
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

Applying Swarm Optimization Techniques to
Calculate Execution Time for Software Modules

Nagy Ramadan Darwish
Department of Computer and

Information Sciences, Institute of
Statistical Studies and Research,
Cairo University, Cairo, Egypt

Ahmed A. Mohamed
Department of Information System,

Higher Technological Institute,
10th of Ramadan City,

Egypt

Bassem S. M. Zohdy
Department of Business Technology,

Canadian International College,
Cairo, Egypt

Abstract—This research aims to calculate the execution time
for software modules, using Particle Swarm Optimization (PSO)
and Parallel Particle Swarm Optimization (PPSO), in order to
calculate the proper time. A comparison is made between
MATLAB Code without Algorithm (MCWA), PSO and PPSO to
figure out the time produced when executing any software
module. The proposed algorithms which include the PPSO
increase the speed of executing the algorithm itself, in order to
achieve quick results. This research introduces the proposed
architecture to calculate execution time and uses MATLAB to
implement MCWA, PSO and PPSO. The results show that PPSO
algorithm is more efficient in speed and time compared to
MCWA and PSO algorithm for calculating the execution time.

Keywords—Particle Swarm Optimization; Parallel Particle
Swarm Optimization; MATLAB Code without Algorithm

I. INTRODUCTION
Testing is a crucial phase that is performed during

software development. It is a primary technique which is used
to gain consumer confidence in the software. It is conducted
by executing the program developed with test inputs and
comparing the observed output with the expected one [1, 2].
Testing is the writing and applying all software tests to ensure
the confidence in the operation of the program. Testing is the
phase of development that is carried out after the main coding
efforts [3].

Execution time is the time during which software is
running. Calculating execution time is very important in many
fields, such as; medical system, army system, and airlines
system … etc., Where any time delay in these software
misfortunes may occur.

This research selects primary studies that published
between 2005 and 2015, while searching many electronic
databases in order to determine if similar work had already
been performed, and locates potentially relevant studies.

C. Mao [4] proposed a search-based test data generation
solution for software structural testing using particle swarm
optimization (PSO) technique. A. Windisch, S. Wappler and j.
Wegener [5] applied a particle swarm algorithm for
evolutionary structural testing. R. Ding and H. Dong [6]
proposed a hybrid particle swarm genetic algorithm to apply
in software testing using case automate generations. A. S.
Andreou, K. A. Economides and A. A. Sofokleous [7]
proposed an enhanced testing framework that combines data

flow graphs with genetic algorithms (GA) to generate
optimum test cases. P. Palangpour, G.K. Venayagamoorthy,
and S.C. Smith [8] presented a pipelined architecture for
hardware particle swarm optimization (PSO) implementation
to achieve much faster execution times than possible in
software. A. Mansoor [9] developed AI technique based on
genetic algorithm for the optimization of software test data. M.
Syafrullah and N. Salim [10] proposed a new approach based
on particle swarm optimization techniques in order to improve
the accuracy of term extraction results. J. H. Andrews, T.
Menzies, and F.Li [11] described a system that is based on a
genetic algorithm (GA) to find parameters for randomized unit
testing that optimize test coverage. J. CHANG and J. Pan [12]
presented a Parallel Particle Swarm Optimization (PPSO)
algorithm and a three communication strategies. D. Arora, A.
S. Baghel [1] presented a method that uses genetic algorithm
and particle swarm optimization for optimizing software
testing by finding the most error prone paths in the program.

The method used here in this research is to calculate
execution time for software modules, this could be achieved
by using the Particle Swarm Optimization (PSO) techniques,
as the each population in each iteration search for best
execution time through particles in this population, and finally
compare the best solution to produce the best execution time,
also the use of parallel particle swarm optimization helps to
run the populations and particles in distributed processing
systems to help find the best solution in parallel, then selecting
the best execution time. It is very crucial phase for any
software to determine its quality and ability to meet
requirements, which could be achieved through test this
software, testing as a phase of software engineering process,
literally takes about 40~50% of the development efforts in
software houses [13].

It is noteworthy that life critical software could use more
efforts and resources, if it is not tested perfectly, the software
may cause dangerous consequences as timetable delays, cost
overrun. Also software community aims to deliver high
quality software to customers, to ensure that the software will
run perfect with no delays in execution time, as this is the aim
of this research is to calculate the execution time [14, 15, 16].
Also the proposed algorithm in this research is done
automatically through a testing tool that produces the results
of execution time, also trials have been done and the results of
sample code is depicted below in implementation part.

12 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

The paper is organized as follows: in part II an
introduction and brief description of PSO algorithm, in part III
brief description of the two types of PPSO techniques, in part
IV description of the proposed PSO and PPSO algorithms,
followed by the implementation in part V, and then analysis
and results in part VI, the conclusion and future work in part
VII.

II. PARTICLE SWARM OPTIMIZATION
Modelling of swarms was initially proposed by Kennedy

to simulate the social behaviour of fish and birds, the
optimization algorithm was presented as an optimization
technique in 1995 by Kennedy and Eberhart, PSO has
particles which represent candidate solutions of the problem,
each particle searches for optimal solution in the search space,
each particle or candidate solution has a position and velocity.
A particle updates its velocity and position based on its inertia,
own experience and gained knowledge from other particles in
the swarm, aiming to find the optimal solution of the problem
[17].

The particles update its position and velocity according to
the following Equation:

k 1 k k k
1 1 1 2 i i i iv wv c rand (pbest s) (gbest s)+ = + × − + − (1)

Where:
k 1
iv +

 = Velocity of agent i at iteration k,
w = Weighting function,
cj = Weighting factor,
rand = Random number between 0 and 1,

k
iS = Current position of agent

 iteration k,
pbesti = Pbest of agent i,
gbesti = gbest of the group.
The weighting function used in Equation 1:

max min
max

max

w ww w iter
iter
−

= − ×
 (2)

Where:
Wmax= Initial weight,
Wmin = Final weight,
itermax= Maximum iteration number,
Iter = Current iteration number.
According to more than ninety modifications are applied to

original PSO [17, 18].

III. PARALLEL PARTICLE SWARM OPTIMIZATION
PSO is optimized to be implemented on distributed

systems, the iterations and particles within each iterations of
the PPSO are independent of each other, so results could be
parallel analysed. PPSO could be divided into two types [19,
20, 21]:

1) Synchronous Parallel Particle Swarm Optimization
PSO parallel implementation is to simply evaluate the

particles (solutions), or in other words the execution time
produced within each iteration in parallel, without changing
the overall logic of the algorithm itself. In this implementation,

all particles within design iteration are sent to the parallel
computing environment, and the algorithm waits for all the
analyses to complete before moving to the next iteration. This
implementation is referred to as a synchronous
implementation. This method is used in this research [22, 23].

2) Asynchronous Parallel Particle Swarm Optimization
Algorithm

Considering an asynchronous algorithm means that
particles (solutions) or as mentioned before execution time
produced in the next iteration are analysed before the current
design iteration is completed. The goal is to have no idle
processors as one move from one iteration to the next. [22]

The key to implementing an asynchronous parallel PSO
algorithm is to separate the update actions associated with
each point and those associated with the swarm as a whole.
These update actions include updating the inertia value and
the swarm and point histories. For the synchronous algorithm,
all the update actions are performed at the end of each design
iteration. For the asynchronous algorithm, researchers want to
perform point update actions after each point is analysed and
the swarm updates actions at the end of each design iteration.
The parts of the algorithm that need to be considered when
looking at the update actions are the velocity vector, and the
dynamic reduction of the inertia value. [22]

The velocity vector is the centre point of any PSO
algorithm. For each design point, the velocity vector is
updated using the following dynamic properties for that point:
the previous velocity vector; the current position vector; and
the best position found so far. In addition, the updated inertia
value and the best position for the swarm as a whole are also
required. To do the velocity update in an asynchronous
fashion, researchers need to update the position vector and the
best position found so far for each design point directly after
evaluating that point. For the best position in the swarm,
researchers have two choices:

Use the best position in the current iteration, or use the
best position found so far. To keep the best position for the
swarm current when moving to the next design iteration,
before the current iteration is completed, it is necessary to use
the best position found so far rather than the best position in
the current iteration. This setup allows the algorithm to update
all required dynamic properties of the velocity vector directly
after evaluating each design point, except for the inertia value.
The inertia value is the only iteration level update required to
compute the velocity vector and is updated at the end of each
design iteration. The craziness operator is the only other
iteration level update and is also performed at the end of each
design iteration. [23]

The asynchronous algorithm is thus very similar to the
synchronous algorithm, except that researchers update as
much information as possible after each design point is
analysed. The inertia is only applied when design iteration is
completed. Of course, this could result in some points of the
next design iteration being analysed before the inertia operator
is applied for that design iteration. However, the influence on
the overall performance of the algorithm seems to be
negligible [24].

13 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

IV. PROPOSED PSO & PPSO ALGORITHMS
The proposed architecture is based on PSO and PPSO

algorithms to calculate execution time depicted below in
figure 1. Additionally, in order to evaluate the execution time
for software module, a proposed PPSO (Parallel PSO)
algorithm to calculate execution time also introduced and the
recommended execution time strategy is determined for
implementing this PPSO algorithm.

• The PSO Algorithm to Calculate Execution Time can
be listed in following steps:

A. Initialize the population with N Particles. And Set
iterations counter I = 0.

B. Apply Fitness function: Calculating the fitness value by
calculating the percentage of this particle will share in
minimizing the total processing time to find the optimal
solution.

C. Compare the calculated fitness value of each particle with
its (lbest). If current value is better than (gbest), then reset
(gbest) to the current index in particle array. Select the
best particle as (gbest).

D. Calculated fitness value among the neighboured particles
in the network achieved so far in the iteration.

E. Update each Particle Velocity and position according to
Eq. (1).

k 1 k k k
1 1 1 2 i i i iv wv c rand (pbest s) (gbest s)+ = + × − + − (1)

Where I= 0, 1, 2… M-1

To prevent the velocity from becoming too large,
researchers set a maximum value to limit the range velocity as

 –VMAX ≤ V ≤ VMAX

F. Cost function assigns the highest fitness value in the
iteration and which has a current position (xi).
t = t +1.

G. End While.

H. Stop.
So these recursive steps continue until reaching the

termination condition, and the termination condition achieved
when the cost function finishes the execution, and finds the
optimal time and solution.

In PPSO, computation time of PSO can be reduced with
the parallel structure. Parallel processing aims at producing
the same results achievable using multiple processors with the
goal of reducing the run time. The same steps described in
PSO will be applied, but in step (a) PPSO will define how
many group of processors needed for the cost function to be
executed, because it can be designed to be 2n sets.

Fig. 1. Proposed PSO Based Algorithm to Calculate Execution Time

Initialize the population with N Particles
where Program will search for optimal
solution through the movement of these
particles. And Set of iterations counter I = 0.

Calculating the fitness value, by calculating the
percentage of each particle, that shares in minimizing
the total processing time to find the optimal solution.

Compare the calculated fitness value of each particle
with its (lbest). If current value is better than (lbest),
then set the current location as the (lbest) location.
Furthermore, if current value is better than (gbest),
then reset (gbest) to the current index in particle
array. Select the best particles as (gbest).

Update each Particle Velocity and position

Cost function assigns the best fitness
value in the iteration and which has a

I=I+1

If cost function
is finished

Find the optimal time and
solution.

End

Start

Yes

No

14 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

The performance of the Parallel PSO can be evaluated
using Amdahl's Law Eq. [25].

Speedup (Sp) = 1/fs + fp/p

Where:

fs= serial fraction of code

fp= parallel fraction of code

P= number of processors

Suppose serial fraction of code (0.5), parallel fraction of
code (0.5) and number of processors (2, 4, 8, 16, 32, 64, 128,
256, 512, and 1024).

If P=2: Sp= 1 / (0.5+0.25) = 1.33

TABLE I. PPSO ALGORITHM

P SP Elapsed Time
2 1.33 0.02
4 1.60 0.017
8 1.79 0.012
16 1.89 0.008
32 1.96 0.005
64 2.00 0.003
128 2.00 0.002
256 2.00 0.001
512 2.00 0.001
1024 2.00 0.0003

Fig. 2. PPSO Algorithm

This figure shows that the increase of number of
processors, increase in speed results and decrease in elapsed
time.

V. IMPLEMENTATION OF THE PROPOSED ALGORITHM
This section introduces implementation of MCWA, PSO

and PPSO where cost function (CF) is:

This paper implementation proposed cost function uses

MCWA, PSO and PPSO. The first implementation uses
MCWA where results are shown below in table 2:

TABLE II. RESULTS OF MCWA

Iteration CF Elapsed Time(ET)
1 1 16.16
2 4 97.15
3 9 109.26
4 16 118.05
5 25 126.38
6 36 133.59
7 49 140.11
8 64 147.25
9 81 157.59
10 100 169.34

In table 2 each test case (iteration) to optimize the cost
function but elapsed time increased and shown below in
figure3:

Fig. 3. Releationship between CF and ET in MCWA

In figure 3 shown relationships between CF and ET where
found positive relationship between them.

The second implementation uses PSO where results are
shown below in table 3:

TABLE III. RESULTS OF PSO

Iteration CF ET
1 58.73 0.04
2 24.48 0.07
3 15.00 0.10
4 5.85 0.13
5 5.85 0.16
6 5.85 0.19
7 5.34 0.21
8 2.73 0.24
9 2.73 0.27
10 2.73 0.30

In table 3 each test case (iteration) to optimize the cost
function but elapsed time decreased compared with MCWA
and shown in figure 4.

In figure 4 shown relationships between CF and ET where
found inverse relationship between them.

The third implementation uses PPSO where results are
shown in table 4.

In table 4 each test case (iteration) to optimize the cost
function but elapsed time decreased compared with MCWA,
PSO and shown in figure 5.

0%

20%

40%

60%

80%

100%

1234567891011

P Sp PPSO Elapsed Time

0

50

100

150

200

1 2 3 4 5 6 7 8 9 1011

Cost Function

Elapsed Time

CF: function z=Sphere(x)
 z=sum (x. ^2);
end

15 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

Fig. 4. Releationship between CF and ET in PSO

TABLE IV. RESULTS OF PPSO

x P Sp CF ET
1 2 1.33 58.73 0.02
2 4 1.60 24.48 0.017
3 8 1.79 15.00 0.012
4 16 1.89 5.85 0.008
5 32 1.96 5.85 0.005
6 64 2.00 5.85 0.003
7 128 2.00 5.34 0.002
8 256 2.00 2.73 0.001
9 512 2.00 2.73 0.001
10 1024 2.00 2.73 0.0003

Fig. 5. Releationship between CF and ET in PPSO

In figure 5 shown relationships between CF and ET where
found inverse relationship between them.

This paper introduces compared between PSO and PPSO
where shown in figure 6.

In figure 7 shown inverse relationships between SP, PSO
and PPSO Whenever an increase in speed occur where
decreased in PSO and also more decreased in PPSO.

Fig. 6. Releationship between PSO and PPSO

In figure 6 shown relationships between PSO and PPSO
where elapsed time in PPSO decreased compared with PSO.
In figure 7 shown relationships between SP, PSO and PPSO.

Fig. 7. Releationship between SP, PSO and PPSO

VI. ANALYSIS AND RESULTS
This paper presented the results of PSO and PPSO. In PSO,

the results show inverse relationship between CF & ET,
although the optimizing, the cost function elapsed time
decreased compared with MCWA. In PPSO found that there is
an inverse relationship between CF & ET although optimizing
the cost function, but elapsed time decreased compared with
MCWA and PSO. This paper shows the relationship between
PSO and PPSO where elapsed time in PPSO decreased
compared with PSO and shows inverse relationship between
SP, PSO and PPSO Whenever an increase in speed occur it
decreased in PSO and also time decreased more in PPSO.

VII. CONCLUSION AND FUTURE WORK
PSO is relatively recent heuristic approach; it is similar to

PPSO in a way that they both are population based
evolutionary algorithms.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 1011

Cost Function

Elapsed Time

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 1011

Cost Function

PPSO Elapsed
Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11

PSO Elapsed
Time

PPSO Elapsed
Time

80%

85%

90%

95%

100%

1 3 5 7 9 11

PPSO Elapsed
Time

PSO Elapsed
Time

Sp

16 | P a g e
www.ijarai.thesai.org

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.3, 2016

The research presents the application of PSO and PPSO.
The proposed research described the basic concepts of PSO
and PPSO, calculating execution time for software modules
for using PSO and PPSO and how they are useful in finding
the optimal solution to the problem. Comparative study is
done between both the algorithm where PPSO can be useful,
and showing how PPSO overcome the drawback of PSO. This
paper shows that PPSO algorithm is more efficient in speed
and time compared with MCWA and PSO algorithm to
calculate the execution time.

In future, the researchers aim to apply the proposed
approach using ante colony optimization (ACO) and cat
optimization (CO) and compare the results with other results
produced from other evaluation techniques of swarm
optimization algorithms. In addition, the researchers aim to
enhance the proposed approach by examining more hybrid
techniques to calculate execution time for software modules.

REFERENCES
[1] D.Arora, A.Baghel "Application of Genetic Algorithm and Particle

Swarm Optimization in Software Testing "Journal of Computer
Engineering , Volume 17, PP 75-78 ,2015.

[2] James H. Andrews, Tim Menzies, Felix C.H. Li, "Genetic Algorithms
for Randomized Unit Testing", IEEE Transactions on Software
Engineering, vol.37, no. 1, pp. 80-94, January/February 2011.

[3] Nagy Ramadan Darwish “Towards An Approach For Evaluating The
Implementation Of Extreme Programming Practices” International
Journal of Intelligent Computing and Information Science, Volume 13,
PP 55-67,2013.

[4] C. Mao, “Generating Test Data for Software Structural Testing Based on
Particle Swarm Optimization,” Arabian Journal for Science and
Engineering, vol. 39, pp. 4593-4607, 2014.

[5] A. Windisch, S. Wappler and j. Wegener, “Applying Particle Swarm
Optimization to Software Testing,” in Proc. 9th Conf. Genetic and
evolutionary computation, 2007, pp. 1121-1128.

[6] R. Ding and H. Dong “Automatic Generation of Software Test Data
Based on Hybrid Particle Swarm Genetic Algorithm,” in Electrical &
Electronics Engineering (EEESYM), 2012, pp. 670 - 673.

[7] A. S. Andreou, K. A. Economides and A. A. Sofokleous “An Automatic
Software Test-Data Generation Scheme Based on Data Flow Criteria
and Genetic Algorithms,” in 7th Int. Conf. Computer and Information
Technology, 2007.

[8] P. Palangpour, G.K. Venayagamoorthy, and S.C. Smith, “Particle
Swarm Optimization: A Hardware Implementation,” in Proc. Int. Conf.
Computer Design, 2009.

[9] A. Mansoor, “Automated Software Test Data Optimization Using
Artificial Intelligence,” International Journal of Information and
Communication Trends, vol. 1, pp. 1-60, 2014.

[10] M. Syafrullah and N. Salim, “Improving Term Extraction Using Particle
Swarm Optimization Techniques,” Journal of Computing, vol. 2, 2010.

[11] J. H. Andrews, T. Menzies, and F.Li, “Genetic Algorithms for
Randomized Unit Testing,” IEEE Transactions on Software
Engineering, vol. 37, no. 1, 2011.

[12] J. CHANG and j. Pan, “A Parallel Particle Swarm Optimization
Algorithm with Communication Strategies,” Journal of Information
Science and Engineering, vol. 21, pp. 809-818, 2005.

[13] Jovanovic and Irena,”Software TestingMethods and Techniques,” May
26, 2008.

[14] Saswat Anand, Edmund Burke, Tsong Y. Chen, et al., “An Orchestrated
Survey on Automated Software Test Case Generation” Journal of
Systems and, Software, 2013.

[15] “Addressing Software Testing Costs, Complexity and Challenges:
Sogeti UK’s Annual TestExpo Survey”, Survey Report, Sogeti Inc.,
2013.

[16] Myers, Glenford J., IBM Systems Research Institute, Lecturer in
Computer Science, Polytechnic Institute of New York, “The Art of
Software Testing”, Copyright 1979. by John Wiley & Sons, Inc.

[17] Aly, Walid; Yousif, Basheer; Zohdy, Bassem “A Deoxyribonucleic Acid
Compression Algorithm Using Auto-Regression and Swarm
Intelligence”. Journal of Computer Science, 690-698, 9(6), 2013.

[18] Syafrullah M., Salim N., 2010, “Improving Term Extraction Using
Particle Swarm Optimization Techniques”, Journal of Computing, Vol.
2, Issue2, pages 116-120, 2010.

[19] Chang, J.F., Chu, S.C., Roddick, J.F., Pan, J.S., “A parallel particle
swarm optimization algorithm with communication strategies”, Journal
of information science and engineering. 21, 809–818, 2005.

[20] Shu-Chuan, Chu et al. "Parallel Particle Swarm Optimization
Algorithms With Adaptive Simulated Annealing", Springer, 31, 2006.

[21] Venter G, Sobieszczanki-Sobieksi J. A parallel particle swarm
optimization algorithm accelerated by asynchronous evaluations. Journal
of Aerospace Computing, Information, and Communication. 6th World
Congresses of Structural and Multidisciplinary Optimization, 2005

[22] Şaban Gülcü, and Halife Kodaz, “A novel parallel multi-swarm
algorithm based on comprehensive learning particle swarm
optimization,” Engineering Applications of Artificial Intelligence, vol.
45, pp. 33–45, 2015.

[23] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm
optimization in wireless-sensor networks: a brief survey,” IEEE
Transactions on Systems, Man and Cybernetics Part C, vol. 41, no. 2,
pp. 262–267, 2011.

[24] C. A. Voglis , K. E. Parsopoulos , I. E. Lagaris, “Particle swarm
optimization with deliberate loss of information”, Soft Computing - A
Fusion of Foundations, Methodologies and Applications, v.16 n.8,
p.1373-1392, August 2012.

[25] Herb Sutter, “The Free Lunch is Over: A Fundamental Turn Toward
Concurrency in Software”, Dr. Dobb's Journal, 30(3), March 2005.

17 | P a g e
www.ijarai.thesai.org

	I. Introduction
	II. Particle Swarm Optimization
	III. Parallel Particle Swarm Optimization
	1) Synchronous Parallel Particle Swarm Optimization
	2) Asynchronous Parallel Particle Swarm Optimization Algorithm

	IV. Proposed pso & ppso Algorithms
	A. Initialize the population with N Particles. And Set iterations counter I = 0.
	B. Apply Fitness function: Calculating the fitness value by calculating the percentage of this particle will share in minimizing the total processing time to find the optimal solution.
	C. Compare the calculated fitness value of each particle with its (lbest). If current value is better than (gbest), then reset (gbest) to the current index in particle array. Select the best particle as (gbest).
	D. Calculated fitness value among the neighboured particles in the network achieved so far in the iteration.
	E. Update each Particle Velocity and position according to Eq. (1).
	F. Cost function assigns the highest fitness value in the iteration and which has a current position (xi).
	G. End While.
	H. Stop.

	V. Implementation of the Proposed Algorithm
	VI. Analysis and Results
	VII. Conclusion and Future Work
	References

