
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

169 | P a g e

www.ijacsa.thesai.org

A New PHP Discoverer for Modisco

Abdelali Elmounadi
1
, Nawfal El Moukhi

2
, Naoual Berbiche

3
, Nacer Sefiani

4

University Mohammed V, Rabat, Morocco
1, 3, 4

University Ibn tofail in Kenitra, Kenitra, Morocco
2

Abstract—MoDisco is an Eclipse Generative Modeling

Technologies project (GMT Project) intended to make easier the

design and building of model-based solutions that are dedicated

to legacy systems Model-Driven Reverse Engineering (MDRE). It

offers an open source, generic and extensible MDRE framework.

Indeed, MDRE applies of Model-driven Engineering (MDE)

principles to enhance traditional Reverse Engineering processes,

and thus facilitate their understanding and manipulation. In the

same context, the Architecture-Driven Modernization (ADM) is

an OMG (Object Management Group) standard, which

addresses the integration of MDA (Model-driven Architecture)

and Reverse Engineering in the aim of understanding and

evolving existing software assets. Thus, Modisco succeeded to

stand out as the implementation reference in the MDRE and

ADM field. Currently, Modisco handles only some technologies,

such as Java and XML. Unfortunately, no adapted way to handle

PHP (Hypertext Preprocessor) web-based projects by Modisco is

available so far. This paper proposes a new model discovery tool

intended for PHP language. This latter constitutes an extension

for the Modisco framework that allows managing the

applications assets written in PHP language. Thus, this work

aims at enhancing the Modisco platform capabilities in managing

more software development technologies.

Keywords—MDRE; ADM; modisco; model discovery; PHP

I. INTRODUCTION

Reverse Engineering still remains a challenging field in
software engineering, notably because of the unceasing need to
adapt to the continuous evolution of IT development. In fact,
every organization needs to periodically reevaluate and evolve
its company policies, because policies and rules must be
aligned at all times, but unfortunately, this remains a
challenging task [1]. In this context, Model Driven Reverse
Engineering (MDRE) is a widely used approach that aims to
enhance traditional Reverse Engineering processes [2]. It
provides several technics based on the Model Driven
Engineering (MDE) principles to allow modeling structures
recovery from code-legacy, in order to facilitate its
comprehension and manipulation. Among the various tools that
have emerged for this purpose, MoDisco is an Eclipse GMT
(Generative Modeling Technologies) project designed for the
model discovery area. This tool is intended to make easier the
design and building of model-based solutions dedicated to
legacy systems reverse engineering [3]. However, MoDisco
tool actually supports few technologies. For instance, it does
not offer any possibility to handle PHP web-based applications
despite the importance of this language in the web
development area.

In this paper, the authors propose a new model discovery
tool intended for PHP language as a PHP Discoverer integrated

to the Modisco platform, in order to allow the model discovery
of PHP-based web applications. The rest of this paper is
organized as follow: Section 2 presents the research
background. It presents all concepts related to MDRE and
ADM with a presentation of the Modisco framework and its
contribution in the model discovery area. Section 3 presents the
adopted methodology in this work to achieve the contribution.
Section 4 gives an experimentation case study to validate the
congruency of the new model discovery tool. Finally, Section 5
presents the conclusion and the future works.

II. RESEARCH BACKGROUND

A. Model-Driven Reverse Engineering

Generally, Reverse Engineering (RE) is about switching
from the implementation heterogeneity technologies to the
homogeneous world of models. It constitutes the process of
comprehending software systems and producing models in a
higher level of abstraction, suitable for documentation,
maintenance, and reengineering. However, this process could
suffer from two main disadvantages: for large-scale projects, it
is difficult to predict time cost of the RE process. In addition,
no standards are available to evaluate the quality of the
obtained results [4]. Thus, MDRE is introduced to overcome
these difficulties. This approach uses the modelling features
and applies those features in the RE processes to overcome the
problems cited above. In fact, with the current growing
adoption of Model Driven Engineering (MDE) principles and
techniques (where models are considered as first class entities
in the whole development process) [5], several opportunities
are presented for getting all of the benefits of MDE approach
when designing new reverse engineering solutions.

MDRE is based on two systematic and consecutive phases
as shown in Fig. 1, “Model Discovery” and “Model
Understanding” [6]:

 Model discovery: This step consists in obtaining a
model that represents a legacy system from its source
code, data sets, documentation, etc. The obtained model
conforms to a given metamodel that can be, according
to the needs, technology-specific or more generic.
Therefore, the model discovery is generally realized via
components called “discoverers”. A discoverer can
have various and varied natures depending on the type
of system subject of reverse engineering. It can be
either fully hardcoded or partially generated using
model transformations combining the corresponding
metamodels.

 Model Understanding: Most MDRE applications
require the processing of the models discovered in the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

170 | P a g e

www.ijacsa.thesai.org

Model discovery phase in order to obtain higher-level
views of the legacy systems that facilitate their analysis,
comprehension, and later reuse. Thus, this phase is
called model understanding. Chains of model
manipulation techniques are employed to query and
transform the models obtained following the model
discovery phase into more manageable representations,
by omitting details that are not relevant for the MDRE
scenarios.

B. Architecture-Driven Modernization

Architecture-Driven Modernization is the process of
understanding and evolving existing software assets.
According to [7], ADM is an OMG (Object Management
Group) standard that addresses the integration of MDA and
reverse engineering.

MDA encourages the separation of concerns, i.e. it
preconizes the model transformations between different levels
of abstraction, beginning with platform independent models
(PIMs) which do not contain any specific information about the
implementation platform, arriving to platform specific models
(PSMs) that include specific information about implementation
platforms. In fact, ADM is for MDRE what is MDA for MDE.
It also preconizes the use of PIM, PSM and model
transformations [8] concept to facilitate the systematic analysis
of existing systems to gather their corresponding models
(Fig. 2).

With the advent of ADM, OMG presented a new set of
metamodel relatively to this context: Knowledge Discovery
Metamodel (KDM) [9] and Software Metrics Metamodel
(SMM) [10], and ASTM (Abstract Syntax Tree Metamodel)
[11].

ASTM is a metamodel from the OMG that describes the set
of elements used for composing abstract syntax trees. The
purpose of ASTM is to provide a framework that allows
common interchange of abstract syntax models of software
based upon modeling specifications. ASTM serves as a
universal high-fidelity gateway for modeling code at the most
fundamental syntactic level. Thus, ASTM respects the scope of
KDM and UML for modeling the semantics of higher-level
software concepts and includes only the most basic semantics

associated with code. The ASTM specification is organized
into three levels of abstraction:

 GASTM: Generic Abstract Syntax Tree Metamodel is a
generic set of language modeling elements common
across numerous languages establishes a common core
for language modeling, called the Generic Abstract
Syntax Trees. In this specification, the GASTM model
elements are expressed as UML class diagrams.

 SASTM: Language Specific Abstract Syntax Tree
Metamodels constitute a set of metamodels for
particular languages such as PHP, C++ or Java. These
metamodels are derives from the GASTM along with
modeling element extensions sufficient to capture the
language. Fig. 3 illustrates the existing relationship
between the GASTM level and the SASTM
level.PASTM: Proprietary Abstract Syntax Tree
Metamodels express AST representations for different
languages modeled in formats that are not consistent
with MOF (Meta-Object Facility), the GASTM, or
SASTM. For such proprietary AST this specification
defines the minimum conformance specifications
needed to support model interchange.

C. Modisco GMT Project

MoDisco is an Eclipse Generative Modeling Tool (GMT),
which provides an extensible and customizable MDRE
framework to develop model-driven tools supporting different
model driven reverse engineering scenarios such as legacy
migration or modernization, quality assurance, re-
documentation, etc. The main purpose of MoDisco is to offer
an open source, generic and extensible MDRE framework
(Fig. 4). Considering as inputs miscellaneous legacy artifacts
(source code, databases, configuration files, documentation,
etc.), MoDisco aims to providing the required functionalities
for creating models and allowing their handling, analysis and
computation. Afterwards, the framework targets the production
of different types of artefact as outputs, depending on the
selected MDRE objectives (source code, data, metrics,
documentation, etc.).

Furthermore, MoDisco is an Eclipse-based project that
provides and uses concrete implementations of three OMG
standard meta-models: KDM, SMM and ASTM.

Fig. 1. MDRE Process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

171 | P a g e

www.ijacsa.thesai.org

Fig. 2. Process for Evolving Existing Software Assets using ADM/MDA

Approaches.

Fig. 3. SATSM - GASTM Relationship.

Fig. 4. The Modisco Framework.

Currently, Modisco offers extended technology specific
support for XML model driven reverse engineering (intended
for some JEE frameworks configuration files such as Struts)
and Java language model driven reverse engineering (including
a full Java language meta-model and a Java discoverer) only.
Nevertheless, several other technologies are still not integrated
in the Modisco project like PHP language. Therefore, the paper
proposes a model discovery plugin as an extension for Modisco
framework to allow supporting the model discovery of PHP
web based legacy systems (Fig. 5).

Fig. 5. Modisco Plugins Organization.

III. NEW PHP DISCOVERER

The main purpose of this work is to be able to apply model
discovery process on existing PHP web-based application. To
achieve this, the authors made a PHP metamodel and a
dedicated discovery tool. Fig. 6 describes the employed model
discovery process.

A previous work has covered the same issue related to the
Java language [12]. As known, the Eclipse IDE constitutes an
extensible development environment that supports a wide
range of programming languages. This ability is provided to
the Eclipse platform through artefacts called “Development
Tools”. These development tools offer integrated development
environments based on the Eclipse platform. Features include
support for project creation, managed build for various
toolchains, source navigation, various source knowledge tools,
syntax coloration, source code refactoring, code generation and
visual debugging tools for the given language. JDT [13] (Java
Development Tools), PDT [14] (PHP Development Tools) and
CDT [15] (C/C++ Development Tools) are some of the
available development tools used with the Eclipse platform.

First, based on the Eclipse implementation of the PHP
language through PDT (PHP Development Tools), the authors
were able to establish a PHP metamodel by using EMF-Ecore
[16]. Fig. 7 illustrates a part of the PHP metamodel hierarchy.

Then, the model discovery process is started by extracting
the AST (Abstract Syntax Tree) from the source code provided
as input. At this stage, the AST nodes are visited based on the
visitor design pattern [17]. In fact, for each class that composes
the PHP metamodel, the implemented visitor provides two
main methods: visit and endVisit. The visit method is invoked
once an instance of the concerned class is reached. Then, at the
end of the element visit, the PHP node is mapped to a model
discovery node with all its relative attributes.

Fig. 6. The PHP Model Discovery Process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

172 | P a g e

www.ijacsa.thesai.org

Fig. 7. SASTM of PHP Language.

As mentioned above, Modisco is an extensible tool, i.e. it
offers an API for integrating new model discovery tools.
Therefore, this API shows the relevant steps to declare a new
discoverer. The framework defines a Java interface
“org.eclipse.modisco.infra.discovery.core.IDiscoverer<T>”
that every discoverer has to implement [18]:

public interface IDiscoverer<T> {

 boolean isApplicabeTo(T source);

 void discoverElement(T source,

IProgressMonitor monitor) throws

DiscoveryException;}

T represents the java type for the source of the discovery.
The isApplicableTo method specifies if the source object could
be handled by the discoverer. For example, for the end user, if
the discoverer manages the selected source object, a discoverer
menu will be available in the pop-up menu by clicking with the
contextual button (Fig. 8). There are 3 types of source objects:
IProject for projects, IFolder for folders, and IFile for files. In
the current study, the discoverer is applied on a project of PHP
Nature. The discoverElement method is a generic method for
performing a model discovery from the source object. The
service may throw some discovery exceptions (a class
DiscoveryException instance).

Finally, the model serialization is performed after selecting
the associated parameters. In this manner, the process provides
an XML Metadata Interchange [19] (XMI) representation of
the PHP discovered model from the source code project
provided as input.

IV. EXPERIMENTATION

In order to validate the current contribution, the new
discoverer was tested on several PHP projects. The following
example represents a simple PHP Math class contained in a
PHP project, and that contains a static member with a function
of adding two variables. A more complex example could have
been presented, but the interest of this section is to show the
enforceability of the method without occupying a large space
in the article.

<?php

class Math {

 public static final $PI = 3.14159265359;

 public function add($a, $b) {

 return $a + $b;

 }

}

?>

By applying the model discovery process using the
implemented PHP discoverer on the example shown above, the
authors obtain the XMI serialization of the discovered model
(corresponding to the PHP metamodel). Fig. 9 illustrates the
obtained result from the Modisco model browser view.

Fig. 8. The New PHP Discoverer in Action.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

173 | P a g e

www.ijacsa.thesai.org

Fig. 9. Modisco Model Browser view of the Obtained Result.

From the XMI source view, the representation of the
obtained model is as follows:

<?xml version="1.0" encoding="ASCII"?>

<php:AST xmi:version="2.0"

xmlns:xmi=http://www.omg.org/XMI

xmlns:xsi="http://www.w3.org/2001/XMLS

chema-instance"

xmlns:php="http://eclipse.org/gmt/modi

sco/php/incubation/beta">

<program>

<statement

xsi:type="php:ClassDeclaration"

modifier="none">

<identifier name="Math"/>

<body isCurly="true">

<statement

xsi:type="php:FieldsDeclaration"

modifier="public static">

<field

xsi:type="php:SingleFieldDeclaration">

<variableName xsi:type="php:Variable"

isDollared="true">

<name xsi:type="php:Identifier"

name="PI"/>

</variableName>

<value xsi:type="php:Scalar"

value="3.14159265359"/>

</field>

</statement>

<statement

xsi:type="php:MethodDeclaration"

modifier="public">

<function>

<identifier name="add"/>

<body isCurly="true">

<statement

xsi:type="php:ReturnStatement">

<expression

xsi:type="php:InfixExpression"

operator="+">

<left xsi:type="php:Variable"

isDollared="true">

<name xsi:type="php:Identifier"

name="a"/>

</left>

<right xsi:type="php:Variable"

isDollared="true">

<name xsi:type="php:Identifier"

name="b"/>

</right>

</expression>

</statement>

</body>

 <formalParameter>

<parameterName xsi:type="php:Variable"

isDollared="true">

<name xsi:type="php:Identifier"

name="a"/>

</parameterName>

</formalParameter>

<formalParameter>

<parameterName xsi:type="php:Variable"

isDollared="true">

<name xsi:type="php:Identifier"

name="b"/>

</parameterName>

</formalParameter>

</function>

</statement>

</body>

</statement>

</program>

</php:AST>

In this manner, the obtained XMI file can easily be used in
M2M [20] model transformation processes, in a model-
understanding context.

V. CONCLUSION AND FUTURE WORKS

This paper presented a new model discovery tool intended
for PHP language. Based on the Eclipse platform, especially
via PDT and EMF-Ecore, the authors were able to implement a
PHP Ecore metamodel, which constitutes a building block of
the model discovery of PHP legacy systems. In this manner,
the authors were able to add value to the Modisco platform and
meet a crucial need for the use of this framework. The authors
were also able to answer a widely asked question in the online
forums, mostly by engineering students, about the existence of
a model discovery tool dedicated to the PHP language. In
future works, the authors aim to integrate other programming
languages using the same approach, to enhance the possibilities
of model discovering existing systems in other languages and
technologies.

REFERENCES

[1] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, and J. Perronnet, “A
Model Driven Reverse Engineering Framework for Extracting Business
Rules out of a Java Application,” in RuleML, Montpellier, France, 2012.

[2] A. Elmounadi, N. Berbiche, F. Guerouate, and N. Sefiani, “Smart Text
to Model Transformation a Graph Based Approach to Cover Dynamic
Analysis,” Int. Rev. Comput. Softw. IRECOS, vol. 11, no. 4, p. 344,
Apr. 2016.

http://www.omg.org/XMI

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

174 | P a g e

www.ijacsa.thesai.org

[3] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot, “MoDisco: A model
driven reverse engineering framework,” Inf. Softw. Technol., vol. 56,
no. 8, pp. 1012–1032, 2014.

[4] S. Rugaber and K. Stirewalt, “Model-driven reverse engineering,”
Softw. IEEE, vol. 21, no. 4, pp. 45–53, 2004.

[5] F. Tomassetti, M. Torchiano, A. Tiso, F. Ricca, and G. Reggio,
“Maturity of software modelling and model driven engineering: A
survey in the Italian industry,” 2012.

[6] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 1st ed. Morgan & Claypool Publishers, 2012.

[7] J.-N. Mazón and J. Trujillo, “A model driven modernization approach
for automatically deriving multidimensional models in data
warehouses,” in International Conference on Conceptual Modeling,
2007, pp. 56–71.

[8] Y. Rhazali, Y. Hadi, and A. Mouloudi, “A model transformation in
MDA from CIM to PIM represented by web models through SoaML and
IFML,” in 2016 4th IEEE International Colloquium on Information
Science and Technology (CiSt), 2016, pp. 116–121.

[9] Object Management Group, “Knowledge Discovery Metamodel
(KDM).” [Online]. Available: http://www.omg.org/technology/kdm/.
[Accessed: 24-Apr-2018].

[10] Object Management Group, “About the Structured Metrics Metamodel
Specification Version 1.1.1.” [Online]. Available:
https://www.omg.org/spec/SMM/1.1.1/. [Accessed: 24-Apr-2018].

[11] Object Management Group, “About the Abstract Syntax Tree
Metamodel Specification Version 1.0.” [Online]. Available:
https://www.omg.org/spec/ASTM/1.0/. [Accessed: 24-Apr-2018].

[12] Eclipse Foundation,
“https://wiki.eclipse.org/MoDisco/JavaAbstractSyntax,” Java Abstract
Syntax Discovery Tool, 21-Jan-2018. [Online]. Available:
https://wiki.eclipse.org/MoDisco/JavaAbstractSyntax.

[13] A. Elmounadi, N. Berbiche, F. Guerouate, and N. Sefiani, “Eclipse JDT-
based method for dynamic analysis integration in Java code generation
process,” J. Theor. Appl. Inf. Technol., vol. 95, no. 24, 2017.

[14] “PHP Development Tools,” PHP Development Tools. [Online].
Available: https://insight.io/github.com/eclipse/pdt/tree/master.
[Accessed: 21-Oct-2017].

[15] Eclipse Foundation, “Eclipse CDT (C/C++ Development Tooling).”
[Online]. Available: https://www.eclipse.org/cdt/. [Accessed: 21-Jan-
2018].

[16] H. Kern and S. Kühne, “Model interchange between aris and eclipse
emf,” in 7th OOPSLA Workshop on Domain-Specific Modeling at
OOPSLA, 2007, vol. 2007.

[17] S. J. Metsker and W. C. Wake, Design patterns in java. Addison-Wesley
Professional, 2006.

[18] Eclipse Foundation, “Discovery Manager Developer Documentation,”
Eclipse documentation. [Online]. Available:
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.modisco.in
frastructure.doc%2Fmediawiki%2Fdiscovery_manager%2Fplugin_dev.
html. [Accessed: 22-Oct-2017].

[19] Object Management Group, “MOF 2 XMI Mapping, Version 2.4.” 2010.

[20] M. Rahmouni and S. Mbarki, “MDA-Based ATL Transformation To
Generate MVC 2 Web Models,” Int. J. Comput. Sci. Inf. Technol., vol.
3, no. 4, pp. 57–70, Aug. 2011.

