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Abstract—In the last decade, mobile learning applications have
attracted a significant amount of attention. Huge investments
have been made to develop educational applications that can
be implemented on mobile devices. However, mobile learning
applications have some limitations, such as storage space and
battery life. Cloud computing provides a new idea to solve some
limitations of mobile learning applications. However, there are
other limitations, like scalability, that must be solved before
mobile cloud learning can become completely operational. There
are two main problems with scalability. The first occurs when
the application server’s performance declines due to an increase
in the number of requests, which affects usability. The second
is that a decrease in the number of requests makes most
application servers idle and therefore wastes money. These two
problems can be avoided or minimized by provisioning auto-
scaling techniques that permit the acquisition and release of
resources dynamically to accommodate demand. In this paper,
we propose an intelligent neuro-fuzzy reinforcement learning
approach to solve the scalability problem in mobile cloud learning
applications, and evaluate the proposed approach against some of
the existing approaches via MATLAB. The large state space and
long training time required to find the optimal policy are the main
problems of reinforcement learning. We use fuzzy Q-learning to
solve the large state space problem by grouping similar variables
in the same state; there is then no need to use large look-up tables.
The use of parallel learning agents reduces the training time
needed to determine optimal policies. The experimental results
prove that the proposed approach is able to increase learning
speed and reduce the training time needed to determine optimal
policies.

Keywords—Auto-scaling; reinforcement learning; fuzzy Q-
learning

I. INTRODUCTION

Cloud computing is a computing business paradigm where
services such as servers, storage, and applications are delivered
to end users through the internet. There are three categories of
cloud computing [1] [2] [3] [4]: Infrastructure as a Service
(TaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). IaaS includes storage, servers, and networking
components. Amazon EC2 [5] is a suite that is built on
an JaaS service model. PaaS provides the platforms (e.g.
operating systems) needed to develop and run applications,
such as the Google App Engine [6]. Software as a Service
(SaaS) offers access to web-based software and its functions,
including services such as Salesforce.com [7]. There are three
deployment methods for cloud computing [3] [8]: private,
public, and hybrid. Private clouds are provisioned for use by
a single organization while public clouds are provisioned for

open use. Hybrid is a combination of both private and public
clouds.

Over the past decade, many universities, schools and
other educational institutions have moved their e-Learning
applications to mobile learning applications. Mobile learning
applications [9] are the most important e-Learning model,
using handheld devices such as smart phones and tablets.
Mobile learning applications have many limitations, however,
such as storage space, battery life, and potential data loss. To
solve some of these limitations, mobile cloud learning (MCL)
applications have been proposed.

MCL integrates the advantages of mobile learning and
cloud computing. The main advantages of MCL are solving
the data storage limitation in mobile learning by storing data
in the cloud rather than in the device, increasing the ease of
sharing knowledge, easing accessibility as access is through a
browser rather than a mobile operating system, and low costs
for set-up and maintenance.

There are some limitations, like scalability, that must
be solved before MCL can become completely operational.
Scalability refers to resource allocation that can be acquired
or released depending on demand. Cloud scalability has two
dimensions:

e  Horizontal cloud scalability (scaling out): adding more
servers that perform the same work, and

e  Vertical cloud scalability (scaling up): increasing ca-
pacity by adding more resources, such as adding
processing power to a server to make it faster.

Most cloud providers use horizontal scalability because
vertical scaling requires rebooting. Auto scaling automatically
scales up or down the capacity; this allows the system to main-
tain performance while also saving money. The auto scaling
system needs two elements: a monitor and the scaling unit.
There are different performance metrics for scaling purposes,
such as CPU utilization, the size of the request queue, and
memory usage.

There are two approaches for automatically matching com-
puting requirements with computing resources: schedule-based
and rule-based. In schedule-based scaling, the scale adjusts by
days and times, so it cannot respond to unexpected changes.
Rule-based scaling is dependent upon creating two rules to
determine when to scale, such as reinforcement learning (RL).

The premise of RL is learning through trial-and-error from
the learner’s performance and feedback from the environment.
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It captures the performance model of a target application and
its policy without any a priori knowledge [10] [11] [12] [13]
[14]. There are four fundamental components in RL: agent,
state, action, and reward. The agent is the decision-maker that
learns from experience. A state s can be defined as w, u, or
p, where w is the total number of user requests observed in a
given time period, u is the number of virtual machines (VMs)
allocated to the application, and p is the performance in terms
of the average response time to requests. The action is what
the agent can do (e.g. add or remove application resources).
Each action is associated with a reward. The objective is for
the agent to choose actions so as to maximize the expected
reward over a given period of time.

Neuro-fuzzy systems [15] [16] [17] is field of artificial
intelligence based on neural networks and fuzzy logic, in
which truth values may range from O to 1.

The rest of the paper is organized as follows. Section 2
provides an overview of related work and we provide an ex-
planation of our proposed approach in Section 3. Experimental
results and their analysis are presented in Section 4. Finally,
we conclude the paper and discuss future work in Section 5.

II. RELATED WORK

S. Chen et al. [1] proposed a model for an MCL system
consisting of four layers: infrastructure, platform, business
application, and service access. The infrastructure layer in-
cludes system resources (i.e. CPU, network, and storage)
which are represented by a virtual resource that provides
scalable and flexible services. The platform layer provides
software development, application services, database services,
data storage, and recovery services. The business application
layer supports different application software modules, such as a
learning module which could provide self-learning for students
and allow teachers to review students’ results. Such a teaching
module would allow teachers to manage courses, while a com-
munication module would provide a communication method
for teachers and students, such as SMS or a blog. A system
administration module would provide system management and
access control. The service access layer would then work as
an interface for students and teachers.

In mobile cloud computing (MCC), data processing and
storage are performed outside the mobile device and inside
the cloud, offering many applications. In [18], Arun and
Prabu discuss some of these applications, including vehicle
monitoring, mobile learning, biometry, and digital forensic
analysis.

Veerabhadram and Conradie [19] proposed an architecture
for MCC, consisting of three main parts: the mobile client,
middleware, and cloud services. The mobile client is the mean
by which the user can access the system (e.g. a smartphone)
and the middleware pushes service updates to mobile clients.
The main goal of the architecture is to provide a proxy for
mobile clients to connect to cloud services. The authors used
a questionnaire to gather the views of educators and students
on mobile learning. The results indicate that MCC will be
an important technology for education in the near future. Ac-
cordingly, a model for mobile cloud learning systems and their
applications has been proposed in [20]. The structure of this
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model also has three layers: user, system, and application. The
user layer authenticates users, the system layer contains system
resources (CPU, network, and storage), and the application
layer contains learning system processes and a test.

Kitanov and Davcev [2] proposed a new model for high
performance computing using a high performance computing
cluster infrastructure. Cisco’s WebEx mobile cloud applica-
tions have been used to test remote learning in both fixed and
mobile environments and for a variety of educational scenarios;
WebEx Whiteboard as a tool for teachers in remote learning
environments and Telemedicine to share and highlight medical
images. The test relied on the Quality Of Experience (QOE),
which measures users’ satisfaction. The QOE was evaluated
via questionnaire to the participants after the completion of the
remote learning course. The result implied that remote learning
in a mobile environment is easier than in a fixed environment.

P. Hazarika et al. [21] classified the MCC challenges into
three categories: technical, security, and miscellaneous. The
goal of MCC is to have seamless user interaction reach its
full potential. However, this presents some critical technical
challenges like data latency, service unavailability, and het-
erogeneous wireless networks interfaces (WCDMA, GPRS,
WiMAX, WLAN). Security challenges are classified into three
categories: cloud services, communication channels, and mo-
bile applications. Network accessibility and cloud compliance
are examples of miscellaneous challenges. To illustrate, using
MCC without network access is useless. Likewise, compliance
problems like regulation may affect the MCC user; due to the
nature of the cloud, data may span different regions, with each
region having different regulations for the stored data.

Chao and Yue [22] presented different methods of access
modes for mobile learning based on cloud computing. The
first method is mobile learning based on SMS. In this method,
the user sends a message from a mobile device through the
internet to the teaching server. The teaching server analyzes
and processes the data, then sends the requested data back
to the user’s mobile phone. The second method is mobile
learning based on webpages. In this method, the user accesses
the internet and visits the mobile website that contains learning
resources, including text, images, sound, animation, video, and
other media forms. The third method is mobile learning based
on a micro-blog. This method is similar to a blog but each
message is restricted to only 140 words; the user can send
ideas in the form of messages to mobile phone users and a
personalized website group. The final method is multimedia
interactive learning based on a Wireless Application Protocol
(WAP) browser. A WAP browser is a web browser for mo-
bile devices. WAP browsing is similar to computer browser
applications but improves content performance.

A proposed algorithm for parallel learning agents was
presented in [23]. The authors aimed to accelerate the explo-
ration procedure and reduce the training time to determine
optimal policies by using parallel learning agents (swarm
behaviors). They proposed a neuro-fuzzy system with an actor-
critic method, a kind of RL methodology. The actor is used
to select an action and the critic is used to evaluate the action
chosen. The proposed algorithm focuses on two stages for each
individual agent. First, it classifies the input state via fuzzy
net. Then, the actor-critic method is applied. Each agent is
independent from one other and the adaptive swarm behavior
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is acquired only as a reward from the environment. Simulation
results from this algorithm show that the swarm behavior
is a quicker exploration procedure than individual learning.
This algorithm does not balance exploration and exploitation
because it uses a fixed value for the learning rate.

In [24], a solution was proposed to solve the problem of
managing the balance between exploration and exploitation
that was present in [23]. The authors proposed an adaptive
learning rate, which uses larger learning rates for less visited
states and smaller learning rates for more visited states. The
authors showed how the adaptive learning rate affected a
neuro-fuzzy system with SARSA learning; simulation results
from this algorithm showed the effectiveness of the adaptive
learning rate.

In [25], an algorithm was proposed to balance exploration
and exploitation in a multi-agent environment, using the &-
greedy method. Random action (exploration) is selected by
the ¢ parameter and is updated in each time step. Three
fuzzy control parameters are used to update &: the weighted
difference between maximum and minimum move values in
the current state, the difference value of the current rate, and
the previous state and exploration rate. One of the drawbacks
of this method is the long time it requires for the learning
process.

The authors in [26] compared two classic RL algorithms,
fuzzy SARSA learning (on-policy) and fuzzy Q-learning (off-
policy). SARSA compares the current state with the actual
next state. Q-learning compares the current state with the best
possible next states.

In [27], an algorithm was proposed to combine a fuzzy
logic controller and fuzzy Q-learning to increase performance
and minimize costs. It is assumed that there is no prior
knowledge of policies and the fuzzy rules are automatically
updated to learn optimal policies during the runtime to improve
its performance. This algorithm is good for dynamic workloads
because of its capabilities for self-adapting and self-learning.

M. Sharafi et al. [28] combine an RL algorithm (SARSA
learning) with fuzzified actions. They test their proposed
method by simulation using MATLAB and show that this
algorithm is efficient for a dynamic workload.

In [29], Kao-Shing Hwang and Wei-Cheng Jiang proposed
shaped-Q learning for multi-agent systems. In the architecture,
each agent maintains a cooperative tendency table. The action
with the maximal shaped Q-value in this state will be selected.
This method can make agents complete the task together more
efficiently and speed up the learning process.

III. THE PROPOSED APPROACH

Our proposed method combines fuzzy Q-learning [30] with
a proposed parallel agents technique in order to solve the two
main problems of RL: large state space and long training time.

The main components of the architecture are fuzzy Q-
learning and the proposed parallel agents technique. Fuzzy Q-
learning is used to solve the large state space problem, in which
a similar group of variables belongs to the same state rather
than using large look up tables. Parallel agents are used to
reduce the training time needed to determine optimal policies.
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The distinct components of the architecture are elaborated
below.

A. Fuzzy Q-learning

The architecture of each individual agent consists of two
parts - the fuzzy logic controller and fuzzy Q-learning, as
shown in Fig. 1. The fuzzy logic controller takes the observed
data and generates scaling actions through fuzzy rules (rules
are generated by fuzzy Q-learning). The inputs to the fuzzy
logic controller are workload (w) and response time (RT'). The
output is (sa) in terms of adding or removing of the number
of virtual machines (V M s).

The first step for the fuzzy logic controller is partitioning
the input to many fuzzy sets by membership functions py(x),
the degree of membership of an input signal = to the fuzzy
set y. Membership function is a curve that defines how each
input is mapped to a membership value between 0 and 1.
In this thesis, we use triangular and trapezoidal membership
functions. The fuzzy sets of w are divided into linguistic values
Low, Medium and High. The fuzzy sets of RT are divided into
linguistic values Bad, Okay and Good. The output is an integer
constant from the interval {—2,—1,0,+1, +2}.

The next step is defining fuzzy if-then rules for the form
if X is A, then Y is B, where A and B are linguistic values
defined by the fuzzy set. For example, if workload is high and
response time is bad, then add VMs.

The three steps that the fuzzy logic controller performs are:

1)  Fuzzification of the inputs: the first step is partitioning
the state space of each input variable into various
fuzzy sets through membership functions. The fuzzi-
fication process is a transfer from crisp value to
linguistic value by membership functions.

2)  Fuzzy reasoning: this step performs the operation in
the rule and founds the scaling action.

3)  Defuzzification of the output: the process of transfer-
ring the linguistic value to a crisp value. To calculate
the output action, use equation 1. N is the number
of rules, u;(x) is the degree of truth of the rule, i
for the input signal, and x and a; is the consequent
function for the same rule.

N
y(@) =D i xa e))
=1

www.ijacsa.thesai.org

474 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE L INITIALIZED Q-TABLE VALUES (q[¢, 5]) TO 0

State (W, RT) / Action
High, Bad
High, Okay
High, Good

Medium, Bad

Medium, Okay

Medium, Good
Low, Bad
Low, Okay
Low, Good

+
(8]
+
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The fuzzy logic controller starts working with the rules
provided by users. There are limitations for the fuzzy logic
controller because it uses fixed fuzzy rules. The rules are
defined by the user and may not be the optimal policies. To
solve this problem, fuzzy Q-learning is needed.

Fuzzy Q-learning can start working with no prior knowl-
edge base and obtains knowledge at runtime through the
knowledge evolution mechanism. It learns the policies and tries
to choose the action that returns a good reward. The objective
of the agent is to maximize the received reward, as described
in equation 2:

o0

Ry =11 +97req0 + 727“t+3 + .= ZWthJrknLl 2
i=1

It does not always choose the action with a high reward
because a different action may lead to better rewards in the
future. Therefore, there is a trade-off between exploitation and
exploration; exploitation utilizes known information to max-
imize rewards while exploration discovers more information
about the environment. Fuzzy Q-learning continuously updates
the rules.

The algorithm for the fuzzy logic controller is summarized
in Algorithm 1. First, Q-table values (g[¢,j]) are initialized
to O as shown in Table I. Then, an action is selected for
each fired rule. The control action is calculated by the fuzzy
controller, as described in equation 1. After that, the Q function
is approximated from the current Q-values and the firing level
of the rules. (s, a) denotes this Q function and it is defined
in RL to determine the benefit of taking action a in state s.
Then, once the action is taken, the system goes to the next state
s(t + 1). The reward r(t + 1) is observed and the value for
the new state is computed. Finally, error signal and Q-values
are calculated and updated respectively. The space complexity
is O(N * J),where N is the number of states and J is the
number of actions. For example, if the number of states is 9
and the number of actions is 5, then the space complexity is
O(9 # 5) which equals 45 g-values, as clarified in Table I.

The reward function is defined based on SLO violations
criteria. To illustrate, the action is appropriate if the response
time is less than or equal to SLO, and the reward takes the
value 1. The action is not effective and the reward is O if the
response time is greater than SLO and less than the previous
response time. In the other cases, the action is not appropriate
and the reward takes a negative value.
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Algorithm 1 Fuzzy Q-learning algorithm

1: Initialize g-values in the look-up table to O:
qli, j1 = 0, 1<i<N , 1<j<J , N is the number of states
and J is the number of actions.

2: Select an action for each activated rule (e-greedy policy):
a; = argmaxy, q[i, k] with probability 1-e,
a; = random{ak,k =1,2,---,J} with probability e

3: Calculate the control action by the fuzzy logic controller:
o= p(x) x a

4: Approximate the Q function from the current g-values and
the degree of truth of the rules:
Q(s(t),a) = 321y pi(S) x qli,a;] where Q(s(t),a) is
the value of the () function for the current state s(t) in
iteration ¢ and the action a

5: Take action a and leave the system to evolve to the next
state, s(t + 1).

6: Observe the reward signal, r(t + 1), and compute the value
for the new state denoted by V' (s(t + 1)):
V(s(t+1) = S5, pa(s(t + 1) - mazy, (qli, ax])

7: Calculate the error signal:
AQ=rt+1) +v x Vi(s(t+1)) — Q(s(t),a) where
v is a discount factor

8: Update g-values:
qli,ai] = qli,ai] + n-AQ - p; (s(t)) where 7 is a
learning rate

9: Repeat the process starting from step 2 for the new state
until it converges.

WeX, Workload (W) Partitions

x
A
—z—
X
P

Local agent #1

T~

Global agent

Local agent #2 Local agent #3

Fig. 2. The proposed parallel agent with state partition technique.

B. Parallel Agent

In this section we propose a new approach of Parallel
Reinforcement Learning with State Space Partitioning. We
divide the state space into multiple partitions, and PRL agents
are assigned to explore each specific region, with the goal of
increasing the exploration and improving the learning speed.
There are two types of agents in our PRL implementation- one
global agent and many local agents as shown in Fig. 2 Both
are based on fuzzy Q-learning and each agent independently
maintains a fuzzy Q-learning. Fuzzy Q-learning for local and
global agent value estimates are initialized to 0. At each time
step, the knowledge learned by all local agents is synchronized
with the global agent.

Each local agent selects actions using the e-greedy strategy,
where a random action is chosen with probability €, or the
action with the best expected reward is chosen with the
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Mobiles

Fig. 3. The proposed parallel agent with state partition technique.

remaining probability 1 — e. The global agent always chooses
the action with the maximum Q-value for a given state.

The steps that summarized the proposed method are shown
below:
step 1: Divide the state space into multiple partitions.
step 2: Assign each partition to an agent.
step 3: All local and global agents are initialized to 0.
step 4: Local agents are swapped between exploitation and
exploration while the global agent takes only exploitation.
step 5: At each time step, the knowledge learned by all local
agents is synchronized with the global agent.

C. Combine Fuzzy Q-learning with the Proposed Parallel
Agent Technique

The architecture for combining fuzzy Q-learning and par-
allel agents is shown in Fig. 3. Users send requests using a
mobile learning application. The state space is divided into
multiple partitions and each state partition directs the incoming
requests to its local agent. The agent (local or global) schedules
the requests that arrive from the users. These requests are
distributed evenly based on a certain load balancing method,
such as least connection or round robin. Also, each agent is
responsible for auto-scaling and monitoring its region. The
local agent receives all the incoming requests and forwards
them to one of the servers in the pool. At each time step, the
knowledge learned by all local agents is synchronized with the
global agent.

The procedure of combining fuzzy Q-learning and the
proposed parallel agent technique is described in Algorithm 2.

IV. EVALUATION

In this section, we illustrate the dataset and the experi-
mental setup of the proposed technique. Also, we present and
discuss the experimental results of the proposed parallel agent
with the state space partitioning technique.

A. Dataset

We have evaluated the performance of our proposed tech-
nique by using a dataset from ClarkNet, a full-access internet
provider for the Baltimore-Washington DC metropolitan area,
that contains two week’s worth of all HTTP requests to the
ClarkNet WWW server.
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Algorithm 2 The proposed algorithm for combining fuzzy Q-
learning and parallel agents

1: Divide the state space into multiple partitions.

2: Assign each partition to a local agent.

3: Initialize g-values of local and global agents in the look-up
tables to 0.

4: Send each state to its local agent depending on the state-
partition.

5. All agents work in parallel and follow steps 6 through 13:

6: Select an action for each activated rule (e-greedy policy):
a; = argmaxy, q[i, k] with probability 1-e,
a; = random{ak,k =1,2,---,J} with probability e.

7: Calculate the control action by the fuzzy logic controller:
a=Y0, p(w) x a;.

8: Approximate the Q function from the current g-values and
the degree of truth of the rules:
Q(s(t).a) = 7, jui(S) x gli, ai] where Q(s(t),a) is
the value of the @ function for the current state s(¢) in
iteration ¢ and action a.

9: Take action a and leave the system to evolve to the next
state, s(t + 1).

10: Observe the reward signal, r(¢+1), and compute the value
for the new state denoted by V' (s(t + 1)):
V(s(t+1) = X0 p(s(t +1) - mawy (qli, ax)-

11: Calculate the error signal:
AQ=rt+1) +v x Vi(s(t+1)) — Q(s(t),a) where
v is a discount factor.

12: Update g-values:
qli,ai] = qli,ai] + n- AQ - u; (s(t)) where 7 is the
learning rate.

13: The knowledge learned by all local agents is synchronized
with the global agent.

14: Repeat the process starting from step 4 for the new state
until it converges.

TABLE II EXPERIMENT PARAMETERS
Parameter Value
Discount factor 0.8
Fixed learning rate 0.1
Adaptive learning rate (min, max) 0.001, 0.3
Epsilon 0.1
Min VM instances 1

Max VM instances Default value is infinity

B. Experiment Setup

Experiments were conducted to evaluate whether the pro-
posed parallel agents with the state space partitioning tech-
nique reduces the training time needed to determine optimal
policies. The fixed learning rate in the experiments were set
to a constant value n = 0.1 and the adaptive learning rate
minimum and maximum were set to 0.001 and 0.3 respectively.
The discount factor was set to v = 0.8. The minimum and
maximum number of VM instances were set to 1 and infinity
respectively. The trade-off between exploitation and explo-
ration to determine more information about the environment
was set with an Epsilon value of 0.1. Table II shows the
parameters that have been used in the experiments.

In our approach the inputs are: workload w and response
time RT and output is scaling action sa in terms of incre-

www.ijacsa.thesai.org

476 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE III. NUMBER OF STATES
State # w RT
1 High Bad
2 High Okay
3 High Good
4 Medium Bad
5 Medium Okay
6 Medium Good
7 Low Bad
8 Low Okay
9 Low Good
TABLE IV. NUMBER OF ACTIONS
Action # SA
2
1
3 0
4 -1
4 -2

ment or decrement in the number of virtual machines VM.
Workload represents all HTTP requests to the ClarkNet WWW
server. Workload w Range is [0 — 100] and the fuzzy sets
of workload are Low [0 — 20], Medium [10 — 60], and High
[40 — 100]. The response time for a workload is computed as:

RT = PT + QT 3)
The execution time (PT) would be computed as:

CPI
PT = workload x m (4)

where, CPU_SPFEFED is CPU speed in Hz, CPI is the
average cycle per instruction (request). The analysis of the
average queuing time is complicated and depends on several
factors. It can be estimated by modeling the environment
as M/M/N queuing system (M = distribution of the inter-
arrival times (negative exponential distribution), N = number
of servers (VMs))

However, for this environment, we might assume the queu-
ing time (QT) is inversely proportional to the number of active
VMs:

CVM

T ="yu

®)

where, VM is the number of active VMs (initially = 1),
C_V M is the Coefficient of proportionality of the queuing
time and the number of active VMs. RT range within the
interval [0—100], and the fuzzy sets of response time are Good
[0—30] , Okay [20—80], and Bad [70—100]. Output function is
a constant value, which can be an integer in —2, —1,0, 41, 42
which is associated to the change in the number of VM.

There are nine states, as shown in Table III, and five
actions, as shown in Table IV.

First, we divide the state space into 3 partitions - local
agents #1, #2, and #3.
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TABLE V. INITIALIZED LOCAL AGENT #1 Q-TABLE VALUES TO 0
State(W,RT) / Action +2 +1 0 -1 -2
High, Bad 0 0 0 0 0
High, Okay 0 00| 0] O
High, Good 0 0 0 0 0
TABLE VI. INITIALIZED LOCAL AGENT #2 Q-TABLE VALUES TO 0
State (W,RT) / Action +2 +1 0 -1 -2
Medium, Bad 0 0 0 0 0
Medium, Okay 0 0 0 0 0
Medium, Good 0 0 0 0 0
TABLE VII. INITIALIZED LOCAL AGENT #3 Q-TABLE VALUES TO 0
State(W,RT) / Action +2 +1 0 -1 -2
Low, Bad 0 0 0 0 0
Low, Okay ol oj|o]o]|oO
Low, Good 0 0 0 0 0
TABLE VIIL INITIALIZED GLOBAL AGENT Q-TABLE VALUES TO 0
State (W, RT) / Action +2 +1 0 1 2
High, Bad 0 0 0 0 0
High, Okay 0 0o l0] 0] o0
High, Good 0 0 0 0 0
Medium, Bad 0 0 0 0 0
Medium, Okay 0 0 0 0 0
Medium, Good 0 0 0 0 0
Low, Bad 0 0 0 0 0
Low, Okay 0 0 0 0 0
Low, Good 0 0 0 0 0

Table V shows local agent #1 with fuzzy set workload (w)
and Range High [40-100].

Table VI demonstrates local agent #2 with fuzzy set
workload (w) and Range Medium [10-60].

Table VII shows local agent #3 with fuzzy set workload
(w) and Range Low [0-20].

We then initialized global agent values to 0 as shown in
Table VIII.

C. Experimental Results

The initial design-time surface is not shown as it is a
constant plane at point zero. Fig. 4, 6, and 8 show the temporal
evolution of the control surface of the fuzzy controller for
agents #1, #2, and #3 respectively; the surface evolves until the
learning converges. The second surface is presented in Fig. 5,
7, and 9, where the learning has converged for agents #1, #2,
and #3, respectively.

1) Global Agent: The initial design-time surface is not
shown as it is a constant plane at point zero. Fig. 10 shows
the temporal evolution of the control surface of the fuzzy
controller; the surface evolves until the learning converges.
The second surface is presented in Fig. 11, where the learning
has converged.

Table IX demonstrates that parallel agents can reduce
the training time needed to determine optimal policies, as
compared to some of the existing approaches.
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TABLE IX.
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COMPARING THE TOTAL TRAINING TIME NEEDED FOR THE

PROPOSED APPROACH AND SOME EXISTING APPROACHES TO DETERMINE

OPTIMAL POLICIES

Authors & References | Method Total
Time
P. Jamshidi et al. [26] Fuzzy Q-Learning (Fixed 82.563 s
Learning Rate)
M. Sharafi et al. [28] Fuzzy SARSA  Learning 86.959 s
(Fixed Learning Rate)
T. Kuremoto et al. [23] Fuzzy SARSA  Learning 95.049 s
(Adaptive Learning Rate)
Proposed Method Fuzzy Q-Learning (Fixed 19.215 s
Learning Rate) with parallel
learning agent

V. CONCLUSION

In this paper, a new parallel reinforcement learning tech-

nique with a fuzzy Q-learning algorithm has been proposed. In
our solution we divide the state space into multiple partitions,
and PRL agents are assigned to explore each specific region.
There are two types of agents in our PRL implementation- one
global agent and many local agents. We have evaluated our
approach experimentally and proven that parallel agents can
increase learning speed and reduce the training time needed
to determine optimal policies as compared to some existing
approaches. As part of our future work, we plan to evaluate
this technique as a solution to other problems, such as smart
grids. We plan to use automated partitioning strategies, instead
of manual partitioning using human knowledge, because a
good partitioning strategy is one of the challenges for new
applications.
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