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Abstract— Recent years have seen a tremendous upsurge in 

the area related to the use of Fractional-order (FO) 

differential equations in modeling and control. FO differential 

equations are found to provide a more realistic, faithful, and 

compact representations of many real world, natural and man-

made systems. FO controllers, on the other hand, have been able 

to achieve a better closed-loop performance and robustness, than 

their integer-order counterparts. In this paper, we provide a 

systematic and rigorous time and frequency domain analysis of 

linear FO systems. Various concepts like stability, step response, 

frequency response are discussed in detail for a variety of linear 

FO systems. We also give the state space representations for these 

systems and comment on the controllability and observability. 

The exercise presented here conveys the fact that the time and 

frequency domain analysis of FO linear systems are very similar 

to that of the integer-order linear systems. 

Keywords- Fractional-order systems, fractional calculus, stability 

analysis. 

I.  INTRODUCTION 

   The mathematical modeling of FO systems and 
processes, based on the description of their properties in terms 
of Frac- tional Derivatives (FDs), leads to differential 
equations of in- volving FDs that must be analyzed. These are 
generally termed as Fractional Differential Equations 
(FDEs). The advantages of fractional calculus have been 
described and pointed out in the last few decades by many 
authors in [1], [2], [3], [8], [9], [24]. The latest and very 
exhaustive literature survey about the FC and FO systems is 
given in [17]. It has been shown that the FO models of real 
systems (especially distributed parameter type and memory 
type) are more adequate than the usually used Integer-
order  ( IO) models. 

   Fractional Derivatives (FDs) provide an excellent 
instrument for the description of memory and hereditary 
properties of various materials and processes. This is the 

main advantage over the IO models, which possess limited 

memory. The advantages of FDs become apparent in 
applications including modeling of damping behaviour of 

visco-elastic materials, cell diffusion processes [8], 
transmission of signals through strong magnetic fields, 
modeling mechanical and electrical properties of real 
materials, as well as in the description of rheological properties 
of rocks, and in many other fields [25]. 

In feedback control, by introducing proportional, integral 

and derivative control actions of the form sα, 1/sα,  αR+, 
we can achieve more robust and flexible design methods to 
satisfy the controlled system specifications. Studies have 
shown that an FO controller can provide better performance 
than integer order (IO) controller. 

The paper  is  organised  as  follows  :  Section II and III 
give special functions and definitions of fractional calculus 
theory respectively. Section IV defines linear FO system in 
general. Section V describes the stability analysis of 
fractional-order systems, Section VI explains the 
representations of fractional-order systems and in Section VII 
analytical results of FO systems are given  with the 
conclusion in Section VIII. 

 

II. SPECIAL FUNCTIONS OF FR ACTION AL CALCULUS  

(FC) 

Some special functions need to be used in Fractional 
Calculus (FC).  These functions play important role in the 
theory of FC and in the theory of fractional differential 
equations (FDEs). 

A.  Gamma Function  

One of the most basic functions of FC is Euler’s gamma 
function  Γ(z),  which  generalizes  the  factorial  function  z! 
and  allows  z  to  take  also  non-integer  and  even  complex 
values [10]. The gamma function (Γ(z)) is given by the 
following expression,   





0

1)( duuez zu
.                            (1) 
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Note that when zZ+  we have Γ(z + 1) = z! 

B.  Mittag-Leffler Function 

The exponential function ez  plays a very important 
role in the theory of integer order differential equations. Its 1 
parameter generalization function for a complex number z is 
given by [10], 

                )(zE  


0k )1(  k

z k


,                       (2)            

The 2 parameter function of the ML function, which is 
also important in FC is defined as, 

   )(, zE   


0k )(   k

z k

, ( 0,0   ).        (3) 

This basic definition is very useful in deriving the response 

of an FO system to any forcing function, for example, step 

response, ramp response. 

III. DEFINITIONS FOR  FR AC TIO N AL-DIFFERINTEGRALS 

The three equivalent definitions [6],[10] most frequently 
used for the general fractional derivatives (FD) are the 
Grunwald-Letnikov (GL) definition, the Riemann-Liouville 
and the Caputo definition [10]. In all the definitions below, 
the function f (t) is assumed to be sufficiently smooth and 
locally integrable. 

1)  The  Grunwald-Letnikov definition of fractional-order 
   using Podlubny’s limited memory principle [4] is 

given by 

                                                                                               

)()1()(
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where [.] means the integer part and jC  is the binomial 

coefficient. 

2)  The  Riemann-Liouville definition  obtained using the 

Riemann-Liouville integral is given as, 

      ,
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for (n − 1 < α < n) and Γ(.) is the Gamma function. 

3)  The Caputo  definition  can be written as, 

      ,
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for (n − 1 < r < n),  where )(tf n  is the nth order 

derivative of the function f (t). Since we deal with causal 
systems in the control theory, the lower limit is fixed at 

0a  and for the brevity it will not be shown in this 

paper. We see that the Caputo definition is more restrictive 
than the RL. Nevertheless, it is preferred by engineers and 
physicists because the FDEs with Caputo derivatives have the 
same initial conditions as that for the integer-order 
differential equations. Note that the FDs calculated using 
these three definitions coincide for an initially relaxed 
function (  0)0( tf . 

IV. LINEAR  FRACTIONAL-ORDER SYSTEMS 

A general linear FO system is given by the FO transfer 
function as : 
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where 1na ,  nm  , )(sY and )(sU are the Laplace 

transforms of the output )(ty and input )(tu

respectively. It can be represented by the block 
diagram as shown in Fig.(1).  

 
Figure 1.    Block diagram representation of linear FO system. 

 

Fig.(2) represents the general block diagram of a closed-

loop FO system with )(sY and )(sU are the Laplace 

transforms of the output )(ty and input )(tu

respectively, k  is the gain, )(sG is the system 

transfer function, and )(sH is the feedback 

component. )(sY and )(sU are not usual 
polynomials but are pseudo-polynomials with 
fractional-orders. In this work we have taken 
unity feedback for all examples. 

 
Figure 2.    Block diagram representation of closed-loop linear FO system. 

V. STABILITY OF FRACTIONAL-ORDER SYSTEMS 

The stability analysis is important in control theory. Re- 
cently,  there has been some advances  in  control theory of 
fractional differential systems for stability. In the FO systems 
the delay differential equation order is non-integer which 
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makes it difficult to evaluate the stability by finding its  roots 
or by using other algebraic methods. The stability of FO 
systems using polynomial criteria (e.g Routh’s or Jury’s type) 
is not possible due to the fractional powers. A generalization 
of the Routh-Hurwitz criterion used for stability analysis for 
fractional-order systems is presented in [12]. However, this 
method  is  very  complicated. T h e  g e o m e t r i c  
m e t h o d s  s u c h  a s  Nyquist type can be used for the 
stability check  in  the  BIBO  sense  (bounded-input 
bounded-output). Root locus is another geometric method 
that can be used for analysis for FO systems [11], [14]. Also, 
for linear fractional differential systems of finite dimensions 
in state-space form, stability can be investigated. The stability 
of a linear fractional differential equation either by 

transforming the s -plane to the F -plane )( sF  or to 

the w -plane )( 1 vsw  , is explained in [13]. The robust 

stability analysis of a Fractional-order Interval Polynomial 
(FOIP) family is presented in [15] and [16]. 

A. Stability using Riemann surfaces 

     The study of the stability of FO systems can be 
carried out by obtaining the solutions of the differential 
equations that characterize them. To carry out this study it is 
necessary to remember that a function of the type 

          01

01 ...


sasasa nn

nn  

 ,                       (8) 

with 
Ri , ni ,,1  is a  multi-valued  function of  

the  complex variable s  whose domain can be seen as a 

Riemann surface of  a  number  of  sheets.  The  principal  

sheet  is  defined by    )arg( s .  In the  case  of  

Qi , that is, v/1 , v  being a positive integer, 

the v  sheets of the Riemann surface are determined by, 

    
jess  ,    ,)32()12(   kk         (9) 

2,...,0,1  vk . 

where 1k  is the principal R i e ma n n  s h e e t .  

T hese sheets are transformed to another plane called w -plane 

with the relation 
sw  . The regions of these  sheets on 

the w -plane can be defined by : 

    
jeww  ,    ,)32()12(   kk        (10) 

Thus, an equation of the type (8) which in general is 

not a polynomial, will have an infinite number of roots, 

among which only a finite number of roots will be on the 
principal sheet of the Riemann surface. The roots which are in 
the secondary sheets of the Riemann surface are iso-damping 
and only the roots that are in the principal sheet of the        
Riemann surface are responsible for a different dynamics: 
damped oscillation, oscillation of constant amplitude, 
oscillation of increasing amplitude. For the case of systems, 
whose characteristic equation is a polynomial of the complex 

variable 
sw   the stability condition is expressed as [6], 

                        
2

)arg(


iw ,                                 (11) 

where iw   are the roots of the characteristic polynomial in 

w . For the particular case of 1  the well known 

stability condition for linear time-invariant systems of integer-

order is recovered: 

2
)arg(


iw .                                   (12) 

 

B. Frequency Response - Bode Plot  

In general, the frequency response has to be obtained by 
the  evaluation of the irrational-order transfer function of the 

FO system along the imaginary axis for js  , 

),0(   [6].  The frequency response can be obtained by 

the addition of the individual contributions of the terms of 
order  resulting, 
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where kz   and k    are the zeros and poles respectively. 

For each of these term the magnitude plot will have a slope 
which starts at zero and tends to 20 dB/decade, and the 

phase plot will go from 0 to 2/ . 

VI. REPRESENTATION  OF FRACTIONAL-ORDER  

SYSTEMS 

A.  Laplace Transform 

In system theory, the analysis of dynamical behaviors is 
of- ten made by means of transfer functions. Hence 
introduction of the Laplace transform  (LT) of fractional-order 
derivatives is necessary for the study. Fortunately, LT for 
integer-order systems can be very easily applied as an 
effective tool even for fractional systems [10]. Inverse 
Laplace transformation (ILT) is also useful for time domain 
representation of systems for which only the frequency 
response is known. The most general formula assuming 
zero ini t ia l  condit ions  is the following: 

                   )(
)(

tfLs
dt

tfd
L m

m

m










.                     (14) 

This  is  very  useful  in  order  to  calculate  the  inverse 
Laplace transform of elementary transfer functions, such as 

non integer order integrators 
ms/1 . 
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B. State-space Representation 

For linear fractional differential systems of finite 
dimensions in state-space form, stability is investigated [6]. 
Consider the commensurate-order TF defined by (7), 
associated with this TF, canonical state-space representations 
can be proposed, which are similar to the classical ones 
developed for IO differential equation systems. 

Controllable   Canonical  Form  :   Defining the first state 

in terms of its Laplace transform as, 
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,                     (15) 

and the remaining elements of the state vector in a recursive 

way from this one as 

iti xDx 1 ,    1,..,2,1  ni    ,                 (16) 

the state representation, expressed in the controllable canonical 

form, is given by [6], 

,BuAxxDt 
               (17) 
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where 0ib ,  f or   nim   

 

 BABAABBC n
o

12     (18)                   

Controllability criterion is that the system is 
controllable if and only if matrix C  defined by (18), which 
is called as controllable matrix is full-rank. Rearranging the 
above FO state equations, the observable canonical form can 
be obtained with  the  matrices A,  B  and  C  matrices. The 
observability condition is also same as for integer-order LTI 
systems. 

VII. ANALYTICAL RESULTS 

Some FO systems are analyzed in this section. Their sta- 
bility, step response, frequency response, and the SS 
representation is discussed. The analysis is done using 
MATLAB [20]. The standard commercially available 
simulation softwares cannot be used for evaluating the step, 
ramp, frequency response of the FO systems. Recently, in 
MATLAB two toolboxes dedicated to FO systems are 
available. They are CRONE [19] and NINTEGER toolbox 
[18]. 

A. Example 1 

Consider the FO integrator system with TF of the form, 

s
sG

1
)(   .                                (19) 

For the FO integrator if 5.0 , then consider 

5.0sw  , hence 
w

wG
1

)(
~

  

The system with the above function has one open-loop 
pole at origin. The Riemann surface of the function 

vsw 1   has two Riemann sheets. 

Now if 5.1 , and consider 
5.0sw  , then 

3

1
)(

~

w
wG   

The system with the above TF has three open-loop poles 
at origin. 

 

Step Response:  The system transfer function is, 

                                    
ssU

sY 1

)(

)(
 ,                      (20) 

Consider step input, ssU 1)(  , 

                          
1

11
)(




 sss
sY .            (21) 

Taking inverse Laplace transform of the equation we get 

                     .
)1(
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

t
ty        (22) 
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The Fig.(3) shows the step response of the system for       
α = 0.1, 0.5, 0.8, 1 and 1.5. 

 

Frequency Response: Put js 
 
in the system function 

given  by (19)  we  can  plot  the  magnitude  and  phase plots. 

The magnitude and phase plot of the system for α  = 0.1, 

0.5, 0.8, and 1 is plotted as shown in the Fig.(4). From the 

above response we can conclude that: 

1)  The magnitude has a constant slope of  −20α dB/decade. 

2)  The phase plot is a horizontal line at −απ/2. 

 

B. Example 2 

Consider the incommensurate system given by the 
following transfer function [6] [7] 

 

             
15.08.0

1
)(
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
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sG .           (23) 

 

 

Figure 3 .    Step response of Example (1) 
 

The system given in the equation can be written as 
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Consider 10

1

sw  the system has 10 Riemann sheets. 

            
15.08.0

1
)(

~

922 


ww
wG .        (25) 

 

The open-loop poles and their appropriate arguments of 
the system are shown in table I.  Fig.(5) gives the pole-zero 
plot of the open-loop system. 

 

 

 

Figure 4.    Frequency response of Example (1) for different values of α 

 

 

Physical significant roots are in  the  first Riemann 

sheet, which is  expressed  by  relation vv //   , 

where )arg(w .   

In  this example complex conjugate roots in first 

Riemann sheet are ,1684.00045.122,21 jw   

1661.0)arg( 22,21 w , which   satisfy conditions 

20/2/)arg( 22,21   vw  is  as  shown  in Pole-zero 

plot shown in Fig.(5).  

TABLE I.  OPEN LOOP POLES AND CORRESPONDING ARGUMENTS OF 

EXAMPLE (2) 

Poles 
 
 

Arguments  in radians 

w1,2  = −0.9970 ± j0.1182 
 
 
 

|arg(w1,2 )| = 3.023 

w3,4  = −0.9297 ± j0.4414 |arg(w3,4 )| = 2.698 

w5,6  = −0.7465 ± j0.6420 |arg(w5,6 )| = 2.431 

w7,8  = −0.5661 ± j0.8633 |arg(w7,8 )| = 2.151 

w9,10  = −0.259 ± j0.9625 |arg(w9,10 )| = 1.834 

w11,12  = −0.0254 ± j1.0111 |arg(w11,12 )| = 1.595 

w13,14  = 0.3080 ± j0.9772 |arg(w11,12 )| = 1.265 

w15,16  = 0.5243 ± j0.8359 |arg(w15,16 )| = 1.010 

w17,18  = 0.7793 ± j0.6795 |arg(w17,18 )| = 0.717 

w19,20  = 0.9084 ± j0.3960 |arg(w19,20 )| = 0.411 

w21,22  = 1.0045 ± j0.1684 |arg(w21,22 )| = 0.1661 
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Figure 5.    Open loop pole-zero plot of Example (2) 

 

The roots in first Riemann sheet satisfy the stability 
criteria, hence the system is stable. Other roots of the system 
lie  in  secondary Riemann sheets. The first Riemann 
sheet is transformed from s plane to w - plane as follows:  

10/)arg(10/   w   ,  and                     

  )arg(10 w .                      ( 26) 

Therefore from this consideration angle obtained is  

)arg(10)arg( ws  .                     (27) 

 
The closed loop poles are given in table II and are plotted 

in Fig.(6). 

TABLE II.  CLOSED LOOP POLES AND CORRESPONDING ARGUMENTS OF 

EXAMPLE (2) 

Poles 
 
 

Arguments  in radians 

w1,2  = -1.0298± j 0.1311 
 
 
 

|arg(w1,2 )| = 3.015 

w3,4  = −0.9557 ± j0.4483 |arg(w3,4 )| = 2.703 

w5,6  = −0.7764 ± j0.6694 |arg(w5,6 )| = 2.430 

w7,8  = −0.5776 ± j0.8863 |arg(w7,8 )| = 2.148 

w9,10  = −0.2768 ± j0.9956 |arg(w9,10 )| = 1.842 

w11,12  = −0.0173 ± j1.0430 |arg(w11,12 )| = 1.587 

w13,14  = 0.3099 ± j1.0055 |arg(w11,12 )| = 1.271 

w15,16  = 0.5488 ± j0.8676 |arg(w15,16 )| = 1.006 

w17,18  = 1.0348 ± j0.1653 |arg(w17,18 )| = 0.1584 

w19,20  = 0.9412 ± j0.4170 |arg(w19,20 )| = 0.417 

w21,22  = 0.7989 ± j0.6953 |arg(w21,22 )| = 0.7162 

 

 

Figure 6.    Closed loop pole-zero plot of Example (2) 

 

Step Response:  The system TF is, 

15.08.0

1

)(

)(
9.02..2 


sssU

sY
 .      (28) 

For step response of the system, ssU 1)(  .  

Calculating the  residues and  poles  by  partial  fractions 
are shown in table III. 

TABLE III.  RESIDUES AND CORRESPONDING POLES 

Residues Poles 

−0.0264 ± j0.0209 0.7793 ±j 0.6796 

0.0147 ± j0.0313 −0.5662 ± j0.8633 

0.0355 ± j0.0079 −0.9298 ± j0.4415 

−0.0006 ± j0.0391 0.3080 ± j0.9772 

−0.0422 ± j0.0068 1.0045 ± j0.1684 

−0.0142 ± j0.0447 −0.0254 ± j1.0112 

0.0467 ± j0.0210 −0.9970 ± j0.1182 

0.0271 ± j0.0477 −0.2597 ± j0.9625 

−0.0476 ± j0.0323 0.9085 ± j0.3960 

−0.0369 ± j0.0464 0.5243 ± j0.8360 

0.0441 ± j0.0409 −0.7466 ± j0.6420 

 

Using inverse Laplace transform  [6], 
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where (.),E  is the Mittag Leffler (ML) function as 

defined in Section II,  ir  are the residues and ip are the 

corresponding  poles for 1i  to 22 .  

To  plot  step  response  we have used the MATLAB 
subroutine ‘mlf()’ developed by Podlubny [21]. The step 
response plot is plotted as shown in Fig.(7). The step 
response shows it is a underdamped system. This is obvious 
as the two stable poles in the principal Riemann sheet are very 
close to the imaginary axis in the s -plane. See Fig.(6) for the 

corresponding w -plane situation. 

 
Figure 7.    Step response of Example (2) 

 

Frequency Response:  Put js   in the given system 

function. The magnitude plot and phase plot of the system 

using MATLAB is plotted as shown in the Fig.(8). The gain 

margin is  and the phase margin is about 177°. 

 

Figure 8.    Frequency response of Example (2)  

 

State-space Representation: The canonical form of the 

system is obtained as, 

                     15.08.0

1

)(

)(
9)1.0(22)1.0( 


sssX

sY
.          (30) 

 
)(25.1)()25.1)(625.0)(( 91.0221.0 sXsYss  .   (31) 

Consider input  u(t) and taking inverse Laplace 
transform we get, 

)(25.1)(25.1)(625.0)(
9.02.2

tutytyDtyD tt  ,               (32) 

 

Case 1:  Let   )()( 1 txty       and  

)()( 21
1.0

txtxDt                                           (33) 

 

In general we have iti xDx
1.0

1  ,    21,..,2,1i .   

 

)(25.1)(625.0)(25.1)( 10122
1.0

tutxtxtxDt   ,     (34) 

 
The controllable canonical form is therefore given by, 
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
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)(
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t

t


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
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
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2

1
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
         

)(
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0

0

tu
























 

              001)( ty )(tu    .                   (35) 

                          

Case 2: Let )()( 1 txty  and )()( 21
9.0

txtxDt       .            (36) 

The controllable canonical form is therefore given by, 



































)(

)(

625.0125.0
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)(
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2

1

2
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1
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txD

txD

t

t
 

 )(
125.0

0
tu








  .                                 (37)  

The controllable matrix of this system is full rank and 
hence the system is controllable. It is also shown that there 
can be no  unique  state  space  representation for  a  
fractional-order system. In the analysis of this 
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incommensurate FO system we conclude that the system is 
stable, controllable and observable. 

C. Example 3 

Consider the commensurate system given by the following 
transfer function [6] : 

          
25.12

1
)(

5.0 


ss
sG .            (38) 

The system given in the equation can be written as 

12

1
)(

1
2

1
2

2

1





















ss

sG .                    (39) 

Consider 2

1

sw  , the system has two Riemann sheets. 

Transforming the system onto w - p l a n e  w e  g e t ,  

                
25.12

1
)(

~

2 


ww
wG .    (40) 

The open-loop poles and their appropriate arguments of 
the system are shown in table I V . 

TABLE  IV. OPEN LOOP POLES AND CORRESPONDING 

ARGUMENTS OF EXAMPLE 3 

Poles 
 
 

Arguments  in radians 

w1,2  = 1.0000 ± j0.5000 
 
 
 

arg(w1,2 )| = 0.4636 

 

The open-loop pole-zero plot is shown in the Fig.(9). The 
poles lie in the unstable region 4/)arg(4/   w , and the 

first Riemann sheet is 2/)arg(2/   w . 

 

Figure 9 .    Open-loop pole-zero plot of Example (3) 

The closed-loop poles and their appropriate arguments of 
the system are shown in table V . 

TABLE  V. CLOSED LOOP POLES AND CORRESPONDING 

ARGUMENTS OF EXAMPLE 3 

Poles 
 
 

Arguments  in radians 

w1,2  = 1.0000 ± j1.1180 
 
 
 

arg(w1,2 )| = 0.8411 

 

The closed-loop pole-zero plot is shown in the Fig.(10). 
The poles are in the stable region, which implies that the  
closed-loop system is stable. 

 

Figure 1 0 .    Closed-loop pole-zero plot of Example (3) 

Step Response:  The step response is obtained using invlap 

subroutine [23] for the closed-loop system with unity gain as 

shown in Fig.(11). It is observed that the ML function 

calculation is time consuming and may not give proper results 

in all the cases. In such cases they can also be plotted using 

invlap.m subroutine (numerical ILT) [22], [23]. 

 

Figure 1 1 .    Step response of Example (3) 

 

Figure 1 2 .    Frequency response of Example (3)  

 

Frequency Response:  Put js   in the given system 

function. The magnitude plot and phase plot of the system 

using MATLAB is plotted as shown in the Fig.(12). The gain 

margin is  and the phase margin is about 193°. This shows 

that the system is stable with a wide range of gain and phase 

margins. 

State-space Representation: The canonical form of the 

system is obtained as,                                                                                                                                                               
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25.12

1

)(

)(
5.0 


sssX

sY
,                        (41) 

Using the procedure as given in Section VI, we get, 

          





























)(

)(

225.1

10

)(

)(

2

1

2

15.0

tx

tx

tx

tx
Dt   )(

1

0
tu








       (42) 

      

                                    01)( ty )(tu .        (43) 

Where 











225.1

10
A  , 










1

0
B ,  01C  

The system is found to be controllable and observable. 
From the open-loop and closed-loop pole-zero plots, and the 
gain margin and phase margin it can be concluded that the 
system is stable in the closed-loop configuration. 

D. Example 4 

Consider the commensurate system given by the following 
open loop transfer function  [11]. 

                    
12223

1
)(

5.05.12

5.0






ssss

s
sG  .       (44) 

The system given in the equation can be written as 

                

12223

1
)(

2

1
2

2

1
3

2

1
4

2

1

5.0







































ssss

s
sG .      (45)                       

Consider 2

1

sw  , the system has two Riemann sheets. 

Transforming the system onto w - p l a n e  w e  g e t ,  

                
12223

1
)(

~

234 




wwww

w
wG .    (46) 

The open-loop poles, zeros and their appropriate 
arguments of the system are shown in table V I . 

TABLE VI.  OPEN LOOP POLES AND CORRESPONDING ARGUMENTS OF 

EXAMPLE 4 

Poles 
 
 

Arguments  in radians 

w1  = 3.0000 
 
 
 

|arg(w1 )| = 0.0000 

w2  = 2.0000 |arg(w2 )| = 0.0000 

w3,4  = −1.0000 ± j1.0000 |arg(w3,4 )| = 2.3562 
Zeros 

 
 

Arguments  in radians 

w5  = 1.0000 |arg(w5 )| = 0.0000 

The open-loop pole-zero plot of the system in the w -

plane  is as shown in the Fig.(13). It shows the unstable region 
4/)arg(4/   w , and the first Riemann sheet is 

2/)arg(2/   w . Also there are 2 poles and 1 zero in the 

unstable region and 2 poles in the stable region on the second 
Riemann sheet. 

 

Figure 13.    Open-loop pole-zero plot of Example (4) 

The closed-loop poles, zeros and their appropriate 
arguments of the system are shown in table V I I . 

TABLE VII. CLOSED LOOP POLES AND CORRESPONDING ARGUMENTS OF 

EXAMPLE 4 

Poles 
 
 

Arguments  in radians 

w1  = 2.867 
 
 
 

|arg(w1 )| = 0.0000 

w2  = 2.1183 |arg(w2 )| = 0.0000 

w3,4  = −0.9915 ± j0.9109 |arg(w3,4 )| = 2.3985 
Zeros 

 
 

Arguments  in radians 

w5  = 1.0000 |arg(w5 )| = 0.0000 
 

The pole-zero plot of the closed-loop system in the w -

plane  is as shown in the Fig.(14). There are 2 poles and 1 zero 
in the unstable region and 2 poles in the stable region on the 
second Riemann sheet which is similar to the case of open-
loop system. 

 

Figure 14.   Closed-loop pole-zero plot of Example (4) 

Step Response:  The closed-loop step response is obtained 

using invlap subroutine [23] for unity gain as shown in 

Fig.(15). It shows that the system is unstable. 

 

Figure 1 5 .    Step response of Example (4) 
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Frequency Response:  Put js   in the given system 

function. The magnitude plot and phase plot of the system 

using MATLAB is plotted as shown in the Fig.(16). The gain 

margin is about 35dB and phase margin is  . 

 

Figure 16.    Frequency response of Example (4)  

State-space Representation: The canonical form of the 

system is obtained as,                                                                                                                                                               

   12223

1

)(

)(
5.05.12

5.0






ssss

s

sX

sY
,               (47) 

Using the procedure as given in Section VI, we get, 
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Where 





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












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A  , 






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




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






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0

0

B , 

 0011C ,   0D  

The system is found to be controllable and observable. 
From the open-loop and closed loop pole-zero plots, step 
response we conclude that the system is unstable. 

VIII. CONCLUSION 

The fractional-order models of real systems are more 
adequate than the usually used integer order models. At the 
same time fractional-order controllers provide better 
performance in comparison to integer order controllers . 
The most important features such as stability, controllability, 
observability, stability margins of linear fractional-order 
systems  are  studied  during  the  work.  They  are  discussed 
using Bode diagrams, time response, state space 
representation. The time and frequency domain analysis of 
fractional-order systems is found to be similar to that of 
integer order systems. 
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