
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

304 | P a g e

www.ijacsa.thesai.org

MVC Frameworks Modernization Approach
Adding MVC Concepts to KDM Metamodel

Amine Moutaouakkil
1
, Samir Mbarki

2

MISC Laboratory. Faculty of Science

Ibn Tofail University

Kenitra, Morocco

Abstract—The use of web development frameworks has

grown significantly, specially the Model-View-Controller (MVC)

based frameworks. The ability to immigrate web applications

between different frameworks available becomes more and more

relevant. The automation of the migration through

transformations avoid the necessity to rewrite the code entirely.

Architecture Driven Modernization (ADM) is the most successful

approach that standardizes and automates the reengineering

process. In this paper, we define an ADM approach to generate

MVC web applications models in the highest level of abstraction

from Struts 2 and Codeignitter Models. To do this, we add the

MVC concepts to the KDM metamodel and then we specify a set

of transformations to generate MVC KDM models. This proposal

is validated through the use of our approach to transform CRUD

(Create, Read, Update and Delete) applications models from

MVC frameworks to MVC KDM.

Keywords—Framework; Architecture-Driven Modernization

(ADM); Knowledge Discovery Model (KDM); Model-View-

Controller (MVC)

I. INTRODUCTION

Web technology systems are the most used IT solutions in
Business management.

More web applications are made with the use of MVC
frameworks, these frameworks are constantly evolving, and
new frameworks are available. The frameworks: CodeIgniter
for PHP language and Struts 2 for Java language are very used.
The need to immigrate both from and to these frameworks is
increasing.

The existence of a standardized and automatic process of
reengineering will minimize time and costs.

Object Management Group (OMG) [1] has proposed the
Architecture-driven Modernization (ADM) [2] initiative to
enhance the classical reverse engineering processes by
introducing the Model-driven Architecture (MDA) [3]
concepts. Like the MDA approach which gives the models
leading role, the ADM approach formalizes the RE [4]
processes by introducing models based concepts.

It is necessary to realize methods for migrating MVC
Frameworks based Web applications and define a way to
represent the MVC information at a higher abstraction level.
But currently there are no relied ADM based approach making
it.

We defined an ADM based approach to represent MVC
web systems in form of KDM models. This approach takes

advantage of the potential of the Architecture Driven
Modernization (ADM) to modeling the knowledge which will
be extracted from the source code.

In this paper, we describe the generation of models to
represent MVC web systems at the highest level of abstraction.
The rest of this paper is organized as follows: Section 2
describes the process based on the ADM approach and
describes their different phases. In Section 3, we illustrate our
proposed approach by a case study and make the analysis of
the process result. Then, we list some interesting related works.
Finally, Section 4 concludes the work and presents the
perspectives.

II. RESEARCH METHOD

A. MDRE

MDRE [5] is the application of Model Driven Engineering
(MDE) principles and techniques to RE in order to get model
based views from legacy systems. The MDRE is based on two
main phases: Model Discovery which is extracting information
from source code by using parsers, and then represents this
information in form of models. And Model Understanding
which is applying Model to Model transformations on
extracted information to get a higher abstraction level
presentation of the information.

B. ADM

Architecture Driven Modernization (ADM) is an initiative
proposed by OMG to standardize and automate the
reengineering process. ADM is based on three standards meta-
models to represent the information involved in a software
reengineering process. In the current study, only Knowledge
Discovery Meta-Model (KDM) is useful for the purpose. KDM
[6] allows defining models at a higher abstraction level
representing semantic information about a software system.

C. Model Understanding

Model understanding consists in the transformation of
models to get higher abstract models. In our study, we need to
make two transformations:

Apply model to model transformation on the PSM Struts 2
model to get PIM MVC KDM model.

Apply model to model transformation on the PSM
CodeIgniter model to get PIM MVC KDM model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

305 | P a g e

www.ijacsa.thesai.org

D. QVT Transformation Standard

QVT (Query/View/Transformation) [7] is a standard set of
languages for model transformation defined by the OMG.

The QVT standard defines three model transformation
languages. All of them operate on models which conform to
Meta-Object Facility (MOF) 2.0 metamodels; the
transformation states which metamodels are used.

QVT-Operational which we use, it is an imperative
language designed for writing unidirectional transformations.

Model Extraction Process is shown in “Fig. 1”.

E. Related Works

More and more research projects use the mechanisms
offered by the MDA, in among these projects include, e.g.:

 ADM-Based Hybrid Model Transformation for
Obtaining UML Models from PHP Code [8].

 Validation of ATL Transformation to Generate a
Reliable MVC2 Web Models [9].

 A Model Driven Approach for Modeling and
Generating PHP CodeIgniter based Applications [10].

 MoDisco Project [11].

 Reverse Engineering Applied to CMS-Based Web
Applications Coded in PHP: A Proposal of Migration
[12].

ADM-Based Hybrid Model Transformation for Obtaining
UML Models from PHP Code (2019): This paper defines a
model transformation process which performs reverse
engineering of PHP web-based applications. The model
transformation is expressed in ATL [13] (Atlas Transformation
Language). The obtained models are expressed in UML.

Validation of ATL Transformation to Generate a Reliable
MVC2 Web Models (2017): This paper defines an ADM-based
method to generate automatically an MVC2 web model at
PSM level which respects the architecture of MVC2 pattern. In
This method, a mapping between PSM and PIM metamodels is
defined then the transformation script from Struts2 to UML is
written In ATL transformation language.

Fig. 1. Models Extraction Process.

A Model Driven Approach for Modeling and Generating
PHP CodeIgniter based Applications (2017): This paper
defines a Model Driven approach to model the CodeIgniter
PHP framework and generate CRUD applications based on this
framework. This method uses model transformations.

MoDisco Project (2014): Modisco provides the capability
of extracting information from Java software artifacts, The
model resulting will conform to meta-model included in
Modisco. KDM Models can be extracted using Modisco. KDM
allows representing the entire software system and all its
entities at both structural and behavioral levels. Modisco is one
of rare tools that apply the ADM principles in real.
Unfortunately, the current Modisco version does not include
any specific support for MVC architecture.

Reverse Engineering Applied to CMS-Based Web
Applications Coded in PHP: A Proposal of Migration (2013):
This paper defines an ADM-based method for migrating open-
source PHP CMS-based Web applications. In the reverse
engineering phase, ASTM models are extracted from the PHP
code by text-to-model (T2M) transformation made by a source
code parser, then KDM models are obtained from ASTM
models by model-to-model (M2M) transformation. Finaly
CMS model is obtained by using M2M transformations. All
M2M transformations are implemented using ATL
Transformation Language.

According to the related works we can conclude that ADM
approaches that handle MVC structure are inexistent.
“Modisco” approach does not offer any support for MVC. The
approach “Reverse Engineering Applied to CMS-Based Web
Applications Coded in PHP: A Proposal of Migration” uses a
CMS metamodel to represent the CMS concepts of a CMS
based web system. This logic is avoided in our approach
because creating a specific metamodel to represent CMS based
web systems or MVC based web systems in our case will
contradict the abstraction logic that we want to set, instead of
this the use of a metamodel such as KDM that is standardized
by OMG is more convenient. In “Modisco Project”, “Reverse
Engineering Applied to CMS-Based Web Applications Coded
in PHP: A Proposal of Migration” as well as “Validation of
ATL Transformation to Generate a Reliable MVC2 Web
Models” approaches ATL language is used to realize M2M
transformations, instead of ATL, our approach uses the QVT
language, which is newer and OMG standardized language.

F. The Method Principle

The main idea of our approach is the use of the QVT
transformation language to perform Model to Model
transformation from MVC web frameworks models to MVC
KDM models. Two tasks that the approach will make: The
Adaptation of the KDM metamodel by adding MVC concepts,
then mapping MVC web frameworks metamodels elements to
MVC KDM metamodel elements and then use the mapping to
write the QVT transformation script.

G. Struts 2 Framework Metamodel

Apache Struts 2 [14] is an open-source, MVC framework
for creating Java web applications. Struts 2 extend the Java
Servlet API.

CodeIgniter

Model

Struts 2

Model

KDM

Model

M2M

Tranformation

M2M

Tranformation

PSM PSM PIM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

306 | P a g e

www.ijacsa.thesai.org

Based on [15], a Struts 2 Framework meta-model “Fig. 2”
is defined. This metamodel “Fig. 3” will be useful in our
approach.

H. Codeignitter Framework Metamodel

CodeIgniter [16] is a PHP MVC pattern based open-source
framework. The MVC pattern structures the development by
separating the application logic and the presentation layer.
Compared to other PHP frameworks, Codeigniter is known to
be fast and light.

Based on [17], a CodeIgniter Framework meta-model
“Fig. 4” is defined. This metamodel “Fig. 5” will be useful in
our approach.

I. KDM

KDM is a standard defined by OMG for the representation
of software systems. This is a meta-model “Fig. 7” allows to
represent systems artifacts in a high level of abstraction.

The KDM specification consists of 12 packages that are
arranged into the following four layers “Fig. 6” [18]:

Fig. 2. Struts 2 Meta-Model.

Fig. 3. Struts 2 Ecore Meta-Model.

Fig. 4. CodeIgniter Meta-Model.

Fig. 5. CodeIgniter Ecore Meta-Model.

Fig. 6. KDM Meta-Model Layers

We can notice that the KDM metamodel does not give a
representation of MVC architecture elements.

J. KDM MVC Package

In our approach we add a MVC package “Fig. 8”. The
MVC package represents MVC architecture elements as:
models, view and controller.

Core,

KDM,

Source

Action

Code

UI

Data

Plateform

Event

Conceptual
Infrastructure

Layer Abstractions

Layer

Resource

Layer

Program

Elements Layer

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

307 | P a g e

www.ijacsa.thesai.org

Fig. 7. KDM Ecore Meta-Model Provided by OMG.

Fig. 8. MVC KDM Ecore Meta-Model.

K. Struts 2 to KDM QVT-O Transformation Script

We have defined a mapping table “Table I” between Struts
2 model elements and KDM model elements.

TABLE. I. STRUTS 2 ELEMENTS TO KDM MVC ELEMENTS MAPPING

Struts 2 element MVC KDM element

StrutsPackage code::CodeModel

ModelPackage mvc::MvcPackage

POJO mvc::MvcModel

ControllerPackage mvc::MvcPackage

ActionMapper mvc::MvcController

ViewPackage mvc::MvcPackage

JspPages code::ClassUnit

Property code::StorableUnit

Action code::MethodUnit

Based on the mapping table, we have written a QVT-O
transformation script to map Struts 2 model elements to MVC
KDM model elements.

modeltype STR uses 'http://struts2MM';
modeltype KDM uses 'http://kdmMvcMM';
transformation struts2kdmmvc(in str : STR, out
KDM);

main() {
 str.rootObjects()[STR::StrutsPackage]->map R00();
}

mapping STR::StrutsPackage::R00() :
KDM::kdm::Segment {

model += self.map R0();
}

mapping STR::StrutsPackage::R0() :
KDM::code::CodeModel {
 codeElement += self.getModelPackage()->map R1();
codeElement += self.getControllerPackage()->map

R2();
codeElement += self.getViewPackage()->map R3();

 result.name := self.packName;
}

mapping STR::ModelPackage::R1() :
KDM::mvc::MvcPackage {
 name := self.name;
 type := "Model";
 codeElement += self.getModels()->map R11();
}

mapping STR::POJO::R11() : KDM::mvc::MvcModel {
 name := self.name;
 codeElement += self.getMdlProperties()->map R4();

}
mapping STR::Property::R4() :
KDM::code::StorableUnit {
 name := self.name;
}

query STR::StrutsPackage::getModelPackage() :
OrderedSet(STR::ModelPackage) {
 return
self.subobjects()[STR::ModelPackage]-
>asOrderedSet()

}
query STR::ModelPackage::getModels() :
OrderedSet(STR::POJO) {
 return self.subobjects()[STR::POJO]-
>asOrderedSet()

}
query STR::POJO::getMdlProperties() :
OrderedSet(STR::Property) {
 return self.subobjects()[STR::Property]-
>asOrderedSet()
}
…

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

308 | P a g e

www.ijacsa.thesai.org

L. Codeigneitter to KDM QVT-O Transformation Script

We have defined a mapping table “Table II” between
CodeIgniter model elements and MVC KDM model elements.

Based on the mapping table, we have written a QVT-O
transformation script to map CodeIgniter model elements to
KDM model elements.

modeltype CI uses 'http://codeigniterMM';
modeltype KDM uses 'http://kdmMvcMM';
transformation codeigniter2kdmmvc(in ci : CI, out
KDM);

main() {
 ci.rootObjects()[CI::CiPackage]->map R00();
}

mapping CI::CiPackage::R00() : KDM::kdm::Segment {
 model += self.map R0();
}

mapping CI::CiPackage::R0() : KDM::code::CodeModel {
 codeElement += self.getModelPackage()->map R1();
 codeElement += self.getControllerPackage()->map
R2();
 codeElement += self.getViewPackage()->map R3();
 result.name := self.packName;
}

mapping CI::ModelPackage::R1() : KDM::mvc::MvcPackage
{
 name := self.mName;
 type := "Model";
 codeElement += self.getModels()->map R11();
}

mapping CI::Model::R11() : KDM::mvc::MvcModel {
 name := self.name;
 codeElement += self.getMdlAttributes()->map R4();
}

…

mapping CI::Attribute::R4() : KDM::code::StorableUnit
{
 name := self.name;
}

query CI::CiPackage::getModelPackage() :
OrderedSet(CI::ModelPackage) {
 return self.subobjects()[CI::ModelPackage]-
>asOrderedSet()
}

query CI::ModelPackage::getModels() :
OrderedSet(CI::Model) {
 return self.subobjects()[CI::Model]-
>asOrderedSet()
}

query CI::Model::getMdlAttributes() :
OrderedSet(CI::Attribute) {
 return self.subobjects()[CI::Attribute]-
>asOrderedSet()
}

TABLE. II. CODEIGNITER ELEMENTS TO KDM MVC ELEMENTS MAPPING

CodeIgniter element MVC KDM element

CiPackage code::CodeModel

ModelPackage mvc::MvcPackage

Model mvc::MvcModel

ControllerPackage mvc::MvcPackage

Controller mvc::MvcController

ViewPackage mvc::MvcPackage

View code::ClassUnit

Attribute code::StorableUnit

Function code::MethodUnit

III. DISCUSSION

In the ADM approach, KDM is very important. This meta-
model allows representing the structural and semantic aspect of
the software systems artifacts in the higher possible level of
abstraction.

Being represented in form of KDM model, thanks to its
high level abstraction, the immigration of an MVC web system
to another platform becomes easier. Adding MVC concepts to
KDM metamodel will also enlarge its domain of application
and allows to more systems to be modeled in a higher level of
abstraction. Obtained results correspond to our aim goal which
was to represent MVC web systems in a high level abstract way.

IV. RESULTS

A. Case Study Example

Both of CodeIgniter and Struts 2 give the possibility to
manage basic CRUD operations through their predefined
structures. So, our approach, takes a basic CRUD example as a
case study.

1) Struts 2 model “Fig. 9”:

Fig. 9. Stuts2 CRUD Example.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

309 | P a g e

www.ijacsa.thesai.org

2) CodeIgniter model “Fig. 10”

Fig. 10. Codeignitter CRUD Model Example.

B. Results

1) MVC KDM model obtained from Struts 2 models

“Fig. 11”.

Fig. 11. MVC KDM Model Obtained from Struts2 CRUD Model.

2) MVC KDM model obtained from CodeIgniter models

“Fig. 12”

Fig. 12. MVC KDM Model Obtained from CodeIgniter CRUD Model.

V. CONCLUSION

This paper presented an ADM based approach that Adds
MVC Concepts to KDM metamodel.

This approach is composed of two phases: 1) adding MVC
main concepts to the KDM metamodel, 2) Generation of KDM
models, KDM models are generated from Struts 2 and
CodeIgniter models by means of M2M transformations. For
the implementation of the Generation of KDM models phase
we have implemented transformation rules using QVT-
Operational language.

The major contribution is the adding of the MVC concepts
to the KDM metamodel and the use of the QVT transformation
language defined by the OMG to realize transformations
between platforms. Using this approach reduces the necessary
time to migrate the MVC web applications. As a future work,
we will perform similar approach to other MVC platforms and
we will realize the reverse way which is the generation of a
specific MVC web system from KDM abstract models.

REFERENCES

[1] Object Management Object (OMG) . [Online]. Available:
http://www.omg.org/.

[2] Architecture Driven Modernization (ADM) . [Online]. Available:
http://adm.omg.org/.

[3] A. Kleppe, J. Warmer, W. Bast, “MDA Explained: The Model
Driven Architecture: Practice and Promise”. Addison-Wesley
Professional. January 2003.

[4] E. J. Chikofsky, J. H. Cross II, “Reverse engineering and design
recovery: A taxonomy,” IEEE Software. vol 7, issue 1 , pp. 13-17,
January 1990.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

310 | P a g e

www.ijacsa.thesai.org

[5] C. Raibulet, F. Arcelli Fontana, M. Zanoni, “Model-Driven Reverse
Engineering Approaches : A Systematic Literature Review,” IEEE
Access. vol 5 , pp. 14516-14542, December 2017.

[6] Knowledge Discovery Meta-Model specification of the OMG. [Online].
Available: http://www.omg.org/spec/KDM/1.3.

[7] I.Arrassen, A.Meziane, R.Sbai, M.Erramdani, “QVT transformation by
modeling : From UML Model to MD Model,” International Journal of
Advanced Computer Science and Applications (IJACSA). vol 2, issue 5,
pp. 7-14, January 2011.

[8] A. Elmounadi, N. Berbiche, N. Sefiani, N. El Moukhi, “ADM-Based
Hybrid Model Transformation for Obtaining UML Models from PHP
Code,” International Journal of Embedded Systems (IJES). vol 7, issue
1, pp. 32-41, January 2019.

[9] S. Mbarki, M. Rahmouni, “Validation of ATL Transformation to
Generate a Reliable MVC2 Web Models,” International Journal of
Engineering and Applied Computer Science (IJEACS). vol 2, issue 3,
pp. 83-91, March 2017.

[10] K. Arrhioui, S. Mbarki, O. Betari, S. Roubi and M. Erramdani, “A
Model Driven Approach for Modeling and Generating PHP CodeIgniter
based Applications,” Transactions on Machine Learning and Artificial
Intelligence (TMLAI). vol 5, issue 4, pp. 259-266, August 2017.

[11] H. Brunelière, J. Cabota, G. Dupé, F. Madiot, “MoDisco: a Model
Driven Reverse Engineering Framework,” Information and Software
Technology, Elsevier, vol 56, issue 8, pp. 1012-1032, April 2014.

[12] FF. Trias, V. de Castro, M. López-Sanz, and E. Marcos, “Reverse
Engineering Applied to CMS-Based Web Applications Coded in PHP:
A Proposal of Migration. Evaluation of Novel Approaches to Software
Engineering,” 8th International Conference (ENASE). Angers. pp. 241-
256, July 2013.

[13] M. Rahmouni, S. Mbarki, “MDA-Based ATL Transformation to
Generate MVC 2 Web Models,” Int. J. Comput. Sci. Inf. Technol., vol 3,
issue 4, pp. 57–70, August 2011.

[14] Apache Struts Framework. [Online]. Available:
https://struts.apache.org/.

[15] S. Mbarki, M. Rahmouni, “Validation of ATL Transformation to
Generate a Reliable MVC2 Web Models,” International Journal of
Engineering and Applied Computer Science (IJEACS). vol 2, issue 3,
pp. 83-91, March 2017.

[16] Codeigniter Web Framework. [Online]. Available:
https://www.codeigniter.com/.

[17] K. Arrhioui, S. Mbarki, O. Betari, S. Roubi and M. Erramdani, “A
Model Driven Approach for Modeling and Generating PHP CodeIgniter
based Applications,” Transactions on Machine Learning and Artificial
Intelligence (TMLAI). vol 5, issue 4, pp. 259-266, August 2017.

[18] KDM Technical Overview from KDM Analytics. [Online]. Available:
http://kdmanalytics.com/resources/standards/kdm/technical-overview/

