE SWARM OPTIMIZATION 
Modelling of swarms was initially proposed by Kennedy 

to simulate the social behaviour of fish and birds, the 
optimization algorithm was presented as an optimization 
technique in 1995 by Kennedy and Eberhart, PSO has 
particles which represent candidate solutions of the problem, 
each particle searches for optimal solution in the search space, 
each particle or candidate solution has a position and velocity. 
A particle updates its velocity and position based on its inertia, 
own experience and gained knowledge from other particles in 
the swarm, aiming to find the optimal solution of the problem 
[17]. 

The particles update its position and velocity according to 
the following Equation: 

k 1 k k k
1 1 1 2 i i i iv wv c rand (pbest s ) (gbest s )+ = + × − + −  (1) 

Where: 
k 1
iv +

 = Velocity of agent i at iteration k, 
w = Weighting function, 
cj = Weighting factor, 
rand = Random number between 0 and 1, 

k
iS  = Current position of agent  

                             iteration k, 
pbesti = Pbest of agent i, 
gbesti = gbest of the group. 
The weighting function used in Equation 1: 

max min
max

max

w ww w iter
iter
−

= − ×
             (2) 

Where: 
Wmax= Initial weight, 
Wmin = Final weight, 
itermax= Maximum iteration number, 
Iter = Current iteration number. 
According to more than ninety modifications are applied to 

original PSO [17, 18]. 

III. PARALLEL PARTICLE SWARM OPTIMIZATION 
PSO is optimized to be implemented on distributed 

systems, the iterations and particles within each iterations of 
the PPSO are independent of each other, so results could be 
parallel analysed. PPSO could be divided into two types [19, 
20, 21]: 

1) Synchronous Parallel Particle Swarm Optimization 
PSO parallel implementation is to simply evaluate the 

particles (solutions), or in other words the execution time 
produced within each iteration in parallel, without changing 
the overall logic of the algorithm itself. In this implementation, 

all particles within design iteration are sent to the parallel 
computing environment, and the algorithm waits for all the 
analyses to complete before moving to the next iteration. This 
implementation is referred to as a synchronous 
implementation. This method is used in this research [22, 23]. 

2) Asynchronous Parallel Particle Swarm Optimization 
Algorithm 

Considering an asynchronous algorithm means that 
particles (solutions) or as mentioned before execution time 
produced in the next iteration are analysed before the current 
design iteration is completed. The goal is to have no idle 
processors as one move from one iteration to the next. [22] 

The key to implementing an asynchronous parallel PSO 
algorithm is to separate the update actions associated with 
each point and those associated with the swarm as a whole. 
These update actions include updating the inertia value and 
the swarm and point histories. For the synchronous algorithm, 
all the update actions are performed at the end of each design 
iteration. For the asynchronous algorithm, researchers want to 
perform point update actions after each point is analysed and 
the swarm updates actions at the end of each design iteration. 
The parts of the algorithm that need to be considered when 
looking at the update actions are the velocity vector, and the 
dynamic reduction of the inertia value. [22] 

The velocity vector is the centre point of any PSO 
algorithm. For each design point, the velocity vector is 
updated using the following dynamic properties for that point: 
the previous velocity vector; the current position vector; and 
the best position found so far. In addition, the updated inertia 
value and the best position for the swarm as a whole are also 
required. To do the velocity update in an asynchronous 
fashion, researchers need to update the position vector and the 
best position found so far for each design point directly after 
evaluating that point. For the best position in the swarm, 
researchers have two choices: 

Use the best position in the current iteration, or use the 
best position found so far. To keep the best position for the 
swarm current when moving to the next design iteration, 
before the current iteration is completed, it is necessary to use 
the best position found so far rather than the best position in 
the current iteration. This setup allows the algorithm to update 
all required dynamic properties of the velocity vector directly 
after evaluating each design point, except for the inertia value. 
The inertia value is the only iteration level update required to 
compute the velocity vector and is updated at the end of each 
design iteration. The craziness operator is the only other 
iteration level update and is also performed at the end of each 
design iteration. [23] 

The asynchronous algorithm is thus very similar to the 
synchronous algorithm, except that researchers update as 
much information as possible after each design point is 
analysed. The inertia is only applied when design iteration is 
completed. Of course, this could result in some points of the 
next design iteration being analysed before the inertia operator 
is applied for that design iteration. However, the influence on 
the overall performance of the algorithm seems to be 
negligible [24]. 
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IV. PROPOSED PSO & PPSO ALGORITHMS 
The proposed architecture is based on PSO and PPSO 

algorithms to calculate execution time depicted below in 
figure 1. Additionally, in order to evaluate the execution time 
for software module, a proposed PPSO (Parallel PSO) 
algorithm to calculate execution time also introduced and the 
recommended execution time strategy is determined for 
implementing this PPSO algorithm. 

• The PSO Algorithm to Calculate Execution Time can 
be listed in following steps: 

A. Initialize the population with N Particles. And Set 
iterations counter I = 0. 

B. Apply Fitness function: Calculating the fitness value by 
calculating the percentage of this particle will share in 
minimizing the total processing time to find the optimal 
solution. 

C. Compare the calculated fitness value of each particle with 
its (lbest). If current value is better than (gbest), then reset 
(gbest) to the current index in particle array. Select the 
best particle as (gbest). 

D. Calculated fitness value among the neighboured particles 
in the network achieved so far in the iteration. 

E. Update each Particle Velocity and position according to 
Eq. (1). 

  
k 1 k k k
1 1 1 2 i i i iv wv c rand (pbest s ) (gbest s )+ = + × − + −     (1) 

Where I= 0, 1, 2… M-1 

To prevent the velocity from becoming too large, 
researchers set a maximum value to limit the range velocity as 

 –VMAX ≤ V ≤ VMAX 

F. Cost function assigns the highest fitness value in the 
iteration and which has a current position (xi). 
t = t +1. 

G. End While. 

H. Stop. 
So these recursive steps continue until reaching the 

termination condition, and the termination condition achieved 
when the cost function finishes the execution, and finds the 
optimal time and solution. 

In PPSO, computation time of PSO can be reduced with 
the parallel structure. Parallel processing aims at producing 
the same results achievable using multiple processors with the 
goal of reducing the run time. The same steps described in 
PSO will be applied, but in step (a) PPSO will define how 
many group of processors needed for the cost function to be 
executed, because it can be designed to be 2n sets. 

 

 

 

 
Fig. 1. Proposed PSO Based Algorithm to Calculate Execution Time 

Initialize the population with N Particles 
where Program will search for optimal 
solution through the movement of these 
particles. And Set of iterations counter I = 0. 

 

Calculating the fitness value, by calculating the 
percentage of each particle, that shares in minimizing 
the total processing time to find the optimal solution. 

Compare the calculated fitness value of each particle 
with its (lbest). If current value is better than (lbest), 
then set the current location as the (lbest) location. 
Furthermore, if current value is better than (gbest), 
then reset (gbest) to the current index in particle 
array. Select the best particles as (gbest).  

 

Update each Particle Velocity and position 

 

Cost function assigns the best fitness 
value in the iteration and which has a 

    

I=I+1 
 

If cost function 
is finished 

 

Find the optimal time and 
solution. 

End 

Start 

Yes 
 

No 
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The performance of the Parallel PSO can be evaluated 
using Amdahl's Law Eq. [25]. 

Speedup (Sp) = 1/fs + fp/p 

Where: 

fs= serial fraction of code 

fp= parallel fraction of code 

P= number of processors 

Suppose serial fraction of code (0.5), parallel fraction of 
code (0.5) and number of processors (2, 4, 8, 16, 32, 64, 128, 
256, 512, and 1024). 

If P=2: Sp= 1 / (0.5+0.25) = 1.33 

TABLE I.  PPSO ALGORITHM 

P SP Elapsed  Time 
2 1.33 0.02 
4 1.60 0.017 
8 1.79 0.012 
16 1.89 0.008 
32 1.96 0.005 
64 2.00 0.003 
128 2.00 0.002 
256 2.00 0.001 
512 2.00 0.001 
1024 2.00 0.0003 

 
Fig. 2. PPSO Algorithm 

This figure shows that the increase of number of 
processors, increase in speed results and decrease in elapsed 
time. 

V. IMPLEMENTATION OF THE PROPOSED ALGORITHM 
This section introduces implementation of MCWA, PSO 

and PPSO where cost function (CF) is: 

 
This paper implementation proposed cost function uses 

MCWA, PSO and PPSO. The first implementation uses 
MCWA where results are shown below in table 2: 

TABLE II.  RESULTS OF MCWA 

Iteration CF Elapsed  Time(ET) 
1 1 16.16 
2 4 97.15 
3 9 109.26 
4 16 118.05 
5 25 126.38 
6 36 133.59 
7 49 140.11 
8 64 147.25 
9 81 157.59 
10 100 169.34 

In table 2 each test case (iteration) to optimize the cost 
function but elapsed time increased and shown below in 
figure3: 

 
Fig. 3. Releationship between CF and ET in MCWA 

In figure 3 shown relationships between CF and ET where 
found positive relationship between them. 

The second implementation uses PSO where results are 
shown below in table 3: 

TABLE III.  RESULTS OF PSO 

Iteration CF ET 
1 58.73 0.04 
2 24.48 0.07 
3 15.00 0.10 
4 5.85 0.13 
5 5.85 0.16 
6 5.85 0.19 
7 5.34 0.21 
8 2.73 0.24 
9 2.73 0.27 
10 2.73 0.30 

In table 3 each test case (iteration) to optimize the cost 
function but elapsed time decreased compared with MCWA 
and shown in figure 4. 

In figure 4 shown relationships between CF and ET where 
found inverse relationship between them. 

The third implementation uses PPSO where results are 
shown in table 4. 

In table 4 each test case (iteration) to optimize the cost 
function but elapsed time decreased compared with MCWA, 
PSO and shown in figure 5. 
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CF: function z=Sphere(x) 
   z=sum (x. ^2); 
end 
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Fig. 4. Releationship between CF and ET in PSO 

TABLE IV.  RESULTS OF PPSO 

x P Sp CF ET 
1 2 1.33 58.73 0.02 
2 4 1.60 24.48 0.017 
3 8 1.79 15.00 0.012 
4 16 1.89 5.85 0.008 
5 32 1.96 5.85 0.005 
6 64 2.00 5.85 0.003 
7 128 2.00 5.34 0.002 
8 256 2.00 2.73 0.001 
9 512 2.00 2.73 0.001 
10 1024 2.00 2.73 0.0003 

 
Fig. 5. Releationship between CF and ET in PPSO 

In figure 5 shown relationships between CF and ET where 
found inverse relationship between them. 

This paper introduces compared between PSO and PPSO 
where shown in figure 6.  

In figure 7 shown inverse relationships between SP, PSO 
and PPSO Whenever an increase in speed occur where 
decreased in PSO and also more decreased in PPSO. 

 

 
Fig. 6. Releationship between PSO and PPSO 

In figure 6 shown relationships between PSO and PPSO 
where elapsed time in PPSO decreased compared with PSO. 
In figure 7 shown relationships between SP, PSO and PPSO. 

 
Fig. 7. Releationship between SP, PSO and PPSO 

VI. ANALYSIS AND RESULTS 
This paper presented the results of PSO and PPSO. In PSO, 

the results show inverse relationship between CF & ET, 
although the optimizing, the cost function elapsed time 
decreased compared with MCWA. In PPSO found that there is 
an inverse relationship between CF & ET although optimizing 
the cost function, but elapsed time decreased compared with 
MCWA and PSO. This paper shows the relationship between 
PSO and PPSO where elapsed time in PPSO decreased 
compared with PSO and shows inverse relationship between 
SP, PSO and PPSO Whenever an increase in speed occur it 
decreased in PSO and also time decreased more in PPSO. 

VII. CONCLUSION  AND FUTURE WORK 
PSO is relatively recent heuristic approach; it is similar to 

PPSO in a way that they both are population based 
evolutionary algorithms.  
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The research presents the application of PSO and PPSO. 
The proposed research described the basic concepts of PSO 
and PPSO, calculating execution time for software modules 
for using PSO and PPSO and how they are useful in finding 
the optimal solution to the problem. Comparative study is 
done between both the algorithm where PPSO can be useful, 
and showing how PPSO overcome the drawback of PSO. This 
paper shows that PPSO algorithm is more efficient in speed 
and time compared with MCWA and PSO algorithm to 
calculate the execution time. 

In future, the researchers aim to apply the proposed 
approach using ante colony optimization (ACO) and cat 
optimization (CO) and compare the results with other results 
produced from other evaluation techniques of swarm 
optimization algorithms. In addition, the researchers aim to 
enhance the proposed approach by examining more hybrid 
techniques to calculate execution time for software modules. 
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