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Abstract—This research work sets forward a new formulation 

of Linear Quadratic Regulator problem (LQR) applied to a 

Wind Energy Conversion System (WECS). A new necessary and 

sufficient condition of Lyapunov asymptotic stability is also 

established. The problem is mathematically described in form of 

Linear Matrix Inequalities (LMIs). The considered WECS is 

based on a Doubly Fed Induction Generator (DFIG). An 

appropriate Linear Parameter Varying (LPV) model is designed. 

This model stands for a realistic representation of the randomly 

time varying wind velocity. Stability and robustness of the 

controller over the admissible values of time varying parameter 

are investigated. The newly lifted Lyapunov condition gives less 

conservative conditions for LMI approach in case of parameter-

dependent Lyapunov functions PDLF. The considered PDLF has 

the same variation dynamics as the system matrix. The intrinsic 

objective for our research is to offer more freedom degrees to the 

control problem and to improve the efficiency of the controller in 

case of uncertainties or parametric variations. The performances 

of the proposed theorems are validated to achieve active and 

reactive powers tracking of the WECS over the admissible range 

of wind speeds. The interesting features of the proposed solution 

are the simpler implementation and the larger robustness 

margin. It also has the advantage of providing a linear control to 

the considered nonlinear system without resorting to 

linearization.  The LMIs implementation is performed on Yalmip 

Matlab toolbox. The proposed controller is verified on a Matlab 

Simulink emulator.  This work presents an extension of the LQR 
control problem to LPV systems. 

Keywords—LQR robust tracking; LPV system; lyapunov 

stability; LMI; DFIG based wind energy conversion systems; 

optimal control 

I. INTRODUCTION 

In recent years, the growing global energy needs and the 
permanent increase in the fossil fuels costs stand for the main 
concerns inciting a big interest in renewable energy harvesting. 
Among the existing resources, wind energy has attracted the 
attention of scientists and whetted their interest. In fact, it is 
one of the cleanest renewable resources [1-3]. Wind energy 
produces no greenhouse gas emissions and is much available. 
Several wind turbine technologies have emerged [4]. DFIG 
based one proves to be the most advantageous. It operates at a 
wide range of wind speeds. It provides higher energy capture. 
In addition, the DFIG allows a decoupled control of active and 
reactive power thanks to its Rotor Side Converter (RSC), and 

provides a constant DC voltage control thanks to its Grid Side 
Converter (GSC) [5-6]. 

The control and the functioning of DFIG based WECS 
presents some challenges due to the interaction of electrical 
and mechanical subsections [7]. The stability of the grid-
connected system is one of the most significant challenges that 
is raised due to the nonlinear and stochastic nature of wind 
speed. Enhancement of scientific research in this context, have 
significantly improved the exploitation of the good points of 
DFIG based WECS [8].  Among the existing control 
techniques, the classical PI gives satisfactory performances in 
several control applications. However, this controller has many 
limitations mainly in case of severe parameters variations [4] 
[9]. In an attempt to overcome the PI limitations, such non-
linear control as sliding mode and backstepping have invaded 
the research laboratories. The main advantage of these 
techniques is that the control law is able to ensure at the same 
time satisfactory tracking performances and stability of the 
system [9-14]. However, robustness of these controllers are 
mostly evaluated in different constant values of the varying 
parameters.  This implies that none of these control strategies 
takes into consideration the variation dynamics of the systems 
parameters. In addition, despite their good tracking 
performances, none of these controllers gives a good trade-off 
between the regulation and the control energy. Therefore, new 
methods based on optimal control theory have been 
investigated. The objective is to achieve good tracking 
performances with a better control energy efficiency. Taking 
advantage of the LQR robustness and availability to MIMO 
systems such as DFIG [15-17], this optimal controller is used 
to improve the dynamic response, the stability and the 
robustness of the control system against parameters variations. 
The authors of [18-23] have proposed different LQR control 
schemes for the considered system. These presented methods 
are mainly based either on a Linearized Time Invariant (LTI) 
model or on a small signal model of the system. However, such 
representations do not depict the real dynamics of the WECS. 
Furthermore, the control law is typically obtained through 
solving Riccati equation or based on quadratic stability 
Lyapunov theory. In both cases, the control problem is 
unfeasible unless a unique constant riccati or corresponding 
Lyapunov function is found. This makes the presented 
solutions conservative. 
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This paper proposes a new LQR control scheme for DFIG 
active and reactive powers tracking. An appropriate LPV 
model that describes the time varying dynamics of the system 
is established. A new LMI formulation of the asymptotic 
Lyapunov stability condition based on the results of [24] is 
enunciated. The tracking performance of the non-conservative 
proposed method is proved. Robustness of the obtained 
controller over all the admissible range of parameters 
variations is verified. It is also shown that the proposed control 
scheme can significantly improve the stability of the system. 

The remainder of this work is presented as follows. Section 
II, presents the state of the art of the considered DFIG based 
WECS. Section III raises the control problem. An appropriate 
system model suitable for the control objectives is identified. 
Section IV, enunciates a new formulation of the Lyapunov 
asymptotic stability condition based on mathematical 
relaxation techniques. Then a new LMI formulation of the 
robust LQR compensator is introduced. Section V, exhibits the 
simulation results and verifies the viability of the proposed 
method. Conclusion of this investigation is displayed in the last 
section. 

II.  SYSTEM MODELLING 

The studied DFIG based WECS has the structure presented 
in Fig. 1. On the one hand, the wind generator is coupled to the 
wind turbine through a gearbox. On the other hand, the stator 
has a direct connection to the grid. The rotor is interfaced 
through a variable frequency back-to-back converter. The most 
important advantage of this technology is that it allows a 
decoupled control of active and reactive powers through the 
RSC and provides a constant voltage control on the DC link 
through the GSC. The structure of this kind of wound-rotor 
generator allows the WECS to operate at a variable speed 
range beyond synchronism 

A. The Wind Turbine Model 

The wind power available to a wind turbine is given by the 
following equation [25-26]: 

2 31

2
windP R V 

             (1) 

where  is the air density, R is the turbine radius and V is 

the wind velocity. However, according to Betz’s law, the real 
aerodynamic power captured by the generator is: 

1 2 3
 

2
mec windp p

P C P C R V  

            (2) 

p
C is the power coefficient. It is in function of the blade 

pitch angle β and the tip speed ratio λ such as: 

V
turb

R


 

              (3)
 

turb
 is the mechanical speed of the low-speed shaft. The 

relation between 
turb

 and the mechanical speed of the high-

speed shaft mec is given by equation (4): 

Gmec turb
  

             (4) 

G is the gearbox ratio. The electrical speed of the rotor 

r  is related to mec  as follows: 

r
mec

np


 

              (5) 

np is the number of pole pairs. We consider the case of one 

pole pair machine and the angular speed frequency of the rotor 

currents is 2 : 

2 rs    
              (6) 

s is the angular speed frequency of the stator currents. 

pC   is defined as follows: 
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 
              (7) 

The power coefficient is specific for each WECS and it is 
relevant in the efficiency study of a wind turbine. The 

characteristic of 
p

C  for different values of β and λ is 

illustrated in Fig. 2. The turbine parameters ic  with 1...9i   

are given in Table 2. Tables 1 and 3 show respectively the 
turbine and the generator parameters. 

TABLE I. WIND TURBINE PARAMETERS 

Value  Signification 

R=13.5 Wind turbine radius (m) 

𝝆 Air density (Kg/m²) 

G Gear box ratio 

TABLE II. POWER COEFFICIENT PARAMETERS 

C1 C2 C3 C4 C5 C6 

0.5176 116 0.4 5 21 0.0068 
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Fig. 1. Variable Speed Wind Turbine based on DFIG..

 

Fig. 2. Power Coefficient Cp (β, λ). 

TABLE III. DFIG PARAMETERS 

Value  Signification 

Rs = 0.0089  Stator resistance (Ω) 

Rr = 0.0137 Rotor resistance (Ω) 

Ls = 0.0128 Stator inductance (H) 

Lr = 0.0128 Rotor inductance (H) 

Lm = 0.0127 Mutual inductance (H) 

np =1 Number of pair of poles 

U=690 
Nominal stator phase-to-phase 

 voltage (V) 

f 
Nominal stator current 

 frequency (Hz) 

J Turbine shaft inertia 

B. The DFIG model 

The DFIG model is commonly given by the following d-q 
frame equations: 

 Electrical equations: 

.
V R I sds s sqsd sd

     
            (8) 

.
V R I sqsq s sq s sd

     
            (9) 

)

.
- (V R I rdr s r rqrd rd

     
         (10) 

)

.
(V R I rqrq r rq s r rd

      
         (11) 

 Magnetic equations: 

L I L Is msd sd rd
  

            (12 

L I L Isq s sq m rq  
           (13) 

L I L Ir mrd rd sd
  

           (14) 

L I L Irq r rq m sq  
           (15) 

The rotor shaft dynamics are described by the following 
equation: 

m em
mec

J
d

C C
dt


 

           (16)
 

m
C and 

em
C are respectively the mechanical torque of the 

turbine and the generator electromagnetic torque. 
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

    

         (17) 

A vector control is necessary in order to provide a 
decoupled control of the electromagnetic torque and the stator 
flux. The orientation of the Park frame according to the stator 
voltage axis leads to the following assumptions: 

max

0

0

sd s sd m rd s

sq s sq m rq

sd

sq g s s

L I L I

L I L I

V

V V

    

   



   
          (18) 

maxgV is the magnitude of the grid voltage: 

max 2g sV V
           (19) 

Based on these assumptions, the connection between stator 
and rotor currents are given as follows: 

s m
sd rd

s s

m
sq rq

s

L
I I

L L

L
I I

L


 

 

           (20) 

III. CONTROL PROBLEM FORMULATION 

This subsection defines the control objective and describes 
the considered approach to formulate the control problem. 

A.  Control Objective 

The WECS fills the grid with active and reactive power 
through its stator windings. In a variable speed concept, for 
each wind velocity, the system can operate at a wide range of 
mechanical speeds. This implies that different values of wind 
power can be extracted. Fig. 3 shows that in an uncontrolled 
operation mode and for a constant wind velocity, the maximum 
power point does not correspond to the maximum mechanical 
rotational speed value. Optimization algorithms have been 
developed in this sense in order to impel the wind turbine 
system to track the maximum power point trajectory [28-29]. 
Fig. 3 Shows the Maximum Power Points curve (bold line) for 
different values of wind speeds. 

In this work, based on the Maximum Power Point Tracking 
results, we manage to achieve a robust tracking of both active 
and reactive powers of the WECS by means of a stabilizing 
LQR controller. The control scheme that we intend to establish 
is that of a state feedback compensator based on Lyapunov 
theory. Robustness and tracking performances of the regulator 
will be verified over the whole time varying parameter’s 

admissible range. Generally, LQR controllers for LPV systems 
such as DFIG are mostly based either on linearized model of 
the system or through interpolation of different control gains 
obtained at different operating points. The abovementioned 
methods present some weaknesses related to linearization 
inaccuracies mainly in case of parameters variations and 
deficiencies in interpolation assumptions. Our contribution 
consists in deriving a robust LQR controller based on a realistic 
Linear Parameter Varying model of the system. 

B. Model for Controller Design 

The LPV model considered for the design of the control 
law has the following shape: 

.
( ) ( ( )) ( ) ( ( )) ( )

        ;  

x t A t x t B t u t

V
sd

VI sqrd
x u

I Vrq rd

Vrq

   

 



  
  

   
    

    
  

            (21) 

Where the notations used in (21) are as follows: 

n
x : state vector 

m
u  : control inputs  

1 2
( ) [ ( ), ( ).... ( )]

T r
r

t t t t      :time-varying 

parametric uncertainty. 

The state space matrices ( ( ))A t and ( ( ))B t  depend 

affinely on ( )t . The real parameter ( )t  is not real-time 

measurable but it varies in a defined polytope Θ of 2
r

N    

vertices. The signification of ( )t in function of the system 

parameters will be revealed later. 

This paper investigates power flux control of the wind 
system. Therefore, the choice of the state model is based on the 
expressions of active and reactive powers equations in a Park 
frame: 

 

Fig. 3. Maximum Operation Power Points. 
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3
( )

2
s sd sd sq sqP V I V I 

          (22) 

3
( )

2
s sq sd sd sqQ V I V I 

          (23) 

Introducing the vector control (equations (18), (19) and 
(20)), equations (22) and (23) become: 

max

3

2

m
s g rq

s

L
P V I

L
 

          (24) 

2

max

max

3 3

2 2

gm
s g rd

s s s

VL
Q V I

L L
  

          (25) 

Equations (24) and (25), show that active and reactive 
powers tracking can be performed through rotor currents 
control. These latter can be controlled through direct and 
quadratic components of stator and rotor voltages. In order to 
define the relationship between these parameters, let us start 
with equations (10) and (11) where rotor flux can be replaced 
according to (20): 

2

( )

( )
s

s s

s

s

Lm

Ls

Lm
L I L Ir mrd rd rdL L

Lm
L Irrd rd L

  
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






          (26) 

2

2

( )

s

Lm
Ls

Lm
L I Irq r rq rq

L

L Irq r rq



 

 


           (27) 

Replacing (26) and (27) in (10) and (11) gives: 

( )

            +( )

m
rd r rd Lr rd s

s

s r Lr rq

Ld
V R I I

dt L

I

    

  
          (28) 

( )

-( )( )

rq r rq Lr rq

m
s r Lr rd s

s

d
V R I I

dt

L
I

L

  

    

          (29) 

with:  

Lr

2Lm( )
Ls

Lr  
 

If a constant load voltage is considered, s  is constant as 

well. Hence, (28) and (29) become: 

( )+ ( )rd r rd Lr rd Lr s r rq

d
V R I I I

dt
    

         (30) 

( ) ( )

             ( )

rq r rq Lr rq Lr s r rd

m
s r s

s

d
V R I I I

dt

L

L

    

   

          (31) 

Hence, equation (24) is obtained by replacing s  in (31) as 

in (18). Thus, the derivatives of direct and quadratic 
components of the rotor current are given as follows: 

( ) ( ) rdr
rd rq s r rd

Lr Lr

VRd
I I I

dt
     

           (32) 

( ) ( )

      + ( )

r
rq s r rd rq

Lr

rqm
s r sq

s s Lr Lr

Rd
I I I

dt

VL
V

L

   


  
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          (33) 

From (32) and (33), the state and the input matrix in (21) 
are respectively deduced as in (34) and (35): 

( )

( ( ))

( )

( ( ))

r
s r

Lr

r

r
s r

Lr

A

R
t

t
R

t



 
    
 
 

   
            (34) 

( )

1
0         0                         0

( )
1

0  .( ( )) 0
. .

Lr

r

m
s r

s s Lr Lr

B t
L

t
L



 
 
 
 

  
            (35) 

 s is the stator angular speed frequency. Assuming that 

the studied WECS is grid connected then     is constant: 

2 s f
            (36) 

with f is the grid frequency. 

The analogy between matrices in (21), (34) and (35) is 

deduced. The electrical speed of the rotor ( )tr  is the time-

varying parametric uncertainty of the DFIG. In the general case 

of an LPV system, ( )t  must range as follows: 

1 ( ) 1t   
            (37) 

However, the rotor electrical speed of a DFIG varies of 

 30 %  around s . Therefore, in our case, a normalization 

step is necessary. It consists in defining a new time varying 

parameter ( ) t  for (34) and (35) that satisfies (37) such that: 

( ) . ( )
0

t tr r
   

           (38) 

with 

max min
0 2

r r
r

 
 

           (39) 
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and 

max min

2

r r 
 

           (40) 

Based on these assumptions, the normalized LPV affine 
model is deduced. The normalization concept is detailed in 
[30].  The state matrices of the normalized model have the 
following form: 

0 1

0 1

( ( )) ( )

( ( )) ( )

A t A t A

B t B t B

  

  
           (41) 

The normalized LPV affine plant is then given by the 
following expression: 

0 1

0 0 1 1

0 1

      ( ( )) ( )

      
 ;  

0     0    D

M t M t M

A B A B
M M

C

   

   
    

             (42) 

C and D are constant and they respectively stand for the 
output and the feedforward matrix. The control objective 
involves the states feedback, therefore only state matrix 

( ( ))A t  and input matrix ( ( ))B t are concerned. The 

conversion of (42) into a polytopic LPV structure is more 
convenient for the formulation and the implementation of 
convex optimization problems. As in [30], the new polytopic 
model is obtained from (42) based on the following changes: 

1 0 1

0 0 1 1

1

2 0 1

0 0 1 1

2

        

   B    B

0     0    D

       

   B    B

0     0    D

s

s

s

s

M M M

A A
M

C

M M M

A A
M

C
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   
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  

  

   
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             (43) 

and  

1 2

( ) ( )
( )    ;  ( )   

t t
t t

   
   

 
         (44)

 

 and   are the maximal and minimal values of ( )t .
2

1 2( ) [ ( ), ( )]Tt t t     is the polytopic time-varying 

uncertain parameter. Then the LPV polytopic plant is derived 
as follows: 

1 1 2 2

0 0 1 1

1 1

0 0 1 1

2 2

         ( ( )) ( ) ( )

   B    B
( ( )) ( ) ( )

0     0    D

   B    B
     ( ) ( )

0     0    D

s sM t t M t M

A A
M t t t

C

A A
t t

C

   

   
       

  

   
      

            (45) 

The polytopic LPV structure of (42) is given by: 

1 1 2 2

1 1 2 2

( ) ( ( )) ( ) ( ( )) ( )

     ( ( )) ( ) ( )

     ( ( )) ( ) ( )

                    0 1

                     1

p p

p p p

p p p

i

i

x t A t x t B t u t

A t t A t A

B t t B t B

   

   

   

  

            (46) 

Such that:  

1 0 1

2 0 1

1 0 1

2 0 1

p

p

p

p

A A A

A A A

B B B

B B B

  

  

  

  
            (47) 

The state matrix ( ( ))pA t  and ( ( ))pB t  have a polytopic 

dependence on the newly defined time-varying parameter ( )t
.
 

This work focuses on a tracking control problem. 
Accordingly, the tracking error is considered for the controller 
synthesis. In the next paragraph, the error system is modelled. 

C. The Error Model Synthesis 

The main objective is to achieve robust active and reactive 
powers tracking to the studied WECS. The robustness of the 
controller refers to its availability for the entire convex 
polytope that contains the admissible parameters variations of 
the system. The control diagram in Fig. 4 describes the 
proposed control scheme. From (24) and (25), one can 
conclude that impelling the system to operate at desired values 

of sP and sQ , means imposing a precise value of the couple 

(   ,   ). In other words, for given values of 
srefP  and

srefQ , the 

rotor must operate at a precise value of the couple (
refrdI ,

refrqI

). This is equivalent to designing a controller that allows the 
following: 

0

0lim
ref

ref

rd rd

t rq rq

I I

I I

   
                   (48) 

Accordingly, the error state space model that we provide in 
this chapter is obtained from the following assumptions: 

     ( ) ( ) ( )

( ) ( ) ( )

ref

ref

e t x t x t

e t x t x t

 

  
          (49) 

(49) is equivalent to (50): 

( ( )) ( ) ( ( )) ( )

                    ( ) ( ) ( ) ( )    

( ( ) ( ))  ref p p

p ref ref p ref ref

t x t t u t

x t u t

x t x t A B

A B

  

   

 

        (50) 

Let (50) compute the dynamics of the error. For trajectory 

tracking, ( )e t  is considerably small. In addition, by expanding, 

simplifying (50) and admitting that ( )t is its unique time-

varying parameter, the error dynamic can be modelled as 
follows: 
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Fig. 4. LQR Control Diagram. 

( ) ( )) ( ) ( )) ( )( (p pe t A t e t B t v t   
         (51) 

( ) ( ) ( )refv t u t u t 
          (52) 

Hence, the LQR state feedback control law is: 

v Ke             (53) 

Substituting back e and v, the focused control law becomes: 

( ) ( ( ) )ref refu t K x t x u  
          (54)

 

( ( ))pA t
and 

( ( ))pB t
are respectively obtained from the 

difference between ( ( ))A t and
( )refA

, and ( ( ))B t and

( )refB
. 
ref  is derived from the reference value of r .The 

latter parameter is auto generated by a lookup table that gives 
for each desired value of power its corresponding optimal rotor 
electrical speed. In other words, a Maximum Power Point 

Tracking (MPPT) control can provide the optimal value of r  
. The final polytopic LPV error model is obtained as well as 
(46) after normalization and polytopic conversion of its affine 
structure. Both controllability and observability are verified for 
the newly defined model (51). In the following chapter, the 
stability analysis of system (51) will be checked in order to 
validate the error model. 

IV. LMI FORMULATION OF AN LQR STATE FEEDBACK 

CONTROL 

LMI approach is a convex optimization based method that 
aims at solving a set of linearly dependent equations. In the 
following subsections, we will adopt this approach in order to 
synthetize an optimal controller to the considered LPV system 

based on a new formulation of Lyapunov condition. The 
synthesis of a robust LQR regulator for (51) under a convex 
minimization problem is emphasized for both constant and 
time varying Lyapunov candidate matrices. The main objective 
is obviously the state space tracking controller synthesis for 
(21). 

A. LQR Robust Control Problem 

The LQR problem consists in finding the optimal state 

feedback control law u(t) Kx(t) that minimizes the quadratic 

performance index (55) [18]: 

T T

0

J (x Qx u Ru)dt



 
           (55) 

In closed loop (55) becomes: 

T T T

0

J (x Qx x K RKx)dt



 
           (56) 

T T

0

J (X (Q K R.K)Xdt



 
           (57) 

The trace operator allows: T TX Tr(X )    . In this 

work, the control variable is expressed by the constant state 
feedback K Thus, (57) can be written as follows: 

T T

0

T T

0

T

J Tr(Q K RK)xx dt

J Tr(Q K RK) xx dt

J Tr(Q K RK)P





 

 

 





          (58) 
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 Such that: 

T

0

xx dt P




(59) 

Otherwise: 

T(A BK)t T (A BK) t

0 0

0

P e x x e dt



  
           (60) 

P is a definite positive symmetric matrix that will satisfy 
the Lyapunov stability condition [27-28]. 

B. Robust Control Problem for a Constant Lyapunov Matrix 

P 

Lyapunov theory states that the linear system (61) is 
quadratically stable if there exists a matrix P  satisfying the 
quadratic function (62): 

x(t) Ax(t)             (61) 

TV(x) x Px 0 x 0                 (62) 

With: 

T TV(x) x (A P PA)x 0 x 0                (63) 

There must exist P 0  to assure quadratic stability. The 
inequality (63) is an LMI since it contains linear dependence 

on the variable P  and can be solved through convex 
optimization methods. In this study, the LMI formulation of the 
LQR problem into a convex optimization one is adapted from 
[31]. The LQR optimal control law must minimize the 
following cost: 

1/2 T 1/2

P,K

 Tr (QP) Tr(R KPK R )min 

          (64) 

Subject to: 

T T

0 0(A BK)P P(A BK) x x 0    
          (65) 

The inequality (65) is equivalent to the Lyapunov stability 
condition in closed loop. Nevertheless, inequalities (64) and 
(65) are not linear because they involve the multiplication of 
variables P and K. Thus, a new slack variable Y KP  is 
introduced so that (64) and (65) become: 

1/2 1 T 1/2

P,K

 Tr (QP) Tr(R YP Y R )min


          (66) 

Subject to: 

T T T T

0 0AP PA BY Y B x x 0    
         (67) 

The nonlinearity in 1/2 1 T 1/2R YP Y R  must also be 
eliminated by introducing a new slack variable X that satisfies:  

1/2 T 1/2X R KPK R            (68) 

(68) can be decomposed by Schur complement under the 
following LMI form: 

1/2

T 1/2

X R Y
0

Y R P

              

         




            (69) 

The inequality (67) is homogeneous on the matrices P  and 

Y . Otherwise for any matrices *P  and 
*Y that satisfy this 

LMI, .P  and .Y , with 0   will also fulfill the inequality. 

In this case there will not be a dependence between 
1K YP

and μ [31].  Hence (67) is equivalent to
T T TAP PA BY Y B I 0     . Accordingly, the LMI 

formulation for the considered LQR problem is: 

Subject to: 

P,Y,X

 Tr (QP) Tr(X)min 

           (70) 

T T TAP PA BY Y B I 0    
 

1/2

T 1/2

X R Y
0

Y R P

              

         




             (71) 

With: 

1K YP             (72) 

C. LQR Robust Control Problem for a Time Varying 

Lyapunov Candidate Matrix P 

The time derivative of the Lyapunov candidate matrix is 
non-null and expressed as follows [24]: 

where b ,
( )i t

  , ( )j t and 
( )k t

are as in [24]. 

( ( )) ( ) ( ( ) ( ))

                   =  ( ( ( )) ( ( )))

i i j k iP t t P b t t P

b P t P t

     

  

 

         (73) 

Thus, the LMI formulation of the LQR control problem 
under Lyapunov stability theory for our system is: 

P,Y,X

 Tr (QP( (t))) Tr(X( (t)))min   

          (74) 

Subject to: 

T

T T

1/2 T 1/2

A( (t))P( (t)) P( (t))A( (t))

B( (t))KP( (t)) P( (t))K B( (t))

b(P( (t)) P( (t))) I 0

and

X( (t)) R KP( (t))K R

    

     

     

  

  

   

       
         (75) 

The first and the second inequalities of (75) corresponding 
respectively to the Lyapunov stability condition and Schur 
complement are non-linear. This non-linearity is due to the 
multiplication of both the dynamic matrix of the system and 
the controller gain by the Lyapunov candidate matrix. This 
non-linearity makes the resolution of this LMI problem 
complex and even impossible in the Yalmip toolbox employed 
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in this work. Hence, the use of relaxation techniques is 
necessary to allow efficient solving of the considered LMI 
problem. In this context, our contribution in this work consists 
in enunciating a new LMI formulation of the Lyapunov 
asymptotic stability condition. This newly stated condition in 
Theorem 1 relaxes mathematical formulation of the problem 
and gives further freedom degree to the LMI system. 

Theorem 1: 

The linear system (51) is asymptotically stable in closed 

loop if there exists a sufficiently large positive scalar  , 

positive definite symmetric matrices LiX (n n)  , 

L jX (n n)   and  LkX (n n)  , and matrices Y and 

G of appropriate dimensions with G is orthogonal such that the 
following LMI holds: 

T T T T T

Lj Lk Li i i Li

T

i i Li

b(X X ) I 2 X G A Y B G X
0

A G B Y G X G G

       
 

              (76) 

With 

i 1...N;      j 1...N;      k 1...N  
 

And the control law is given in function of the relaxation 
matrices as follows: 

1K YG             (77) 

Proof: 

Simultaneous multiplication of (76) by iα ,
jσ and kβ gives: 

T T T T T

j Lj k Lk i Li i i i i i Li

T

i i i i i Li

b( X X ) I 2 X G A Y B G X
0

A G B Y G X G G

          
 

               (78) 

Summing for i 1...N;  j 1...N and k 1...N   , we deduce 

the following expression: 

11 12

21 22

M M
0

M M

 
 

              (79) 

With: 

11 L L L

T T T T T

12 L

21 L

T

22

M b(X ( (t)) X ( (t))) I 2 X ( (t))

M G A( (t)) Y B( (t)) G X ( (t))

M A( (t))G B( (t))Y G X ( (t))

M G G

       

      

      

  
 

Assume that there exists a symmetric positive definite

P( (t)) that has polytopic dependence on the time dependent 

parameter (t)  such as: 

T

L

T

L

X ( (t)) G P( (t))G

X ( (t)) G P( (t))G

  

   

    

          (80) 

In this case, based on the expression of Lyapunov matrix’s 

derivative (73), the time derivative of LX ( (t)) is obtained as 

follows 

T T

L

T

T

X ( (t)) b(G (P( (t))G G P( (t))G)

G (b(P( (t)) P( (t))))G

G P( (t)G

    

   

 

              

                        (81) 

Also, by considering that G  is orthogonal, the following 
assumption holds: 

TG G I (82) 

This allows replacing the identity matrix in (79) as in (82). 

Y and LX ( (t))  are respectively replaced as in (77) and (80). 

Hence, the LMI (79) is equivalent to (83): 

11 12

21 22

N N
0

N N

 
 

              (83) 

With: 

T T T

11

T T T T T T T

12

T

21

T

22

N G P( (t))G G G 2 G P( (t))G

N G A( (t)) G K B( (t)) G G P( (t))G

N A( (t))G B( (t))KG G G P( (t))G

N G G

     

      

      

  
 

As previously mentioned, G is orthogonal which means 

that it is invertible. Let D  be the inverse of G . In other 
words: 

1D G              (84) 

Hence, the LMI (83) is equivalent to: 

11 12

21 22

L L
0

L L

 
 

             (85) 

With: 

11

T

12

T

21

T

22

L P( (t)) I 2 P( (t))

L (A( (t)) B( (t))K I) D P( (t))

L D (A( (t)) B( (t))K I) P( (t))

L D D

     

      

      

  
 

The equivalence between the LMIs (83) and (85) is 
obtained through simultaneous right and left multiplication of 

(85) respectively by 

1

1

D 0

0 D





 
 
 

 and its transpose. Now, 

applying the projection lemma (or the elimination lemma) on 
the LMI (85), the closed loop Lyapunov stability condition in 
(75) is obtained. In fact, this lemma is common in the 
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relaxation of LMIs. It indicates that for a given symmetric 

matrix   , and N and M matrix of appropriate dimensions, 

the following statements are equivalent: 

0 T T    &    +NM +MN <0            (86) 

T
0

T T T

M ND

M D N D D

  
 

             (87) 

The analogy between the LMIs (85) and (87) is obtained by 
considering the following assumptions: 

T

( (t)) P( (t)) I 2 P( (t))

(A( (t)) B( (t))K I)

                M=P(α(t))

 N=

       

   
         (88) 

As previously indicated in the statement of Theorem 1, the 

choice of the positive scalar  , should verify the following 
inequality: 

P( (t)) I 2 P( (t)) 0     
          (89) 

According to the projection lemma, (89) allows deducing 
that (85) is equivalent to: 

T

P( (t)) I 2 P( (t)) 0

P( (t)) I 2 P( (t))

(A( (t)) B( (t))K I) P( (t))

P( (t))(A( (t)) B( (t))K I) 0

               

                 

       

      

     

     

     

                (90) 

The expansion then the factorization of (90) leads to the 
closed loop Lyapunov stability condition in (75). 

Now the slack variables LX ( (t)) , Y and G have to be 

considered in the formulation of the entire LQR control 
problem (i.e. in the performance cost function). For this reason, 
and based on the results of Theorem 1, Theorem 2 states a new 
LMI formulation of the stabilizing LQR control problem in the 
case of a parameter dependent Lyapunov function. 

Theorem 2: 

The LQR control law (77) stabilizes asymptotically the 
system (51) in closed loop if it minimizes the performance 
cost: 

L

w L
X ,X

 Tr (Q X ( (t))) Tr(X( (t)))min   

         (91) 

Subject to: 

11 12

21 22

L L
0

L L

 
 

              (92) 

and: 

1/2

T 1/2 T

X( (t)) R Y
0

Y R G G X( (t))

 
 

              (93) 

With the coefficients of (92) are as in (85) and X( (t)) is 

a positive definite matrix of appropriate dimensions. 

Proof: 
(92) refers to the newly stated Lyapunov asymptotic 

stability condition in Theorem 1. (91) and (93) stand for the 
minimization of the performance cost of the LQR problem. In 

fact, as in the constant Lyapunov function case, X( (t)) is 

chosen such that: 

1/2 T 1/2Tr (X( (t))) Tr(R KP( (t))K R )            (94) 

Besides, Tr (Q.P( (t))) in (74) is substituted for

w LTr (Q X ( (t))) in (91) in order to involve the new Lyapunov 

matrix LX ( (t)) . wQ  is a weighting symmetric semi 

definite positive matrix. In fact, expressing P( (t)) from (80) 

gives the following equality:
T 1

b
a

Tr (Q.P( (t))) Tr(QG X( (t))G )    . Moreover, the trace 

operator allows considering that Tr (a b)=Tr(b a)  . 

Hence: 

w

T 1

L

b
a

1 T

L

T

L

Q

Tr (QP( (t))) Tr(QG X ( (t))G )

                       Tr(G QG X ( (t)))

                       Tr(G QG X ( (t)))

 

 

  

 

 

         (95) 

Given that Q is symmetric and semi definite positive then 
TG QG holds the same characteristics. In the rest of the 

problem formulation, T

wQ G QG  is considered as the 

weighting matrix of the focused LQR law. Now (94) is 
equivalent to: 

L

1/2 T T 1/2

X ( (t ))

X( (t)) R K G P( (t))G K R 0



   

         (96) 

Applying Schur complement on (96) gives: 

1/2 1

T T 1/2 1

L

X( (t)) R YG
0

G Y R X ( (t))



 

 
 

            (97) 

The relaxation of (97) is obtained by simultaneous right and 

left multiplication by respectively 
1 0

0
0 G

 
 

 
and its 

transpose. This gives: 

1/2

T 1/2 T 1

L

X( (t)) R Y
0

Y R G X ( (t)) G

 
 

            (98) 

In addition, based on the results of [32], the following 
inequality is considered for the simplification of the parameter 

T 1

LG X ( (t)) G in (98): 
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T 1 T

LG X ( (t)) G G G X( (t))    
         (99) 

Then the LMI (98) can be replaced by (93). 

As in (70), (71) and (72), this work is based on the 
formulation of (91), (92) and (93) in the N vertices of the 
polytope containing the admissible variations of the system 
dynamics. In each vertices, the studied control problem is 
formulated as follows: 

Li i

w Li i
X ,X

 Tr (Q X ) Tr(X )min 

        (100) 

Subject to: 

T T T T T

Lj Lk Li i i Li

T

i i Li

b(X X ) I 2 X G A Y B G X
0

A G B Y G X G G

       
 

            (101) 

And: 

1/2

i

T 1/2 T

i

X R Y
0

Y R G G X

 
 

           (102) 

Thus, the feasibility of the abovementioned LMIs will give 

the control law gain P varK  as in (77) for the case of a 

parameter dependent Lyapunov function. 

V. SILULATION RESULTS 

In this section, the simulation results of the system (51) 
without and with the controller are presented. The control 
problem for both constant and parameter dependent Lyapunov 
matrix cases is formulated in the extrema of the convex 
polytope containing the uncertainties variation ranges. The 
YALMIP resolution of the problem is performed and 
simulation results are discussed. Then control performances are 
studied.  The dynamic matrices of the system (51) are given as 
follows: 

 -54.9377   94.3593

e 1  -94.3593  -54.9377

 -54.9377  -94.0407
                  

2   94.0407  -54.9377

A (( (t)) (t)

(t)

 
 
 

 
  

 

  



        (103)

 

 0          0       4010         0

e 1  0    44904         0      4010

 0            0       4010         0
                    + 

2  0       83393         0      4010

B (( (t)) (t)

(t)

 
 
 

 
 
 

  



       (104)

 

The LMIs resolution of (70), (71) and (72) leads to the 

following PconstK control law: 

Pconst

0 0

0.0005 -0.0253
K

0.0248 0.0019

0.0019 0.0019

 
 
 
 
 

 

                 

        (105)

 

With a performance index cost of: 

-6

pconstJ 6.6833.10
(106)

 

While the resolution of the LMIs (91), (92) and (93) with 

b 1 and 403   gives the following P-variable control 
law:  

Pvar

0 0

0.0048 0.0008
K

-0.0866 - 0.0002

0.0769 - 0.0734

 
 
 
 
 
 

                

    

   

    
        (107)

 

then the performance index in this case is: 

-4

PvarJ 1.7663.10
          (108)

 

A. LQR Control of the Error Model: PconstK
Compared to 

P varK
: 

The closed loop state visualization of (51) without LQR 
control is provided in Fig. 5 (The NC symbol depicts the Non-
Controlled magnitudes while the CL one refers to the Cloosed 
Loop system). It shows that the state vector components 
converge to finite values within a finite time. The error 
between the measured magnitudes and the desired ones 

( ( ))e t  reaches zero for the direct components within a 

considerable time delay while it is nonzero for the quadratic 
ones. 

The simulation of (51) with the feedback law (72) is 
depicted in Fig. 6. The NC and CL symbols in the figures 
denote respectively the non-controlled and the controlled 
system cases.  

 

Fig. 5. State Space Visualization of the Error Model. 

 

Fig. 6. Ird and Irq Errors of NC System and in CL for Kpconst. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

576 | P a g e  
www.ijacsa.thesai.org 

As the simulation indicated, the obtained controller 
provides a zero error between the measured and the desired 

rotor current magnitudes for all the admissible values of 1( ) t

and 2 ( ) t . In addition, the controller time response is 

considerably thin. We notice that the already given results are 
available for any chosen references values since the controller 
synthesis is independent from the desired inputs. This implies 

that PconstK  is an invariant robust control law that maintains 

the same tracking performances for all the admissible 
variations of the uncertainty. The closed loop state 

visualization of (51) with the feedback law 
P varK  is given in 

Fig. 7. 

Fig. 8 shows that the P-variable controller (107) gives 
better tracking performances for the quadratic component of 
the rotor current. In addition, from (106) and (108), it can be 
deduced that even the robust LQR controller based on a 
parameter varying Lyapunov candidate matrix gives a small 
performance index cost J. 

Fig. 9 shows that compared to the LQR controller obtained 
from the predefined Matlab function, both the proposed control 

laws PconstK  and P varK  give better results in terms of time 

response and zero steady state error. This can be explained by 
the fact that the predefined controller is calculated in one 
operating point and not in the whole operating range of the 
system. However, the approach we give not only considers the 
Lyapunov stability theory as a constraint of the LMI LQR 
tracking problem formulation but also  derives a static 
controller that holds for all the admissible uncertainty’s 
variation range. 

 

Fig. 7. Ird and Irq Errors in NC System and in CL for Kpvar. 

 

Fig. 8. Kpconst Vs  Kpvar. 

 

Fig. 9. Ird and Irq Errors in CL System for Kpconst, Kpvar and Kmatlab. 

From these simulation results, one can deduce that the 
variable Lyapunov candidate matrix based regulator, which we 
obtained through a new LMI formulation of the Lyapunov 
stability condition, gives an optimal index of the control cost.  
In addition, the robust stability and tracking performances of 

the regulator are validated on the error model (51). P varK  is 

then acknowledged for active and reactive power tracking of 
the considered WECS. The main feature of the proposed 
approach over others is that it is non-conservative. This means 
that the feasibility of the problem is not limited to the existence 
of a unique constant Lyapunov function. It is rather 
conditioned by the existence of the sum of a set of Lyapunov 
functions existing in each vertice of the convex polytope 
containing the system variations. In the next subsection, the 
validation of the already established control law is carried out 
on the DFIG model (21). 

B. Robust State Tracking of the LPV DFIG System 

In the previous section, we obtained the robust LQR 
controller for (51) that forces the error between the desired and 
the measured current components values towards zero in order 
to achieve active and reactive power tracking of the WECS 
based on (24) and (25). The robustness of the presented control 
law is verified as it is obtained through an LMI approach based 
on Lyapunov candidate matrix that has the same dynamics as 
well as the state space system matrix.  The objective of this 
section is to validate the controller tracking performances on 
the studied system through the accomplished Matlab emulator. 
By going back to (53), we notice that the obtained control gain, 
holds for the DFIG error model (51). However, the main 
concern of this paper is to find the state feedback control law 
that holds for the accurate DFIG model (21). Therefore, in 
order to define the control law that holds for the wind turbine 

generator model, the adjustment (52) must be applied.
refU is 

deduced from equations (32), (33) and the value of 
refX  under 

steady state assumption. However, in this case, (32) and (33) 

depend on the optimal value of r . _ refr is generated by a 

Maximum Power Point control system based on the results of 
Fig. 10 and 11. The MPPT control aims at impelling the system 

to operate at the optimal value of _ refr  for each admissible 

value of wind velocity and blade pitch angle. 
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Fig. 10. Maximum Power Points for Pitch Variable and V=10 m/s. 

 

Fig. 11. Maximum Power Points for Variable Wind Speed and β =2. 

C. Control Robustness Verification for Different References 

Values for the Entire Varying Parameter Admissible 

Range 

1. Case 1: 
5

srefP 2.10  W & 
5

srefQ 0.5.10 var  

Fig. 12 and 13 show respectively the simulation of I
rd

 

and Irq  in closed loop functioning. The blue line depicts the 

closed loop system. The red line depicts the reference signals.  

Fig. 14 and 15 show respectively the tracking results of sP  and 

sQ . 

2. Case 2: 
5

srefP 1.10  W & 
5

srefQ 0.10 var  

The simulations of the previous subsection are respectively 
performed in this paragraph in order to highlight the same 
tracking performances for a randomly chosen active and 
reactive power references.  

Simulation results of direct and quadratic rotor currents, sP  

and sQ are respectively given in Fig. 16, 17, 18 and 19. 

 

Fig. 12. Ird Tracking Result. 

 

Fig. 13. Irq Tracking Result. 

 

Fig. 14. Ps Tracking Result. 

 

Fig. 15. Qs Tracking Result. 
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Fig. 16. Ird Tracking Result 

 

Fig. 17. Irq Tracking Result 

 

Fig. 18. Active Power Tracking Result 

 

Fig. 19. Reactive Power Tracking Result 

VI. CONCLUSION 

The main concern of this work was the LQR robust static 
state tracking control of a polytopic LPV DFIG model based 
on an LMI approach. Two major contributions were presented 
in this paper. First, a new formulation of the asymptotic 
stability condition of Lyapunov theory was established. Then, a 
new LMI formulation of the LQR state control problem based 
on a time dependent Lyapunov function was provided. The 
comparison between a controller based on a quadratic 
Lyapunov function and a controller with a time dependent 
Lyapunov function shows that the latter gives more freedom 
degrees to the control synthesis. Robustness of the controller is 
validated over all the admissible range of the system time 
varying parameter. Simulation results demonstrated also that 
the proposed non-conservative regulator gave good tracking 
performances for different active and reactive power 
references. This work is a step that can be taken further. The 
obtained results can be evaluated on a real-world emulator. 
Moreover, it can be extended to a case of a Low Voltage Ride 
Through (LVRT) where the grid voltage is considered as the 
time varying parameter. Future works can also investigates the 
possibility to extend the current results for general non-linear 
systems based on dynamic models. 

REFERENCES 

[1] Richardson, R. D.; Mcnerney, G. M.: Wind Energy-Systems, Ieee, vol. 

81, no. 3, pp. 378–389, 1993. 

[2] World wind energy association: World wind energy  report 2008. 

[3] Manwell, J. F.; McGowan, J.; Rogers, A.: Wind Energy Explained  
Theory, Design and Applications. United Kingdom, 2009. 

[4] Kammoun, S. ; Contribution à la commande des systèmes de puissance 
en vue de l’intégration de l’énergie éolienne dans le réseau. April 2016. 

[5] Carlin, P. W. ; Laxson, A. S.; Muljadi, E. B. : The history and state of 

the art of variable-speed wind turbine technology, Wind Energy, vol. 6, 
pp. 129–159, Apr. 2003. 

[6] Fletcher, J. ; Yang, J.: Introduction to Doubly-Fed Induction Generator 

for Wind Power Applications, University of Strathclyde, Glasgow 
United Kingdom, 2010. 

[7] Mwaniki, J.; Lin, H.; Dai, Z.: A Condensed Introduction to the Doubly 

Fed Induction Generator Wind Energy Conversion Systems, Journal of 
Engineering, June 2017. https://doi.org/10.1155/2017/2918281 

[8] Zhang, L.; Cai, Xu; Guo, J.: Simplified Input-Output Linearizing and 

Decoupling Control of Wind Turbine Driven Doubly-Fed Induction 
Generators, IEEE IPEMC, pp. 632-637, 2009. 

[9] Nadour, M. ; Essadki, A. ;  Nasser, T. : Comparative Analysis between 

PI & Backstepping Control Strategies of DFIG Driven by Wind Turbine, 
International Journal of Renewable Energy Research-IJRER, pp. 1307-

1316, 2017. 

[10] Djoudi, A.; Bacha, S. ;Hussein, I.E. ; Rekioua, T. : Sliding mode control 

of DFIG powers in the case of unknown flux and rotor currents with 
reduced switching frequency, International Journal of Electrical Power 

& Energy Systems, March 2018, 
https://doi.org/10.1016/j.ijepes.2017.10.009 

[11] Kammoun, S., Sallem, S. & Kammoun, M.B.A. Arab J Sci Eng (2017) 

42: 5083. https://doi.org/10.1007/s13369-017-2606-z 

[12] Bossoufi, B.; Karim, M.& al.; ElHafyani, M.L.: Backstepping control of 
DFIG generators for wide-range variable-speed wind turbines, 

https://doi.org/10.1504/IJAAC.2014.063359  

[13] Bekakra, Y.; B.Atrous, J.: DFIG sliding mode control fed by back-to-
back PWM converter with DC-link voltage control for variable speed 

wind turbine, https://doi.org/10.1007/s11708-014-0330-x 

[14] Alper Eker S.; Nikolaou, M.: Linear control of nonlinear systems: 
Interplay between nonlinearity and feedback, AIChE Journal, September 

2002, https://doi.org/10.1002/aic.690480912 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

579 | P a g e  
www.ijacsa.thesai.org 

[15] Rossiter, J.A.; Pluymers, B.: The potential of interpolation for 

simplifying predictive control and application to LPV systems, 
University of Sheffield, September 2007. 

[16] Pham, T.; Nam, Y.; Kim, H.; Son, J.: LQR Control for a Multi-MW 

Wind Turbine, International Journal of Mechanical, Aerospace, 
Industrial, Mechatronic and Manufacturing Engineering, Vol:6, No:2, 

November 2012. 

[17] Kedjar, B.; Haddad, K.A.: LQR with integral action applied to a wind 
energy conversion system based on doubly fed induction generator, 

Electrical and Computer Engineering (CCECE), 2011, 
http://dx.doi.org/10.1109/CCECE.2011.6030548 

[18] Semaria, R.;Julian, P.; Jairo, E.: PI and LQR controllers for Frequency 

Regulation including Wind Generation, International Journal of 
Electrical and Computer Engineering (IJECE) 2018, 

http://doi.org/10.11591/ijece.v8i5.pp%25p. 

[19] Ravi, B.; Kalyan, Ch.: Mathematical modeling and control of DFIG‐
based wind energy system by using optimized linear quadratic regulator 

weight matrices, International Transactions on Electrical Energy 
Systems, July 2017, http://doi.org/10.1002/etep.2416. 

[20] Ghafouri, M.; Karaagac, U.; Karimi, H.; Jensen, S.; Mahseredjian, J.; 
Faried, S.O.: An LQR Controller for Damping of Subsynchronous 

Interaction in DFIG-Based Wind Farms, IEEE Transactions on Power 
Systems, http://doi.org/10.1109/TPWRS.2017.2669260. 

[21] Khajeh, A.;Ghazi, R.: GA-Based Optimal LQR Controller to Improve 

LVRT Capability of DFIG Wind Turbines, International Journal of 
Electronics and Electrical Engineering. September 2013, vol. 9, no. 3, 

pp. 167-176.,2013. 

[22] Bachir, K.;  Kamal, A.H.: LQR with integral action applied to a wind 
energy conversion system based on doubly fed induction, 24th Canadian 

Conference on Electrical and Computer Engineering(CCECE), 
September 2011,  http://doi.org/10.1109/CCECE.2011.6030548. 

[23] Wang, C.; Weiss, G.: Linear parameter varying control of a doubly fed 

induction generator based wind turbine with primary grid frequency 
support, International Journal of Robust Nonlinear Control, September 

2014 http://doi.org/10.1002/rnc.3228. 

[24] Aouani, N.; Salhi, S.; Ksouri, M.: H2 analysis for LPV systems by 

parameter-dependent Lyapunov functions, IMA Journal of Mathematical 
Control and Information (2012), 

http://dx.doi.org/10.1093/imamci/dnr026 

[25] Abdullah M.A; Yatim A.H.M; Tan C.W,;Saidur R:A review of 
maximum power point tracking algorithms for wind energy systems, 

Renewable and Sustainable Energy Reviews, 2012. 

[26] Rafikov, M..; Balthazar, J.M.; Tusset, Â.M.: An optimal linear control 
design for nonlinear systems, Journal of the Brazilian Society of 

Mechanical Sciences and Engineering, October/December 2008,  
http://dx.doi.org/10.1590/S1678-58782008000400002 

[27] D’Azzo, J. ; Houpis, C, Linear control systems, analysis and design, 

conventional and modern. Series in Electrical and Computer 
Engineering. McGraw-Hill, New York, 1995. 

[28] Feron, E. ; Balakrishnan, V.; Boyd, S. ; El Ghaoui, L.  Numerical 

methods for H2 related problems, American Control Conference, 1992. 

[29] Kammoun, S.; Marrekchi, A.; Sallem, S.; Kammoun, MBA.: Transient 

Stability Analysis during an Improved Coupling Procedure for an 
Induction Generator Based Wind Generation System to the Grid, 

International Journal of Modern Nonlinear Theory and Application, 
July, 2014,https://doi.org/10.4236/ijmnta.2014.33010. 

[30] Salhi, S. ; Aouani N. ; Salhi, S. : LPV Polytopic modelling and stability 

analysis of a DFIG for a Wind Energy Conversion System based on LMI 
approach, GECS’2017, March 2017. 

[31] Olalla, C.; Leyva, R.;.El.Aroudi, A; Queinnec, I.: Robust LQR Control 

for PWM Converters: An LMI Approach, IEEE Transactions on 
industrial electronics, July 2009. 

http://doi.org/10.1109/TIE.2009.2017556. 

[32] Geromel, J. C. ; de Oliveira M. C. ; Bernussou, J. : Robust Filtering of 
Discrete-Time Linear Systems with Parameter Dependent Lyapunov 

Functions, SIAM Journal on Control and Optimization. 
https://doi.org/10.1137/S0363012999366308. 

 

 


