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Abstract—The measured data inevitably contain abnormal 

data under the normal operating conditions. Most of the existing 

algorithms, such as least squares identification and maximum 

likelihood estimation, are easily affected by abnormal data and 

appear large indentation deviation. It is a difficult task needed to 

be addressed that how to improve the sensitivity of the existing 

algorithm or build a new parameter identifying algorithm with 

outlier-tolerance ability to abnormal data in system identification 

technology application. In this paper, the sensitivity of the RML 

to the sampled abnormal data was analyzed and a new 

improvement algorithm of CAR process is established to improve 

outlier-tolerance ability of the RML identification when there are 

outliers in the sampling series. The improved algorithm not only 

effectively inhibits the negative impact of the abnormal data but 

also effectively improve the quality of the parameter 

identification results. Some simulation given in this paper shows 

that the improved RML algorithm has strong outlier-tolerance. 

This paper’s research results play an important role in 

engineering control, signal processing, industrial automation and 

aerospace or other fields. 

Keywords—recursive maximum likelihood identification; 

parameter identification; outliers; outlier-tolerance identification 

I. INTRODUCTION 

The widely used model that describes the relationship of 
input and output is difference equation model, which is widely 
used in many different fields such as the discrete time control 
system [1] and the computer controlled system [2], [26], 
Generally, there are error in the measurement data sequence 

)}({ kty  under the normal operating conditions .This paper 

adopts the Controlled Autoregressive (short as CAR) process 
model to describe a discrete time linear time-invariant control 
system. 

There are quite a lot of literatures which discuss how to 
identify parameters in the CAR model. According to the basic 
principle of system identification, it can be divided into the 
least square method, the maximum likelihood method, the 
moment estimation method and the gradient correction method. 
According to the algorithm implementation methods, it can be 
divided into batch processing algorithm and sequential method. 
According to the real-time performance of algorithm, it can be 
divided into offline and online identification recognition. And 
according to the calculation domain, it can be divided into time 
domain and frequency domain method. For example, Wang.etc 
(2012, 2011) studied the recursive maximum likelihood (short 
as RML) identification method of controlled Autoregressive 

Moving Average (short as CARMA) model and CAR model 
[3]-[4]. Blind maximum likelihood (short as BML) filter 
identification of the single input and single output moving 
average method was studied in paper [5]. What’s more, BML 
used the maximizing expectation method to calculate the 
maximum likelihood estimation of parameter. Wang.etc (2008, 
2012) proposed augmented stochastic gradient identification 
algorithm to the Hammerstein-Wiener system and hierarchical 
least-square algorithm [6]-[7]. Wills.etc (2013) researched 
Hammerstein-Wiener model identification problem and put 
forward a new maximum likelihood (short as ML) 
identification method [8]. Gibson.etc (2005) researched the ML 
estimators of multivariable bilinear model and put forward a 
new ML estimation based on the maximizing expectation 
algorithms [9]. 

The ML identification was put forward by British 
statistician Fisher based on the parameter estimation method in 
probability theory & mathematical statistics, which can be used 
to seek the ML values of parameters. It has come to light that 
the maximum likelihood method has intuitive reasonable 
statistical explanation and the good properties. In addition, the 
maximum likelihood method is deeply studied and widely used 
in many different fields, such as statistical inference and 
process identification [10]-[11]. 

But, from the perspective of practical application [12]-[16], 
the ML method has some limitations and weaknesses which 
cannot be ignored. For example, the ML identification 
algorithm lacks of the tolerance to abnormal data [17], [27]-
[28]. By tracking and analyzing researches and developments 
about the stability of the ML identification algorithm [18]-[22]

 

and the immune ability to abnormal data at home and abroad, 
there are few achievements shown in literatures [23]-[25], and 
the work about fault-tolerance algorithm is also rare. This 
paper focuses on improving the ML identification method so as 
to make sure the improved algorithm can be fault-tolerant. In 
this paper, the RML identification algorithms of the CAR 
model parameters are selected as object [15], and some 
improvement approaches are suggested to modify the RML 
algorithms against bad interference from the sensor pulse type 
faults of control system. In addition, the applicability of the 
algorithm and the quality of the new identification results were 
analyzed in detail when measurement data contain outliers. The 
sampling data inevitably contain outliers in the actual 
production. This method can make active fault tolerance to 
outliers, improve the processing speed and model precision of 
the data. It is of great significance in engineering application. 
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In order to overcome the bad impacts of outliers on the 
RML algorithm, impacts analysis is given in section II, a new 
kind of outlier-tolerant RML identification algorithm is set up 
in section III, In section IV, simulation computation and result 
analysis are presented, which shows that this new algorithm is 
outlier-tolerant to outliers. Finally, some conclusions are given 
in Section V. 

II. IMPACT ANALYSIS OF OUTLIERS N RML 

IDENTIFICATION 

For the discrete time linear time-invariant control system 
with sensor measurement error, the difference equations that 
describes the relationship between input and output system can 
be expressed as 

 kkk vuzByzA   )()( 11


Where, z is sampling step sliding operator, 
ku  is the input 

of the system, 
ky is sensor measurement data, 

kv  is the 

measurement noise, )(zA  and )(zB  are n order and m order 

polynomial of operator z  
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A. RML Identifiying Algorithm of Parameters in CAR Model 

Using the notation ),,,,,( 11 mn bbaa  , if a set of 

sensor output data sequence )}(,),({ 1 styty   and control 

input data )}(,),({ 11 stutu   are gotten in the process of 

control system, By using the measurement noise 

kkk uzByzAv )()( 11     and probability density 

function )|( vp  ,which are derived from (1), the likelihood 

function can be constructed as 
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and the logarithmic function 

 


 
s

k
kk uzByzApLl

1

11 }|)()((ln)}(ln{)(  

The maximum of parameter vector   can be achieved 

from (2) or (3). This maximum argument is called the ML 

estimator of parameter vector . 

In order to solve the (2) or (3) to obtain the ML estimator of 

parameter vector  , the partial derivative equation can be 

deduced and expressed as (4) 
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If the sensor measurement noise )( ktv obeys unrelated 

random sequence Gaussian distribution. Equation (3) and (4) 
can be expressed as 
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Where 
),,,,,( 11 mkknkkk uuyyh   



is a 
vector. 

The ML estimation of parameter vector  is noted as ML̂  

in (6). The RML algorithm is acquired from the paper [11], 
which is given in (7) 
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  1
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, kP
meets recursive 

relation
  1 kkkk PhKIP 



.

B. Impact Analysis of Outliers on RML identification 

It is obvious that if the past 1k measurement data of 

sensors },,{ 11 kyy  are normal in the discrete time control 

systems from (7), and the measurement is abnormal data 

(Outlier) just at kt , it can be expressed as 

0,~  kkkk ooyy 

Where, abnormal data ky~
will affect 1

ˆ~ˆ
 kkkk hyv 



and

k̂ , but not affect the parameter estimation before kt . 

Further, if the discrete time control systems keep on 
running, sensors will obtain measurement data sequence

},,{ 1 rkk yy   . As it can be seen from vector kh

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Therefore, it is clear from the above analysis that the 

abnormal data not only affect the residual error ˆ( )v k at kt ,but 
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also affect the subsequent recursive identification results of 

parameter vector through 
1, 2,{ }k kP P 

and 1 2{ , , }k kh h  . 

Proposition1. For discrete time controlled autoregressive 
process, if the measurement data of the sensor is abnormal data   

at kt , adverse effects that the abnormal data affect the model 

parameters RML estimation will start at kt and last a long time. 

In order to describe the continuous impact of abnormal 
sensor data to RML identification more intuitively, this section 
uses the2-order CAR process in (11) 

1 1 2 2 1 1 2 2k k k k k ky a y a y b u b u v        

Where, the model coefficient 
1 1.2a   , 

2 0.6a  , 
1 1b  , 

2 0.5b  ,  and )3.0,0(~ 2Nvk
.  

Use Monte Carlo  simulation method  to  form  1500 
groups of sample data ,  and set  the 1000th and 1050th point 

offset as the abnormal data, 
1000 1050 10o o  ,which are shown 

as follows 

1000 1000 1000 1050 1050 1050,y y o y y o    

The curve of simulation "measure" data sequence with two 
abnormal data is shown in Fig.1, where x-coordinate k means 
time and y-coordinate z means “measure” data, and the curves 
of residual sequence with abnormal data and without abnormal 
data are shown in Fig.2 ,where x-coordinate k means time and 
y-coordinate ze means “measure” data error.  

Figure 3 is curves for the four components [ 1, 2, 3, 4]k k k k

of gain vector K  with abnormal data, where x-coordinate k 

means time and y-coordinate 1k , 2k , 3k , 4k means the four 

components of gain vector K . The curve of RML identification 

coefficient 1 2 1 2{ , , , }a a b b  with abnormal data is shown in 

section IV. 

 
Fig. 1. Simulation "measure" data sequence curves with two abnormal data 

 
(a) Residual series using simulation data without abnormal data 

 
(b) Residual Series using simulation data with abnormal data 

Fig. 2. The curve of residual change 

 
(a)  plot of gain 1k  

 
   (b)   plot of gain 2k  
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(c)  plot of gain 3k  

 

(d)  plot of gain 4k  

Fig. 3. The parameter gain curve of RML estimation with abnormal data 

III. OUTLIER-TOLERANCE IMPROVEMENT OF THE RML 

ALGORITHM 

From the RML estimation (7), it shows that the absolute 

value of step prediction residual 1
ˆˆ
 kkkk hyv 


will be 

significantly larger when the abnormal data appears at kt  (e.g., 

outliers or spot).It also proves that the RML estimation k̂

deviates from the true value . In other words, the result is 

identification distortion. 

In order to prevent the negative influence of abnormal data, 
the literature

[12]
 has successfully proposed a bounded 

constraint. This method has achieved a good effect to the linear 
regression model parameter identification. This paper chooses 

the  function influenced by ideology of bounded constraint, 

as follows 
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The RML estimation algorithm (7) was revised as 

)ˆ(ˆˆ
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Where 1
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  kkkkkk hPhhPK


 . 

Then, the identification algorithm (13) can not only make 

full use of normal information from the measured data ky , 

also can effectively restrain the adverse impact of abnormal 

data at kt , improving the quality and accuracy of the 

identification results. 

It is worth pointing out that the abnormal data which 
appears before the current moment, not only affects a step 

prediction residual error 10000
ˆˆ

 kkkk hyv 


, but also 

affects subsequent calculations gain vector
kK .In addition to, 

the influence is likely to continue for a period of time. 
Therefore, in order to guarantee tolerance ability of CAR 
model parameter recursive identification algorithm to abnormal 
data, it is necessary to revise the gain vector calculation 
formulation as 
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Based on the above analysis, if the measurement data 
contains abnormal data for discrete time controlled 
autoregressive process, the following recursion method can be 
used instead of RML identification algorithm. 
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Proposition2. Using the  function which shows as (12) 

to the recursion method of CAR model parameters in (16), and 
calibrating outliers which are in the sample points online   
according to (15), it can effectively improve the tolerance 
ability of the recursive identification algorithm. In this paper, 
the modified recursive identification algorithm which is 
composed of (15) and (16) is called outlier tolerant RML 
identification. 

IV. SIMULATION COMPUTATION AND RESULT ANALYSIS 

The simulation object is 2-order CAR model shown in (11), 
which used Monte Carlo simulation data including two 
abnormal data shown in Figure 1.The data uses the 
identification of RML algorithm (7) and outlier tolerant RML 
identification algorithm parameter identification (16) 
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respectively. The result is shown in Figure 4. In Figure 4, the 
dotted line is the coefficient curve that use RML algorithm 
when data exists outliers. The solid line shows the coefficient 
curve that use tolerance RML algorithm to abnormal data. 

It is clear that there are two step changes when the data is 
abnormal from the Figure 4, where x-coordinate k means time 

and y-coordinate 1a , 2a , 1b , 2b means the parameters. 

That’s to say, the algorithm of recursive likelihood estimation 
is obvious instability. Therefore, if the RML directly used in 
engineering practice, there will be a big deviation, even leading 
system crashes and influencing the safety operation of the 
system. It can be clearly seen that the modified algorithm can 
more accurately estimate coefficient when the data contain 
abnormal points, and the changes are more smoothly by 
comparing figures. It also effectively overcomes the adverse 
impact of abnormal data. 

 
(a)   estimation values of parameter

1a  

 
(b) estimation values of parameter 

2a  

 
(c)  estimation values of parameter 

1b  

 
(d) estimation values of parameter 

2b
 

…: RML algorithm 
-: tolerance RML algorithm 

Fig. 4. Parameter estimators curve using RML algorithm and tolerance RML 

algorithm separately 

In order to clearly express the accuracy and reliability of 
fault-tolerant algorithm, three statistical indexes of a parameter 
identification results were established in this section. They are 

maximum absolute error aM , mean absolute error aeM and the 

average relative error reM .Formulations can be shown as 

following 
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The data was divided into three segments. the first segment 

is 900 999~k k  before the abnormal points appear, the second 

segment is 1000 1099~k k  which contains abnormal points data, 

the third segment is 1100 1199~k k  after abnormal points appear, 

respectively, calculating 1 1a  ，
2 2a  ， 2 1b  ，

4 2b  , 

and comparing results between RML and fault tolerance RML 
parameter identification. The results are shown in Table 1 and 
Table 2. 

Comparing Table 1 and Table 2, it can be seen that the 
estimation effect of fault tolerant RML parameter is near with 
the ordinary RML estimation results when a data segment does 
not contain abnormal points (Segment I), the estimation effect 
of fault tolerant RML parameter is significantly better than the 
ordinary RML estimation results when the data segment 

contains abnormal points (Segment II)， the abnormal data 

segment , that is to say, when data section is in segment III, 
fault tolerant RML parameter estimation effect also is superior 
to the ordinary RML estimation results even keep a period of 
time. It is easy to come to conclusion that, the reliability of the 
outlier-tolerant RML algorithm is superior to the ordinary 
RML algorithm of CAR model in this paper. 
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TABLE I.  THE PARAMETER CHARACTERISTIC USING RML 

Parameter 
Segment I： 900 999~k k  Segment II： 1000 1099~k k  Segment III： 1100 1199~k k  

aM  aeM  reM  aM  aeM  reM  aM  aeM  reM  

1a  0.1471 0.0026 0.0022 0.3143 0.2517 0.2097 0.3073 0.2971 0.2476 

2a  0.1079 0.0062 0.0104 0.2553 0.2034 0.3389 0.2493 0.2430 0.4050 

1b  0.0156 0.0010 0.0110 0.0283 0.0064 0.0064 0.0160 0.0136 0.0136 

2b  0.1551 0.0145 0.0291 0.2776 0.2269 0.4538 0.2704 0.2603 0.5207 

TABLE II.  THE PARAMETER CHARACTERISTIC USING TOLERANCE RML 

Parameter 
Segment I： 900 999~k k  Segment II： 1000 1099~k k  Segment III： 1100 1199~k k  

aM  
aeM  reM  aM  aeM  reM  aM  aeM  reM  

1a  0.0113 0.0093 0.0077 0.0121 0.0105 0.0088 0.0119 0.0089 0.0075 

2a  0.0049 0.0033 0.0055 0.0049 0.0035 0.0058 0.0052 0.0030 0.0050 

1b  0.0121 0.0078 0.0078 0.0139 0.0103 0.0103 0.0130 0.0078 0.0078 

2b  0.0234 0.0167 0.0334 0.0229 0.0206 0.0412 0.0232 0.0187 0.0373 

V. CONCLUSION 

In this paper, a new kind of outlier-tolerant RML algorithm 
of CAR model is built up. Simulation results show that the 
outlier-tolerant RML algorithm is reliable and strong outlier-
tolerant to outliers in sampling time series, which can avoid 
algorithm collapse even if there are outliers in measurement 
data set as well as in sampling time series. 

Outlier-tolerance ideas have important reference value in 
many fields, such as complex system automation, signal 
processing and statistical data processing. The outlier-tolerance 
ideas and technologies have very important scientific 
significance and engineering application merit to improve the 
reliability of the algorithm and the accuracy of the algorithm of 
data processing. It gets more and more attention in computer 
control of the dynamic systems, process automation, high 
performance computing, aerospace engineering, and many 
other areas. 
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