
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

265 | P a g e

www.ijacsa.thesai.org

Ontology Learning from Relational Databases:

Transforming Recursive Relationships to OWL2

Components

Mohammed Reda CHBIHI LOUHDI
1

Research Laboratory on computer science innovation (LRII)

Faculty of Science Aïn Chock Casablanca

Hassan II University, Casablanca, Morocco

Hicham BEHJA
2

LRI - Laboratory

ENSEM, Hassan II University

Casablanca, Morocco

Abstract—Relational databases (RDB) are widely used as a

backend for information systems, and contain interesting

structured data (schema and data). In the case of ontology

learning, RDB can be used as knowledge source. Multiple

approaches exist for building ontologies from RDB. They mainly

use schema mapping to transform RDB components to

ontologies. Most existing approaches do not deal with recursive

relationships that can encapsulate good semantics. In this paper,

two technics are proposed for transforming recursive

relationships to OWL2 components: (1) Transitivity mechanism

and (2) Concept Hierarchy. The main objective of this work is to

build richer ontologies with deep taxonomies from RDB.

Keywords—Relational databases; ontologies; OWL2; recursive

relationship; transitivity; concept hierarchy

I. INTRODUCTION

A relational database is a digital database based on the
relational model of data, as proposed by Codd in 1970 [1].
RDB use many components (tables, constraints, etc.) to
manage data in a structured way. These databases are usually
created on the basis of a conceptual model which is established
by designers after a deep analysis of an information system.

However, RDBs are considered “semantically poor”
because of the nature of the used components that are structure-
oriented. Indeed, the schema of a RDB is composed by a set of
tables related by foreign key constraints. This limitation makes
the use of RDB for semantic purposes very difficult.
Transforming the RDB to an ontology can lift the limitation.

According to Tom Gruber, “an ontology defines a set of
representational primitives with which to model a domain of
knowledge or discourse. The representational primitives are
typically classes (or sets), attributes (or properties), and
relationships (or relations among class members). The
definitions of the representational primitives include
information about their meaning and constraints on their
logically consistent application” [2].

There are many ways to represent ontologies. The choice of
the representation to use depends on the ontology
operationalization. The Web Ontology Language is one of the
most used languages to represent ontologies on the Web. It is
an ontology language for the Semantic Web with formally
defined meaning. OWL 2 (latest version of the language)

ontologies provide classes, properties, individuals, and data
values and are stored as Semantic Web documents [3].

There are many approaches that transform a RDB to an
ontology. Three main techniques are used: (1) Reverse
Engineering, to convert the relational model to the conceptual
model (which is considered as semantically richer than the
relational model) or to retrieve lost information during the
transformation of the conceptual model to the relational model,
(2) Schema Mapping, to convert relational model components
to ontology components, through the use of transformation
rules and (3) Data Mining to analyze stored data in order to
enrich the ontology.

The majority of the existing techniques for transforming
RDBs to ontologies do not deal with the specific case of
Recursive Relationships that are simply transformed to a
property with domain and range that belongs to the same class.

This work is supported by the project “Knowledge
Management for Development in the Context of OCP Group
(KM4Dev – OCP Group)” granted by OCP Group – Morocco.

This paper will discuss how we can extract richer semantics
from Recursive Relationships by the use of OWL2
components. The rest of this paper is organized as follows: In
the 2nd Section, present the previous works of the authors in
the case of transforming RDBs to OWL ontologies. The
Section 3 gives an overview of related works for transforming
Recursive Relationships in RDBs to ontologies. Section 4
discusses Recursive Relationships in RDBs. Section 5 deals
with Recursive Properties in OWL2 ontologies. In the 6th
Section, a proposal for transforming Recursive Relationships in
RDBs to OWL2 components is tackled. Finally, the last
Section will include concluding remarks and some topics for
further works.

II. PREVIOUS WORK

In the case of building OWL ontologies from relational
databases (RDBs), authors have conducted several researches.
In [4], a set of transformation rules was proposed for building
OWL ontologies from RDBs. It allows transforming all
possible cases in RDBs (one-to-many relations, many-to-many
relations, n-ary relations and inheritance) into ontological
constructs. After that, a hybrid method for automatic ontology
building from a RDB was proposed [5]. That hybrid method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

266 | P a g e

www.ijacsa.thesai.org

combines reverse engineering, schema mapping and data
analysis techniques. The extracted ontology is refined by
renaming the components whose names do not reflect their real
meaning. This method allows (1) recovering lost tables during
the mapping of ER-Model components to the relational model,
by using reverse engineering technique for the generalization
and specialization cases; (2) transforming, in the schema
mapping phase, the different constructs and cases such as
multiple inheritance, n-ary relations, etc.; (3) analyzing stored
data to detect disjointness and totalness (or Completeness)
constraints in hierarchies, and calculating the participation
level of tables in n-ary relations. This method begins with
recovering the database schemata, after that, a set of proposed
algorithms are applied to detect generalized and specialized
tables in order to enrich the ontology taxonomy. In the next
step, a set of transformation rules is applied on the schema to
convert the database components to ontology components. At
the end, a manual refinement phase is conducted to rename
components (classes and properties) having automatic
generated names. In [6], an enhancement for the previously
proposed algorithms for reverse engineering was presented.
The main objective of the enhancement is to detect the lost
entities in the multi-level inheritance for the generalization and
specialization cases. Indeed, the proposed algorithms in [5]
deals with only one-level inheritance.

In the previous works, recursive relationships in relational
databases was not correctly transformed. This kind of relations
contains semantics that can be used to build richer OWL2
ontologies rather than transforming it to a simple property. In
the next section, related works to this case will be discussed.

III. RELATED WORKS

In the case of transforming recursive relationships from
relational databases to ontologies, there are many works
(generally irrelevant to that case). In [7], authors suggest a
mapping method to map the two types of recursive
relationships to the resource description framework schema
(RDFS) [8]. One type of recursive relationship is generated
during the integration process with different entities at different
levels in a hierarchical structure while the other is generated at
the hierarchical structure between the instances of an attribute
in an entity. The transformed RDFS, including the class,
subclasses, and sub-properties minimizes the loss of data
meaning and enables the process of the inference function to be
used with RDB data. In paper [9], authors give some proof case
studies and propose a model to upgrade the semantics of the
relational model, before the ontology learning. They argue that
without an explicit model of the domain semantics in the
relational model, the automatic learning of ontology risks to
infer incorrect semantics. Recursive relationships are
transformed into two mutually inverse object properties having
domain and range referencing the same class. In [10], the
author presents ERD (Entity-Relation Diagram) to OWL-DL
ontology transformation rules at a concrete level. These rules
facilitate an easy and understandable transformation from ERD
to OWL. To transform recursive relationships, the author
creates a new class representing the recursive association,
resulting on an existential quantification restriction (some
Values From restriction in OWL) on the class corresponding to
the table having the recursive relationship. In [11], authors

propose a method that is consisted of two main phases:
building ontology from an RDB schema and the generation of
ontology instances from an RDB data automatically. In the first
phase, they study different cases of RDB schema to be mapped
into the ontology represented in RDF(S)-OWL, while in the
second phase, the mapping rules are used to transform RDB
data to the ontological instances represented in RDF triples.
Rules 15 and 16, are applied to transform recursive
relationships into a Transitive or a Symmetric Property.
Transitivity can be applied in most cases. But Symmetry can
only be applied if and only if each row of the table (having a
recursive relationship) references (through a foreign key
constraint) another row in the same table and vice versa (one
row references the other in both ways).

IV. RECURSIVE RELATIONSHIPS IN RELATIONAL

DATABASES

The conceptual data model is a structured business view of
the data required to support business processes, record business
events, and track related performance measures. This model
focuses on identifying the data used in the business but not its
processing flow or physical characteristics. This model’s
perspective is independent of any underlying business
applications [12]. The conceptual data model represents the
overall structure of data required to support the business
requirements independent of any software or data storage
structure. It is an important phase before building the database.

Entity-Relationship (ER) modeling is a logical design
modeling technique. After the business requirements and data
requirements are gathered and the business rules understood,
we can start developing the logical data model. An ER model
is often referred to as a 3NF (third normal form), or sometimes
just a normalized model for short. It is also sometimes referred
to as a relational model, which is incorrect. Although it is
implemented in a relational database, it is not the sole data
modeling technique that could be used in a relational database
[12].

The ER modeling concepts are sufficient for representing
many database schemas for traditional database applications,
which include many data-processing applications in business
and industry. However, designers of database applications have
tried to design more accurate database schemas that reflect
more precisely the data properties and constraints. This led to
the development of additional semantic data modeling concepts
that were incorporated into conceptual data models, such as the
ER model. Various semantic data models have been proposed
in the literature. Among them, we find the EER Model
(Enhanced Entity-Relationship Model) that incorporates a set
of new concepts (class/subclass relationships and type
inheritance into the ER model, specialization and
generalization, various types of constraints on
specialization/generalization, etc.) [13].

One of the most difficult relationships to express is a
recursive relationship. This is a non-identifying, non-
mandatory relationship in which the same entity is both the
parent and the child [12]. Each migrating primary key attribute
must be given a role name to clarify the attribute’s foreign key
role. In figure 1, to express the fact that an Employee can
supervise another one, a recursive relationship can be used.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

267 | P a g e

www.ijacsa.thesai.org

The Emp_SSN column in relational model represents the
supervisor identifier.

However, variations in relationships can be masked in such
a model when a dependency exists between relationships or
between a relationship and an attribute [14]. For example, in
figure 1, some employees manage other employees, while
other employees aren’t managed (they don’t have a
supervisor).

Another usage case for recursive relationships is the
organization of categories of articles in inventory management
systems (each article is belonging to a category). Usually,
categories in such a system, are organized in a hierarchical way
(a category contains multiple categories which contains others
and so on). The figure 2 shows the ER Model representing this
case and the corresponding Relational Model. The
Parent_Category_id column in relational model represents the
parent category identifier.

Fig. 1. Example of a Recursive Relationship in ER Model and Relational

Model.

Fig. 2. Using Recursive Relationship to Categorize other Entities.

V. RECURSIVE RELATIONS IN OWL2 ONTOLOGIES

The Web Ontology Language, informally OWL2, is an
ontology language for the Semantic Web with formally defined
meaning. OWL2 ontologies provide classes, properties,
individuals, and data values and are stored as Semantic Web
documents [3]. There is no specific way to express recursive
properties in OWL2. It is simply represented as an Object
Property having domain and range referencing the same class.
In the example of figure 3, a Person has as parent another
Person. The corresponding code using OWL Functional syntax
(which will be used in all following examples) is presented
below.

However, the OWL2 recommendation defines multiple
characteristics that can be assigned to recursive properties:
(A)Symmetry, (IR)Reflexivity and Transitivity.

A. Symmerty

An object property (SOP) is considered as symmetric, if an
individual x is connected by SOP to an individual y, then y is
also connected by SOP to x. In the example of figure 4, a
Woman has as sister another Woman.

B. Asymmerty

An object property (AOP) is considered as asymmetric, if
an individual x is connected by AOP to an individual y; then y
cannot be connected by AOP to x. In the example of figure 5, a
Person has as parent another Person, the property is not valid in
both directions.

C. Reflexivity

An object property (ROP) is considered as reflexive, if an
individual x is connected by ROP to itself. In the example of
figure 6, a Person knows himself.

Fig. 3. Example of a Recursive Property.

Fig. 4. Example of a Symmetric Property.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

268 | P a g e

www.ijacsa.thesai.org

Fig. 5. Example of an Asymmetric Property.

Fig. 6. Example of a Reflexive Property.

D. Irreflexivity

An object property (IOP) is considered as irreflexive, if an
individual x cannot be connected by IOP to itself. In the
example of figure 7, a Person is the child of another person, but
cannot be the child of himself.

E. Transitivity

An object property (TOP) is considered as transitive, if an
individual x is connected by TOP to an individual y, which is
connected to another individual z, then x is also connected to z.
In the example of figure 8, a Region is included in another
Region (if a Region r1 is included in a Region r2, that is
included in a Region r3, then r1 is included in r3).

In the next section, two ways to transform recursive
relationships from relational model to OWL2 components will
be proposed.

Fig. 7. Example of an Irreflexive Property.

Fig. 8. Example of a Transitive Property.

VI. PROPOSED TRANSFORMATIONS FOR RECURSIVE

RELATIONSHIPS

This section discusses and compares two different
transformations for recursive relationships in relational model.
The first one is to use Transitivity mechanism and the second
one through the use of concept hierarchy.

A. Transitivity Mechanism

For the first proposal, two mutually inverse object
properties are created (each one is the inverse of the other) with
domains and ranges referencing the same class (corresponding
to the table having the recursive relationship). These properties
are also declared as Transitive figure 9.

In the example of figure 1, an Employee is supervised by
another Employee. Inversely, an Employee supervises another
one. The transformation of this case will produce, a class
representing an “Employee”, and two mutually inverse Object
Properties “isSupervisedBy” and “supervises” having domains
and ranges referencing the “Employee” class. The figure below
presents the obtained results.

B. Concept Hierarchy

In some cases, recursive relationships in the relational
model are used to classify, in a hierarchical way, the
occurrences, of other entities. In the example of figure 2,
Articles are categorized in categories that are organized
hierarchically using a recursive relationship.

Fig. 9. Transformation Example using Transitivity Mechanism.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

269 | P a g e

www.ijacsa.thesai.org

Transforming the example of figure 2 can be achieved
using Transitivity. As result, two classes will be obtained,
corresponding to the entities “Article” and “Category”, linked
with an Object Property “belongsTo”. Two other mutually
inverse Object Properties (“contains” and “isIncludedIn”) will
be created having domains and ranges referencing the class
“Category”. These two Properties are also declared as
Transitive. The figure 10, shows the obtained transformation.

A better result can be obtained through the use of the
Concept Hierarchy, which is a type of background knowledge
(an approach for guiding the knowledge discovery process, and
for evaluating the patterns found [15]) which expresses the
structure of the concept from low-level to a more general
concept. The use of the concept hierarchies as background
knowledge allows expressing the discovered knowledge in a
higher abstraction level, more concise and usually in a more
interesting format [16].

The proposed solution is to create a class hierarchy from
the occurrences of the entity having the recursive relationship.
Each class of the hierarchy will be formed as Disjoint Union of
all its subclasses.

As an alternative to the solution proposed in figure 10, a
class hierarchy will be created from the occurrences of the
table “Category”. Each class in the hierarchy correspond to an
existing category (occurrence) and is related to other categories
by an “is-a” relation.

To explain this proposal, the database of the Inventory
Management system of Cadi Ayyad University of Marrakech
(named SyGeS : Système de Gestion de Stock) will be used.
The “Category” table is used to categorize articles (each
Article belongs to a Category). Figure 11 shows the
hierarchical organization of categories in the system.

Fig. 10. Transformation of Example of Figure 2 using Transitivity

Mechanism.

Fig. 11. Article’ Categories in SyGeS System.

As result of the transformation (applying Concept
Hierarchy) of this case, the categories (occurrences of the table
“Category”) will be declared as classes and organized in a
hierarchical way, by detecting the parent of each category
(through the recursive relationship). The detected root
categories (categories without a parent: null value on foreign
key column) will be declared as subclasses of the “Article”
class. The figure 12 presents the obtained transformation.

Fig. 12. Transformation of Example of Figure 2 using Concept Hierarchy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

270 | P a g e

www.ijacsa.thesai.org

At the end, the occurrences of table “Article” are
transformed to individuals of the class corresponding to their
category in the ontology. For example, an article “Laptop” will
be declared as an individual of the class
“ComputerHardeware”.

VII. CONCLUSION AND FUTURE WORK

This paper proposes two manners for transforming
recursive relationships from relational databases to OWL2
ontologies’ components. In the first one, Transitivity
mechanism is applied as a characteristic for the created object
properties representing the recursive relationship. In the second
one, Concept Hierarchy is used to build a taxonomy of classes
from the occurrences in the table having the recursive
relationship. This proposal is an enhancement of the proposed
transformation rules in [4][5].

The main objective of this work is learning OWL2
ontology from relational databases to extract richer semantics.
As future work, the tables’ occurrences will be analyzed in
order to extract deeper taxonomies. Some existing approaches
tries to do that, like in [17] where the author combines a
classical analysis of the database schema with a task
specifically dedicated to the identification of categorization
patterns in the data. Another improvement clue is to enhance
the developed tool in [5] by integrating all recent researches.

ACKNOWLEDGMENT

This work is supported by the project “Knowledge
Management for Development in the Context of OCP Group
(KM4Dev – OCP Group)” granted by OCP Group – Morocco.

Thanks to Mr. ETTKIRITA Youness, manager of the Stock
Management System at the University of Cadi Ayyad–
Marrakech, for providing a part of the database of their system
to validate our proposal.

REFERENCES

[1] G. Eason, B. Codd, E. F., “A Relational Model of Data for Large Shared
Data Banks”. Communications of the ACM. 13 (6): 377–387, 1970.

[2] Gruber, T., “Ontology”. The Encyclopedia of Database Systems, Ling
Liu and M. Tamer Özsu (Eds.), Springer-Verlag, 2009.

[3] W3C, “OWL 2 Web Ontology Language : Structural Specification and
Functional-Style Syntax (Second Edition)”, W3C Recommendation.
Available at: https://www.w3.org/TR/owl2-syntax, 2012.

[4] Chbihi Louhdi, M. R., Behja, H., & Ouatik El Alaoui, S.,
“Transformation Rules for Building OWL Ontologies from Relational
Databases”. In the proceeding of the Second Conference of Data Mining
& Knowledge Management Process. Dubai, 2013.

[5] Chbihi Louhdi, M.R., Behja, H., & Ouatik El Alaoui, S., “Hybrid
Method for Automatic Ontology Building from Relational Database”.
International Review on Computers and Software, vol. 8(8), pp. 1801-
1813, 2013.

[6] Sbai, S., Chbihi Louhdi, M.R., Behja, H., Zemmouri, E., &
Chakhmoune, R., “Using Reverse Engineering for Building Ontologies
with Deeper Taxonomies from Relational Databases”. Journal of
Software, Vol. 14(3), pp.138-145, 2019.

[7] Choi, M., Moon, C., Baik, D., Wie, Y., & Park, J., “The RDFS mapping
for recursive relationship of relational data model”. The IEEE
International Conference on Service-Oriented Computing and
Applications (pp. 1-6), Perth, WA, 2010.

[8] W3C, “RDF Schema 1.1, W3C Recommendation”. Available at:
https://www.w3.org/TR/rdf-schema, 2014.

[9] Idrissi, B.E., Baina, S., Baina, K., “Upgrading the semantics of the
relational model for rich OWL 2 ontology learning”. Journal of
Theoretical and Applied Information Technology, vol. 68(1), pp. 138-
148, 2014.

[10] Fahad, M., “ER2OWL: Generating OWL Ontology from ER Diagram”.
In: Shi Z., Mercier-Laurent E., Leake D. (eds) Intelligent Information
Processing IV. IIP. IFIP – The International Federation for Information
Processing, vol 288. Springer, Boston, MA, 2008.

[11] Hazber, M.A.G., Li, R., Gu, X., & Xu, G., “Integration Mapping Rules:
Transforming Relational Database to Semantic Web Ontology”.
International Journal of Applied Mathematics & Information Sciences,
vol. 10(3), pp. 881-901, 2016.

[12] Elmasri, R., & Navathe, S.B., “Fundamentals of Database Systems (7th
Edition)”, Pearson, 2016.

[13] Sherman, R., “Business Intelligence Guidebook From Data Integration
to Analytics”. In Foundational Data Modeling, pp. 173-195, Elseiver,
2015.

[14] Burton-Jones, A. Lazarenko, K., & Weber, R., “Problems with recursive
relationships and relationships with attributes in ER models”. In
Proceedings of the 10th AIS SIGSAND Symposium, Bloomington,
Indiana, USA, 2011.

[15] Han, J., Kamber, M., & Pei, J., “Data Mining: Concept and Techniques,
Morgan Kaufmann”, Elseiver, 2011.

[16] Di Beneditto M.E.M., & de Barros L.N., “Using Concept Hierarchies in
Knowledge Discovery”. In: Bazzan A.L.C., Labidi S. (eds) Advances in
Artificial Intelligence – SBIA 2004. Lecture Notes in Computer Science,
vol 3171. Springer, Berlin, Heidelberg, 2004.

[17] Cerbah, F., “Mining the Content of Relational Databases to Learn
Ontologies with Deeper Taxonomies”. In Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (pp. 553-557). Sydney, NSW, 2008.

