(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2014

A new algorithm for detecting SQL injection attack in
Web application

Ouarda Lounis, Salah Eddine Bouhouita Guermeche, Lalia Saoudi, Salah Eddine Benaicha
Computer Science Department
University of Mohamed Boudiaf of M'Sila
M'Sila, Algeria

Abstract—Nowadays, the security of applications and Web
servers is a new trend that finds its need on the Web. The
number of vulnerabilities identified in this type of applications is
constantly increasing especially SQL injection attack. It is
therefore necessary to regularly audit Web applications to verify
the presence of exploitable vulnerabilities. Web vulnerability
scanner WASAPY is one of the audit tool, it uses an algorithm
which bases on a classification techniques of pages obtained by
sending HTTP requests especially formatted. We propose in this
paper a new algorithm which was built in a vision to improve
rather to supplement the logic followed in modeling WASAPY
tool. The tool was supplemented by a new class reflecting the
legitimate appearance or referential, therefore, the detection
mechanism was solidly built on a statistic in a fairly clear
mathematical framework described by a simple geometric
representation or interpretation.

Keywords—SQL injection attack; Web; Web
Application; Web vulnerabilities; security

scanner

l. INTRODUCTION

The Web server security is now a recurring problem. The
number of vulnerabilities identified in this type of software is
constantly increasing, as described in particular in the
document “"The OWASP Ten Most Critical Web Application
Security Risks" [4]. They can be explained by several reasons:
the increasing complexity of Web technologies, deadlines ever
tennis marketing software, sometimes limited skills and lack of
safety culture developers. As a result, many of these
applications contain multiple vulnerabilities that can be
exploited by hackers. These attacks can allow them, for
example, to obtain confidential data (credit card numbers,
passwords, etc..) that are manipulated by the application, or
even alter or destroy some of these data. The complexity of the
technologies used today (Java, JavaScript, PHP, Ruby, J2E,
etc..) to create Web applications makes it particularly difficult
1) to prevent the introduction of vulnerabilities in these
applications and 2) estimate or predict their presence. In
addition, network security and installation firewall does not
provide adequate protection against Web attacks as these
applications are accessible to all. It is therefore necessary to
regularly audit Web applications to verify the presence of
exploitable wvulnerabilities and this can be realized by
vulnerabilities Web scanners.

There are two main classes of approaches adopted by most
of the vulnerability Web scanners:

e Approach based on recognition of error messages in
response pages,

e Approach based on studying similarity of pages
returned by the server.

These two approaches will be explained in section I11.

In our project, we realize an approach for the detection of
SQL injection attacks in Web applications, based on sending
HTTP requests and analyzing the responses of the latter. This
approach is based on two techniques: technique of recognition
of error messages in response pages, and the study of similarity
of pages returned by the server.

The proposed algorithm is a modified and improved
approach of Rim's Akrout [6] algorithm, it is carried out in a
spirit of logical completeness expressing a desire to specify a
new model completing the WASAPY model. It involves
sending HTTP requests to the Web server. These requests are
structured into three classes: class containing syntactically
valid requests, class containing syntactically invalid requests
and class containing random requests. The responses of each
request will be recorded and compared to a fourth class that
contains only pages of references to examine the similarity
between them using the Levenshtein algorithm [5], and
following tests, we determine what are the requests that have
well used to exploit the SQL injection vulnerability.

The LS model provide a detection mechanism built on a
solid statistics in a clear mathematical framework covering the
whole crowd resulting data. Detection of security following
two phases 1) detect if the page is secured or not, and 2) if the
page is not secure, a search request injection is performed.

Our scanner is experienced using vulnerable Web sites we
implemented to calculate the performance of the approach
implemented, according to three parameters: the detection rate,
false positive, false negative. Graphs are drawn to properly
express the results of experiments realized. The used request
were extracted from OWASP (SQL Cheat Sheet) project [4].

43|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2014

1. RELATED WORK

A. using the recognition of error messages in response pages
approache

Wa3af [1] was created by Andres Riancho in 2006 and is
considered one of the most powerful scanners, it is written in
Python. Its modular architecture allows users to import and
easily modify the different modules that compose it. W3af
sends three HTTP requests to test the presence of a
vulnerability in a page, the three responses associated with
these queries are then analyzed. If they contain SQL error
messages, w3af informs the user that the application is
vulnerable to SQL injection. In spite of its power, it has no
additional mechanism that is implemented to verify if the
vulnerability actually exists or not, that is to say, if it is actually
exploitable, this is its major default.

Wapiti [2] is another example which follows the same
principle. This tool developed in Python, is able to detect SQL
injection, XSS injections, mishandling of files, LDAP injection
and execution of operating system commands from a URL. To
identify SQL injections, it sends two requests. Vulnerability is
declared present if an error is identified in the response pages.
The effectiveness of this approach is related to the
completeness of the knowledge base regrouping the error
messages.

B. using the analysis similarity of pages returned by the
server approache

Skipfish [3] was developed by Google to detect
vulnerabilities on Web servers. It proceeds in two steps. In a
first step, he analyses the Web application and collect all pages
that appear to be stable. The others are ignored. To detect
whether a page is stable Skipfish sends 15 queries and several
tests are performed on the page. The main shortcoming of this
scanner is that the distance used for the study of similarity
considers the frequency of words regardless of the order of
words in a text. Ignore the word order can lead to ignore the
semantics of a page and again can lead to misjudge if two
pages are identical or not. For example, the following pages
share the same vocabulary, but they correspond to a successful
and failed authentication respectively:

Your are authenticated, you have-nots has Entered
wrong login.

Your are not authenticated, you-have Entered a wrong
login.

1l. EXPLANATION AND CRITICISM OF APPROACHES
ADOPTED BY WEB SCANNER

A. Approache based on recognition of error messages in
response pages

To identify SQL injections, this approach sends requests of
a particular format and look for specific patterns in responses
such as error messages database. The basic idea is that the
presence of an SQL error message in an HTML page response
means that the corresponding request has not been verified by
the Web application before being sent to the server database.
Therefore, the fact that the request was sent unchanged to the

SQL server reveals the presence of a vulnerability. Scanners
such as w3af (SQLI module) andWapiti adopt such an
approach.

The effectiveness of the approach by recognition of error
messages is related to the completeness of the knowledge base
regrouping the error messages that may result from the
execution of queries submitted to the Web application.
Generally, as in the case of w3af we consider mainly the error
messages from the database. However, the error messages that
are included in the HTML response pages do not necessarily
come from the server database. The error message may also be
generated by the application that can also reformulate the error
message from the server, for example to make it
understandable to the client. Moreover, even if the message is
generated by the database server, the receipt of this message is
not sufficient to say that SQL injection is possible. Indeed, this
message means that for this particular query, entries have not
been cleaned, but this does not support the conclusion in
relation to other SQL requests, particularly those correspond to
successful attacks.

B. Approache based on studying similarity of pages returned
by the server.

The principle of this approach is to send various requests
specific to the type of vulnerabilities and to study the similarity
of the responses returned by the application using a textual
distance. Based on the results obtained and well-defined
criteria, we conclude on the existence or not of a vulnerability.

Concerning this approach, it is based on the assumption
that the contents of rejection page is generally different from
the contents of execution page. For this comparison, however,
to be effective, it is important to ensure a wide coverage of
different types of pages of rejection that could be generated by
the application. This can be achieved by generating a large
number of queries to enable the largest possible number of
different pages of rejection. However, existing
implementations of this approach, especially in Skipfish
generate too few queries. Skipfish only uses 3 queries. If the
answers correspond to different pages of rejection, he
incorrectly concludes that the vulnerability is present leading to
a false positive. Moreover, this approach, as in any
classification problem, the choice of the distance is very
important. That used in Skipfish do not take into account the
order of words in a text. However, this order generally defines
the semantics of the page. It is therefore important to consider
the order of words in text.

These analyzes clearly show the need to develop new
approaches to improve the effectiveness of vulnerability tools
detection. The work presented in this paper adopt a new
approach.

V. GLOBAL PREVIEW OF OUR APPROCH

Security is a concept which requires a certain reflection
especially if we want to give it a definition which allows us to
develop methods or techniques allowing to handle certain
quantities which capture as faithfully as possible the intrinsic
aspects of the security of the system in question.

44|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2014

Our study is interested in the security of the Web
application, of which it is necessary to specify the necessary
measures which can reflect the state of its safety.

To do this, it seems to us essential to have a model vision
of the security of Web application generally.

To talk about safety is to call upon the legitimacy and thus
security and legitimacy are two equivalent notion in the
following optic:

To be secured is to allow only the legitimate attitude which
can in this case of Web application, be seen as a natural
navigation in the Web application such as designed. So, a
navigation is defined as a sequence of legitimate Web pages
which can be grouped within a single class called class Ref.

And therefore the legitimacy can be defined as a passage of
a page of reference to another reference page, in this vision of
things, a secure Web application generate only legitimate pages
and thus it belongs in the reference class. All in all, there is a
unique class being invoked. And thus legitimacy or security is
modelled by the unity described by a unique class containing
all the reference pages of the Web application.

Conversely, the illegitimate has a strong ability to generate
non-legitimate pages, evidently they don't belong to the class
of reference pages Ref, and so it proposes a new classes. This
fact, the illegitimate which captures the state of a not secure
Web application; is described by an explosion of the unique
class in new classes.

These new classes are created according to a criterion
merging three criteria simultaneously. These criteria stemming
from the syntactic correction and the sematic of the SQL.

e Syntactic aspect is controlled by the SGBD which
generates errors messages suited to the produced
syntactic violation.

o Values of legitimate attributes generate pages slightly
different from references, while those with illigimate
values produce error messages generated by the SGBD.

e The semantic aspect is present with the insertion at the
request of tautologies or antilogies.

The fission which reflects the non-secure of the Web
application considered produces two new classes:

o Class Aleat: contain the pages returned by the random
requests.

Example : Considering the URL following with the parameter:
id_suj

http://localhost/forum/ajouterreponse.php?id_suj=254
here, the id-suj value is randomly chosen.

o Inval class: contains the pages returned by the invalid
requests.

Example:

http://localhost/forum/ajouterreponse.php?id_suj=1union
privilege_type FROM information_schema.user_privileges
WHERE privilege_type = 'SUPER' AND 1=1

The definition of classes is based on two fundamental
concepts:

e The inside-class coupling: the elements of single class
should be very close one of the other one, what reflects
the intuition "those who are alike flock".

e The between-classes decoupling: the elements of two
different classes should be remote one of the other one,
what reflects the intuition "the remoteness disadvantage
the union".

The coupling and the decoupling are defined on the notion
of distance. In fact, this distance capture the degree of
similarity between elements. The similarity is defined
mathematical as a function acting on two HTML pages and
returns a real number in the interval [0,1]. Thus, the
mathematical sign of the similarity is as follows:

[simcxe, [0.4] \
1 Sim: [P1 ,Pz] S 1
1 Sim (P ,P2) = '
! Sim: Similaritv 1
\ 7

e e e

Fig. 1. Similarity between two pages

Many researches were deployed for the definition of
functions of similarity between two strings. Their computation
strategies differ according to their vision of the string:

o Character by character: The matching involves both a
character of the first with the character of the same
order but took the second page. Among the most
famous is the Levenshtein distance

e Line by Line: The matching involves two lines each
time, each taken from one of the pages, one of the most
famous is the diff Linux.

e Word by Word: The matching is done by comparing a
word of the first page with the corresponding word in
order in the second page. Taking into account the order
of the words in each page define two variants of this
strategy:

- With consideration of the scheduling of words.
- Without consideration of their mutual scheduling.

In our case, we used Lenvenshtein algorithm [5] which
will be described in the fifth section.

The vulnerability if it exists, it sounds from two points
called injection points:

e URL: is identified by the presence of URL parameter.

e Formulary: is identified by text fields such as the login
and the password.
V. THE WASAPY MODEL

A model recently proposed within the framework of a Phd
thesis in the national institute of applied sciences of Toulouse
(INSA Toulouse) [6].

45|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2014

A. Presentation of the model

a) The vision of safety:

The security of Web application is seen as the non-presence
of illegitimate pages generated by a malicious behavior. Thus,
the model articulates on the illegitimate to explore the security
status of the Web application in question. This way of making
influences considerably the modelling of the approach.

b) The classes of the model:

The model proposes two classes: the class Aleat of Web
pages generated by random requests as well as the class Inval
including Web pages turned by invalid requests. We notice
well that the choice of the classes reflects the spirit of the
approach since the two classes represent the malicious
requests. In addition to these two classes, we found a class
which presents a syntactically valid requests.

¢) The principal of detection:

The detection principle is formed around the clustering
technique implies a similarity threshold ¢ defined as follows:

e The ¢ algorithm

Set the threshold by the smallest distance between
i) The longest distance between two responses in Aleat,

ii) The longest distance between two in the invalid
responses.

e The clustering algorithm

Grouped together within the same cluster those queries
which the pair wise distance is less than a threshold. [7]

e Detection Algorithm
If 4 a Grap whose members are only valid requests

Then all these request have allowed to exploit the
injection, so the site is not secure.

- ——— e —
—_——————

N e =

Fig. 2. Detection algorithm

B. Criticism of WASAPY model

a) The vision of security:

The vision was bounded on the illegitimate part of the
queries, which deprived the completeness of a model that could
be very beneficial. This gap has greatly influenced the
accuracy of the proposed approach. Also, the model classes
were limited to two classes reflecting malice only at the
expense of the correction.

b) The classes of the model:

The class Aleat and the class Inval should respect the
classification ethics which are:

o A coupling factor: as low as possible which expresses
assembling similarity. This factor is well respected by
tests conducted in the study of WASAPY model.

e A factor of Decoupling: most important factor that
justifies the creation of new classes. However, an
interesting observation draws our attention to the fact
that the decoupling factor is so low that coincides with

the coupling factor. This reflects negatively on the
quality of classes offered, because of the similarity
point of view, the two classes are only one.

¢) The choice of threshold e:

The choice of ¢ was motivated by the desire to minimize
false positives products, and therefore, its design foundation
was not mathematically or statistically very clear. The
evaluation of the threshold € was much guided by intuition that
needed empirical experiments to acquire a certain degree of
confidence.

d) Detection:

Detection is significantly related to the threshold e, the
design of the latter will have an impact, especially, the fact that
it was designed with the intent to minimize false positives.

VI. LS MODEL
A. The vision of security

The vision of security is induced by the completeness of
legitimate and illegitimate space. And thus, to be secure is to
be closer to legitimate than illegitimate.

B. The model classes

a) The classe Ref

Reflects the legitimate website navigation, which is
ultimately a set of legitimate pages called “reference pages*
that are offered by the site during normal navigation. And so, a
page that is not offered by a natural navigation of the website is
recognized as a page raising from a malicious attempt to access
unauthorized information and so this page is an attack
signature that can reveal a vulnerability in the web site design.
These pages are the result of some queries which represent a
navigation parallel to that offered by the site navigation.

b) The class Aleat
Aleat is the class which queries are generated from words
randomly selected from the list [a- zA -Z0 -9]. These queries
generate pages rejection [6].
¢) The class Inval

Inval is the class of SQL injection, syntactically invalid
queries to the injection point. They are constructed so that the
SQL Server that interprets these queries generates an error [6].

d) The class Val

Val is the class of queries that generates execution pages.
For example, the couple login / pass which respectively have
the values ' or'l ' ='1 - abcd and generates the following SQL

query :

SELECT * FROM users WHERE login=""or’1’="1--" and
pass="abcd’

C. The principle of detection
The detection principle is formulated through two phases :
o Determine if the site is secure or not.

e If the site is not secure , find the maximum injection
queries.

46|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2014

a) Phase one :

A secure page allows only legitimate consultation therefore
it returned legitimate pages or their ones which are very closer.
The neighborhood is defined with the distance which is a
similarity function. This is a measure that quantifies the degree
of similarity between two pages. So securing entails
approximating pages returned by different queries from the
three classes of LS.

However, if the page is not secure, then it has
vulnerabilities that can be exploited by illegitimate requests,
applied to injection points producing illegitimate pages that are
significantly distant from legitimate pages. And therefore the
none-securing induce removal of pages returned. The speed
away of, depend from the classes of the queries.

The notion of proximity is quite relative, which should be
quantified in order to allow a specific numerical language
much more than descriptive one. The nature of the analysis of
such studies provide a huge amount of data , and take into
account all the information that its confine is a challenge that
can be overcome with a good statistic . The latter should be
defined in a way that to get the most information in the most
compact possible form.

Descriptive statistics gives us a simple tool which is the
arithmetic mean. It can be very effective if properly exploited,
especially if it is engaged in a statistics of levels.

The model LS formalizes detection with a triangular vision
focuses on the three classes in a space of four classes: Ref,
Aleat , Inval and Val . The detection formula is described with
highly descriptive geometric language. The following diagram
describes geometrically the first phase of detection principle:

FEF
EEF
Err Era
En Ezs
INVAL s ALFAT INVAL Is ALEAT
Insecure site Secure site

Fig. 3. Triangular representation of secure and non-secure page

Era: €xpectation between the similarity between the
reference pages and answers random queries.

Er;: expectation between the similarity between the
reference pages and answers invalid queries.

IS: Security Index.
The principle of securing is as follow:
If (triangle’s base < % (sum (ERA , ERI)))

1
1
Then the page is not secure !
Else it’s secure.]

Fig. 4. Principle of securing

The detection principle of securing a page is formulated on
a strong enough bases borrowed from descriptive statistics. The
measure (expectation) is simple but effective to capture the
essential and relevant information for our study.

a) Phase Two: injection queries?

In the case where the detection phase determines that the
page is not secure, it engages a set of queries to find those that
can exploit SQL injection. The principle of detection of
injection queries is formalized following the same spirit of
reflection already expressed in the first phase detection.

lllegitimate applications of both classes: Aleat and Inval
return pages that are clearly distant from legitimate pages of
the class Ref. Knowing that the pages of the two classes : Aleat
and Inval who share the same offense of illegitimacy making
less distant from each other compared with the class Ref. We
conclude that a non-secure page is sensitive in its reaction with
illegitimate requests without paying much attention to their
syntactic correctness.

Similarly, here too, the concept of proximity is formalized
with a borrowed geometry in a triangular vision language
represented as follows:

REF

/i
=/

INWVAL 15

Injection queries

\\ Ega

Non-injection queries

ALEAT

Fig. 5. Triangular representation of the vulnerability detection on non-secure
page

D. The singularity of LS Model

The singular point of the model is: IS = 0 which means that
the basis of reasoning [Inval, Aleat] disappeared. Therefore, it
does not revolve on what to make a decision to secure, because
the responses of invalid and random queries are merged into a
single class (decoupling factor = 0, coupling factor = 0). From
the triangular vision, we go at the linear vision, we don’t need
references, and the two classes Aleat and Inval are no longer
discernible. The role of class Ref became neutral.

And therefore, the need for valid class arises. The
geometric description of the model became a line whose ends
are fused two points (Aleat, Inval) and the second is (Val) . If
it retains its geometric shape of this line expresses the non-
secure page and if it shrinks to a single point is to express the
security and confirm our starting view that unity expresses
security and bursting none securing. This singularity of the
model represents the SQL injection applied to authentication
forms (POST).

E. Algorithm global of detection

S: is the distance between two textual
(Levenshtein algorithm).

responses

RegAleat, Reglnval, Ref, ReqVal: are respectively the
random queries, invalid, reference pages and valid requests.

47|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2014

RepAleat, Repinval, RepRef, RepVal: are respectively
random, invalid, reference pages and valid responses.

- -~

4 N
/ A Y

/ Integer i:= 0; AN
1 RegAleat, Reginval, Ref, ReqVal; ‘|
| Read responss of each type of the queries: RepAleat, 1
: Replnval, RepRef, RepVal, 1
1 Vector B:= Dis (RepAleat, Replnval); Vector Al:= :
' Dis (RepRef, Replnval;]
1 Vector A2:= Dis (RepRef, RepAleat); Vector C1:= :
: Dis (RepVal, RepAleat); 1
1 Vector C2:= Dis (RepVal, Replnval); Vector D:= Dis :
: (RepVal, RepRef); 1
1 Calculus : IS = avg(B); Calculer : x:= avg(Al1,A2); :
: If (x < IS) the page is secure End If 1
| If (x> 1S) !

1
: Loop 1
. Calculate ¢:= avg(C1i,C2i); '
1 If (¢ > IS) the ith query of the valid queries 1
: has successes to exploit un SQL injection. :
1 Else the query has not permit the exploitation 1
X of the injection. !
1 i=i+l; 1
' Until i= NbrReqVal !
1 End If 1
X If (1IS=0) !
1 If (C1 =0 AND C2 =0) the page is secure I
“ Else the page is not secure. 1'
\ End If ’

N V
N 4

S e e e e e e e e =

Fig. 6. Global algorithm of detection of the LS model

The first two cases (x> IS) and (x <IS) formalize the
detection of SQL injection when the injection point is an URL
(GET), and the third case, it is the SQL injection detection in
authentication forms (POST).

VII. THE DISTANCE USED

To analyze the similarity between two HTML pages, we
need a distance to evaluate the deference between two strings.
The order of words in page has a great importance. Thus, to
calculate the distance between two pages we have selected
Levenshtein algorithm [5]. The principle of this algorithm is
described in figure 7.

The final distance is calculate as follow, and the result will
be between [0,1] :

DistanceOf Levenshtein(Chainel, Chaine2)
lengthChainel + lengthChaine?2

Dis =

VIII. RESULTS AND EXPERIMENTS

We conducted a series of experiments on six Web
applications that we have developed, containing seven secure
pages and other seven unsecured, in total, in order to illustrate
the effectiveness of our algorithm.

-

/ integer DistanceOfLevenshtein(string chainel, string *\
chaine2) \

/l'i and j iterate over chainel et chaine2

Integer i, j, cost, lengthChainel, lengthChaine2

lengthChainel := lengthr(Chainel)

lengthChaine2 := length(Chaine2)

// dis atable of | engthChainel +1 rowws and
lengthChaine2 +1 columns

Integer d[0..lengthChainel, 0..lengthChaine2]

for i from 0 to lengthChainel

d[i, 0] =i
for j frqm Oto lengthrChaine2
do, j] =]

for i from 1to lengthChainel
for j from 1to lengthChaine2
if chainel[i - 1] = chaine2[j - 1] then cost := 0

else cost := 1

d[i, j] := minimum(
dfi-1,j 1+1, //supression
dfi, j-11+1, //insertion

d[i-1, j-1] + colt // substitution

- e e e e e e e e e e e e e e e e e e ——
N e e - - - ——

\ return d[lengthrChainel, lengthChaine2] /

Fig. 7. Levenshtein algorithm

The main objective of these experiments is to characterize
the ability of the model to deal with SQL injection attack and
specifically to evaluate its effectiveness for detection. Such
efficiency is generally characterized by the evaluation of the
detection rate, false negative and false positive rate.

Note:

e We say that two pages a and b are similar if the
distance between them is closer to the 0, and they are
not similar otherwise.

e All you need is a single valid query that successfully
exploits the flaw to say that the page is vulnerable to a
SQL injection attack.

e The Model contains the following cardinality:

Cardinality Inval: 10 queries
Cardinality Aleat: 10 queries
Cardinality Val : 42 queries
In what follows, we will present the curve of each case.

A. A non-secure Web page

a) URL non secured

48|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2014

For a non-secure web page (URL), we have the following For a non-secure formulary, we have the following curves:
curves:

aleatoire/invalide

1.5
. ko+¢—o—.—.—p—o—o
0.5 .

(o] 2 4 [a8 10 12
Requetes Aleat

Distance Textuelle

Fig. 8. Curve of the distance between invalid and random

= =

Ref Aletoi
. eference/Aletoire Fig. 12. Geometric representation (triangular) of a non-secure page (URL)

E o= ./._ Aleatoire/Invalide
= 0.6
t=1
5 04 1
3 o2 =
-
° s} 2 a 6 8 10 1z § 0.5
Requetes Aleat E 0 P U WY W W W W W W W .\
Fig. 9. Curve of the distance between reference and random) 6o 1 2 3 4 5 6 7 8 9 10 11
'<Z_E REQUETES ALEATOIE
(%)
reference/invalide . 2 . o
oor Fig. 13. Curve of the distance between random and invalide
§ 0.965
% 696 - Valide/Invalide
‘§ 0.955 v 0.4 P Py = P
& w) O O 4
0.95
o 2 4 (=3 8 10 12 g 02
Requetes Inval E O
Fig. 10. Curve of the distance between reference and invalid i 0 1 2 3 4 5
(S}
) 3: REQUETES VALIDES
For a non-secure Web page (URL), we have the following 5

geometric representation: . . . o
Fig. 14. Curve of the distance between valid and invalid

: -~ Valides/aleatoire
038 3
2 A “¥
%oa»/nw. 50'5) O Vo {
oo T
= = 0
5 o2 / &
o " 0 1 2 3 4 5
0 o ‘ 10 i <Z(REQUETES VALIDES
02 . &
Les requetes valides 5
S=lallet Alfir’ —@=ialfale mcivalfinv.yal/ale) Fig. 15. Curve of the distance between valid and random
Fig. 11. Curve of the result of a non-secure page (URL)
]) 1 f lai .
Figure 12 shows the distance between the three classes = ormufgire non securise
(Ref, Inval, Aleat) described in the green square. Inside each § |
circle, we have the green dot that expresses mathematical s ¥ A d A\ d !
average written in Pink Square and the mathematical variance E 0C
written in the yellow square. z 1 2 3 4
[
The distance between the classes is very high which means a ©— pages de référence G- regustes invalides

that the decoupling between them is very strong, the variance
of each class is very small, which means that the values of
each class are identical.

requetes aléatoire

Fig. 16. Curve of the result of a non-secure page (formulary)
a) Unsecured formulary

49|Page
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2014

Figures 18,19,20 and 21 shows the distance between all
classes, this distance is near 0. This express that all classes are

m approached one to another wich mean that this unity lead to
e * the security of Web page.
ir Invali Valid L
Aleatoir Invalide | e b) Secured authentication form
L
Fig. 17. Geometric representation (line) of a non-secure page (formulary) 7 Ul Sy W itun bt i e e
=]
) .) £ 008
In figure 13, we see that the distance of Inval/Aleat is 0 0o
which is our algorithm singularity point (authentication form). : ULTIA A T g (I GURRRE T, | ST, SR] STty
. . 0
In figure 14 and 15, we see that the distance Val/Aleat, §
Val/Inval do not equal 0, this means that the field texts in this g S P9 ¥ g Do iy g D g 9 g
authentication formulary are vulnerable. The distance g 0
calculated in figure 16 prove that. 0 5 10 15 Pl i Kl £ 4
For this non-secure formulary, we have a geometries Requetes valides
representation showed in figure 17.
B. A secure Web page —&-valfref —4-valfinv —8-valfale moy(val/inv, val /ale)
a) Secured URL
For a secure web page (URL), we have the following curves: Fig. 21. Curve of the result of secure Web page (URL)
reference/invalide Aleatoire/Invalide
., 0.03 1
g 002 | 000 =
£ o0.01 g 05
[[T}
g 0 . 0 —0—0—000000090
= o0 2 4 6 8 10 12 Z 0 1 2 3 4 5 6 7 8 9 10 11
%] [
a REQUETES INVALIDES 2 REQUETES ALEATOIE

Fig. 18. Curve of the distance betwieen reference and invalid Fig. 22. Curve of the distance between random and invalid

reference/aleatoire Aleatoire /valide
w 1 1
2 05 5
é E 0.5
g 0 g - 3—4 p—a € F o 34 » ¢« » @ . 8 0
g 0 2 4 6 8 10 12 z
3 -0.5 2 0 1 2 3 4 5

REQUETES ALEATOIRES REQUETES VALIDES

Fig. 19. Curve of the distance between reference and random Fig. 23. Curve of the distance between random and valid

aleatoire/invalide Invalide/valide

= 1
g 05 S 05
= \ 2
3 0 Cg —a m—a —a 2t Bt 2—a > n—a 5 0
o
.<Z_t 0.5 0 2 4 6 8 10 12 o} 0 1 2 3 4 5
-0. =2
8 REQUETES ALEATOIRES = REQUETES VALIDES
[%2]
a

Fig. 20. Curve of the distance between random and invalid Fig. 24. Curve of the distance between invalid and valid

50|Page
www.ijacsa.thesai.org

4

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2014

@

Aleat, Inval, Val

Fig. 25. Geometric representation (point) of a secure formulary

We apply our algorithm and the one described in the
WASAPY model on Web application secure and non-secure,
we had the following results (for a non-secure Web page
URL):

TABLE I. WASAPY AND LS MODEL RESULT
WASAPY LS
£=0.75 1S=0.73 ‘ x=0.955
Ris, Rio, Rao, Ras, R30,
R321 R33; R35
g v v
E
o
g R3, Rig, Ra2, Ras
]
> % fa‘
Number of detection 8 12
Number of false positive 0 0
Number of false negative 4 0

For this page, we see that our algorithm detects all requests
that must be detected with a 0 number of false positive and
false negative while WASAPY model does not detect certain
queries.

And for each non-secure Web application, we had the
same result described by the graph below:

Detection of SQLIA

100%

. ol R
False False Detection
negative positive

Fig. 26. Curve of the result of a non-secure Web application

IX. CONCLUSION

We used the mathematical variance characterize the
dispersion of our pattern. it shows how the statistical series or
random variable is dispersed around its average. A variance of
zero indicates that all values are identical. A small variance is
a sign that the values are close to each other while a high
variance is a sign that they are very open. We used the notion
of variance to see the coupling factor of a class.

The idea of adding a fourth class that contains only
legitimate pages for SQL injection detection in web
applications has been successful which is proved by the results
obtained and discussed.

The algorithm has a detection performance so interesting
that it is wise to conduct an intensive study to confirm its
validity, especially since it can detect all potential applications
that leverage SQL injection. It should be noted that the model
specifically detects requests injection successful that
WASAPY approach don’t detect. And so, the proposed Model
LS, is a good step in website securing field.

REFERENCES

[1] Sectools, http://sectools.org/web-scanners.html, consulté le 20/05/2013
[2] Sourceforge, http://w3af.sourceforge.net, consulté le 22/04/2013.

[3] Google, http://code.google.com/p/skipfish, consulté le 02/05/2013.
[4] OWASP, www.owasp.org, accessed in 05/05/2013.

[5] V. Levenshtein, Binary codes capable of correcting deletions, insertions
and reversals”, Soviet Physics Doklady, 1966, pages 707-710.

[6] R. Akrout, Analyse de Vulnérabilité et Evaluation de Systéme de
Détection d’Intrusion pour les Applications Web, Doctorat, Université
de Toulouse, 2012.

[71 R. Akrout, Analyse de Vulnérabilité et Evaluation de Systéme de

Détection d’Intrusion pour les Applications Web, Doctorat, Université
de Toulouse, 2012, pages 53-54.

51|Page

www.ijacsa.thesai.org

