
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

A Method for Designing Domain-Specific Document
Retrieval Systems using Semantic Indexing

ThanhThuong T. Huynh1
University of Information Technology
VietNam National University HCMC

Ho Chi Minh city, Viet Nam

TruongAn PhamNguyen2
University of Information Technology
VietNam National University HCMC

Ho Chi Minh city, Viet Nam

Nhon V. Do3
Ho Chi Minh City Open University

Ho Chi Minh city, Viet Nam

Abstract—Using domain knowledge and semantics to conduct
effective document retrieval has attracted great attention from
researchers in many different communities. Ultilizing that ap-
proach, we presents the method for designing domain-specific
document retrieval systems, which manages semantic information
related to document content and supports semantic processing
in search. The proposed method integrates components such
as an ontology describing domain knowledge, a database of
document repository, semantic representations for documents;
and advanced search techniques based on measuring semantic
similarity. In this article, a model of domain knowledge for
various information retrieval tasks, called The Classed Keyphrase
based Ontology (CK-ONTO), will be presented in details. We
also present graph-based models for representing documents
together measures for evaluating the semantic relevance for
usage in searching. The above methodology has been used in
designing many real-world applications such as the Job-posting
retrieval system. Evaluation with real-world inspired dataset,
our methods showed noticeable improvements over traditional
retrieval solutions.

Keywords—Document representation; document retrieval sys-
tem; graph matching; semantic indexing; semantic search; domain
ontology

I. INTRODUCTION

A. Indispensible Need for Semantic Document Retrieval Sys-
tem

In this Information Age, the need for better management
of digitalized documents in various aspects of daily life is
ever more pressing. In education for example, searching for
documents in your particular area of interest is an indispensible
need of learners. That raises the problem of building a system
to manage digitalized document in the domain of interest and
support searching based on document content or knowledge.
In media and publication, the vast amount of online news
published everyday are making it more and more difficult for
any entity in charge of managing and dissecting all those news
article in their particular domain. Even the internal clerical and
administrative work flow of a single organization can produce
large amount documents that are in need of better content-
based book keeping.

Another challenging document retrieval task can be found
in job-posting management. The special nature of job-postings,
which are often quite short but packed to the rim with
keywords in the domain make the content of those documents
very difficult to search.

To provide for those needs, we propose a model to build
a class of document retrieval systems that optimize to manage
a collection of documents in the same domain. The key
challenging for those systems is a high precision semantic
based search engine, which would be the focal point of the
work discussed in this article. We follow the recent trend
of ontology based semantic search as well as graph based
document representation, combined in a coherent system.

B. Ontology-based Document Retrieval

Nowadays, many researches attempt to implement some
degree of syntactic and semantic analysis to improve the
document retrieval performance. In contrast to keyword based
systems, the result of semantic document retrieval is a list of
documents which may not contain words of the original query
but have similar meaning to the query. Therefore, the objects
of searching are concepts instead of keywords and the search is
based on space of concepts and semantic relationships between
them. To analyze the content of queries and documents, one
has to consider extracting basic units of information from
documents, queries and interpreting them. The main idea
behind semantic search solutions is using semantic resources
of knowledge to resolve words / phrases ambiguities, thus
facilitate the understanding of query and document.

Knowledge representation models as well as knowledge
resources play an increasingly importance role in enhancing
the intelligence of document retrieval systems, in supporting
a variety of semantic applications. Semantic resources include
taxonomies, thesauri, and formal ontologies, among which on-
tologies are getting the most attention. Ontologies have proved
to be powerful solutions to represent knowledge, integrate data
from different sources, and support information extraction. One
of the more common goals in developing ontologies is to share
common understanding of the structure of information among
people and/or systems. That goal leads to the development
of gigantic general knowledge resources like DBPedia [1]
or Yago, etc. However, even with the help of those generic
knowledge bases, it remains extremely challenging to build a
semantic search system that can cope with real world adhoc
query. The current trend in Document Retrieval researchs is to
focus on retrieval tasks in a very specific domains. The focus
allows knowledge bases to be more carefully prepared, and
thus both the query and the document can be better interpreted.

Many domains now have standardized ontologies devel-
oped for them by communities of domain experts and re-
searchers. Those ontologies are often publicly shared and can

www.ijacsa.thesai.org 461 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

be used in a variety of tasks, some well-known large-scale
and up-to-date ontologies are: The MeSH and SNOMED in
Medicine, PhySH in Physics, JEL in Economics , AGROVOC
and AgriOnt [2] in Agriculture, CSO [3] in Computer Science,
MSC in Mathematics, etc. However, often an ontology of the
domain is not a goal in itself. Developing an ontology is akin
to defining a set of data and their structure for other programs
to use. Problem-solving methods, domain-independent appli-
cations use ontologies and knowledge bases as data. Sadly, few
of those wonderful ontologies were built with the document
retrieval task in mind.

The CK-ONTO [4] is an ontology model developed first
and foremost for the task of document retrieval in a specific
domain. We tried to built a model powerful enough to sup-
port various information retrieval tasks, yet lean and efficient
enough so that a CK-ONTO knowledge base can be quickly
constructed in a new domain. The next section in this article
describes the architecture of CK-ONTO in detail and then
discusses a sample knowledge base built on the CK-ONTO
model.

C. Document Representation

Document representation (DR) plays an important role in
many textual applications such as document retrieval, docu-
ment clustering, document classification, document similarity
evaluation, document summarization, that is documents are
transformed in form of readable and understandable way by
both human and computer. The challenging task is to find the
appropriate representation of document as so to be capable of
expressing the semantic information of the text.

In statistical approaches, documents are described as pairs
(feature, weight). Such models are based on the assumption
that documents and user queries can be represented by the
set of their features as terms (a simple word or phrase).
Additionally, weights or probabilities are assigned to such
terms to produce a list of answers ranked according to their
relevance to the user query.

Among the first, widespread representations are the Bag Of
Words (BoW)and the Vector Space Model (VSM). The docu-
ment retrieval approaches using these representations primarily
based on the exact match of terms in the query and those in
the documents, they do not address multiple meanings of same
word and synonymy of words [5].

In order to address polysemy, synonymy and dimension-
ality reduction, researchers have proposed several methods
such as Latent Semantic Analysis (also called Latent Semantic
Indexing), Probabilistic Topic Models or Latent Topic Models.
In topic models, e.g. Probabilistic Latent Semantic Indexing
[6], Latent Dirichlet Allocation [7], Word2Vec [8], documents
are represented as vectors of latent topics. A latent topic is
a probability distribution over terms or a cluster of weighted
terms. The length of topic vectors is much smaller than the
vectors of traditional models. Such models assume that words
which are close in meaning tend to occur in similar pieces of
text (contexts). These approaches are also widely used because
of their simplicity and usefulness for describing document
features, however, some of their drawbacks include: Most
of such techniques are largely based on the term frequency

information, but lack the reflection of semantics of text, e.g. ig-
nore the connections among terms, structural and semantic (or
conceptual) information is not considered; The topic models
do not consider the structure of topics and relationships among
them and have limitations when representing complex topics;
Besides, the representations might be difficult to interpret.
The results which can be justified on the mathematical level,
but have no interpretable meaning in natural language. The
good formalisms should make them easy to understand their
meaning and the results given by the system, and also how the
system computed the results.

Semantic or conceptual approaches attempt to implement
some degree of syntactic and semantic analysis; in other
words, they try to reproduce to some degree of understanding
of the natural language text. Such researches indicate that
semantic information and knowledge-rich approaches can be
used effectively for high-end IR and NLP tasks.

Given such problem, many studies have been directed to the
designing of more complex and effective features which aim
to achieve a representation based on more conceptual features
than on words. The multi-word terms or sometimes called
phrases can be used as features in document vectors/bags.
Some of complex feature models are: Lemmas, N-grams,
Nouns Phrases, (head, modifier, ... modifier) tuples which
are complex phrases with syntactic relations like subject-
verb-object or contain non adjacent words. Such features can
be detected via pure statistical models. Unfortunately, such
representations are derived automatically, thus the (few) errors
in the retrieval process compensate in accuracy provided by
the richer feature space.

The rapid growth of information extraction techniquies and
popularity of large scale general knowledge bases, thesauri as
well as formal domain ontologies brought some new forms
of representing vectors. The i-th component of vector is the
weight reflecting the relevance of the i-th concept (or entity)
of the knowledge resource in the represented document. For
instance, Explicit Semantic Analysis (ESA) [9] uses Wikipedia
articles, categories, and relations between articles to capture
semantics in terms of concepts. ESA expresses the meaning
of text as a vector of Wikipedia concepts. Each Wikipedia
concept corresponds to an article whose title is concept name.
The length of vector is the number of concepts defined in
Wikipedia (a few millions). Semantic relatedness of documents
is measured by cosin of the angle between their vectors. Doc-
ument representation can be enriched by adding the annotated
entities in to the vector space model [10], [11]. In [12], a
document is modeled as bag of concepts provided by entity
linking systems, in which concepts correspond to entities in the
DBpedia knowledge base or related Wikipedia articles. Instead
of centering around concepts or entities and using an additional
resource, the work in [13] treats entities equally with words.
Both word based and entity based representations are used
in ad-hoc document retrieval. Word based representations of
query and document are standard bags of words. Entity based
representations of query and document are bags of entities
constructed from entity annotations. An entity linking system
finds the entity mentions in a text and links each mention to
a corresponding entity in the knowledge base.

The meaning of a document as expressed through knowl-
edge base concepts (or entities) is easier for human interpre-

www.ijacsa.thesai.org 462 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

tation as opposed to topics of latent topic models. However,
the length of vectors equals the number of concepts in the
knowledge base, which could be very large. Most of these
approaches relies on ”flat” meaning representations like vector
space models, more sophisticate but still do not exploit the
relational knowledge and network structure encoded within
wide-coverage knowledge bases.

In recent years, modeling text as graphs are also gath-
ering attraction in many fields such as document retrieval,
document similarity, text classification, test clustering, text
summarization, etc. Graph based approach for information
retrieval has been widely studied and applied to different
tasks due to its clearly-defined theory foundations and good
empirical performance.

Because this topic is studied by different communities from
different viewpoints and for usage in different applications, a
wide range of graph models have been proposed. They greatly
vary in the types of vertices, types of edge relations, the
external semantic resources, the methods to produce structured
representations of texts, weighting schemes, as well as the
many subproblems focused on, from the selection feature
as vertex and detection relationships between features, to
matching graphs and up to ranking results. The rich choices of
available information and techniques raise a challenge of how
to use all of them together and fully explore the potential of
graphs in text - centric tasks.

In [17], the text is represented as a graph by viewing the
selected terms from the text as nodes and the co-occurrence
relationships of terms as edges. Edges direction are defined
based on the position of terms that occur together in the same
unit . The weight is assigned to each edge so that the strength
of relationship between two terms can be measured. Such
graph model have the capability of retaining more structural
information in texts than the numerical vector, but they do not
take into account the meanings of terms and semantic relations
between them.

Many richer document representation schemes proposed in
[14]–[16], in which semantic relationship between words is
considered to construct graphs. Vertex denotes terms mapped
to concepts and edge denotes semantic relations specified in a
controlled vocabulary or thesaurus, like synonymy or anotomy.

The method in [18], [19] took advantage of the DBpedia
knowledge base for fine-grained information about entities and
their semantic relations, thus resulting in a knowledge-rich
document models. In these models, nodes are the concepts
extracted from the document through references to entities in
DBpedia using existing tools such as SpotLight or TagME.
Those nodes are then connected by semantic relations found in
DBpedia. The edges are weighted so as to capture the degree of
relevance between concepts within an ontology. The different
between these two works is that [18] also applied their model
in the ’entity ranking’ task in addition to the shared ’document
semantic similarity evaluation’ task. Moreover, not only [19]
weighted edges like [18], they also weights concepts using
closeness centrality measure which reflects their relevance to
the aspects of the document. Another note is that these works
disregarded structural information of the text, the relationships
between nodes are independent of the given text.

The major difficulties in modeling document content with

graphs are the development of an automated system to extract
graph representation of text and the computation time limita-
tion (time complexity). Besides, there may be difficulties in
finding maximum common subgraph (subgraph isomorphism)
between two document graphs, that are able to catch the
semantic similarity between documents. Graph matching can
be also accomplished in polynomial time making it impractical
for large data sets.

In yet another attempt at those difficulties, we employ the
graph based approach for representing and retrieving document
in a very specific domain, where a fine grain ontological
knowledge base can help noticeably improve retrieval perfor-
mance. Our approach would be evaluate extrinsicly, which
means only the final performance of the system will be
considered, the quality of every internal processes are not yet
attested. Our contributions are thus listed as follows:

• We propose a framework for building a semantic
document retrieval system in a specific domain. Our
framework aims to provide a systemmatic approach to
better rank documents against a user query, with the
help of a semantic resource.

• We also propose an Ontology model for domain
knowledge to support various information retrieval
tasks

• Graph-based document models along with a method
to produce structured representations of texts are pre-
sented

• A graph matching algorithm to evaluate the semantic
relevance for usage in searching would be introduced

• Finally, we evaluate search performance with the
dataset of Information Technology Job Posting in Viet
Nam

The remaining sessions of this paper are organized as fol-
lows: Section 2 is about a kind of document retrieval systems,
called Semantic Document Base System, system architecture
and design process; Sections 3 and 4 introduce an ontology
model describing knowledge about a particular domain, a
graph-based semantic model for representating document con-
tent; Section 5 presents techniques in semantic search; Section
6 introduces experiment, applications and finally a conclusion
ends the paper.

II. SEMANTIC DOCUMENT BASE SYSTEM

A Semantic Document Base system (SDBS) is a computer-
ized system focus on using artificial intelligence techniques to
organize a text document repository on computer in an efficient
way that supports semantic searching on the repository based
on domain knowledge. It incorporates a repository (database)
of documents in a specific domain, where content (semantics)
based indexing is required, along with utilities designed to
facilitate the document retrieval in response to queries. A
SDBS considered here must have a suitable knowledge base
used by a semantic index and search engine to obtain a better
understanding and interpreting of documents and query as well
as to improve search performance.

A semantic document base system has two main tasks:

www.ijacsa.thesai.org 463 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

• Offering multiple methods to retrieve documents from
its database, especially the capability of semantic
search for unstructured texts (i.e. the ability to exploit
semantic connections between queries and documents,
evaluate the matching results and rank them according
to relevance).

• Storing and managing text documents and metadata,
content based indexing to facilitate semantic search as
well as managing the knowledge of a special domain
for which the systems are developed.

Some other characteristics of a semantic document base
system among the various kinds of document retrieval systems
are as follows:

• A SDBS focuses on dealing with documents that
belong to one particular domain, whereas existing
knowledge resources in that domain can be exploited
to improve system performance.

• A knowledge-rich document representation formalism
as well as a framework for generating the structured
representation of document content are introduced.

• A certain measure of semantic similarity between a
query and a document is introduced.

• A proper consideration is imposed on the exploration
of domain knowledge, the structural information and
semantic information of texts, in particular, the occur-
rence of concepts and the relations existing between
concepts.

• Offers a vast amount of knowledge in a specific area
and assists in the management of knowledge stored in
the knowledge base.

An overview of the system architecture is presented in Fig.
1. The structure of a SDB system considered here consists of
some main components such as:

Semantic Document Base (SDB): This is a model for
organizing and managing document repository on computer
that supports tasks such as accessing, processing and searching
based on document content and meaning. This model integrates
components such as: (1) a collection of documents, each
document has a file in the storage system, (2) a file storage
system with the rules on naming directories, organizing the
directory hierarchy and classifying documents into directories,
(3) a database of collected documents based on the relational
database model and Dublin Core standard (besides the com-
mon Dublin Core elements, each document may include some
special attributes and semantic features related to its con-
tent), (4) an ontology partially describes the relevant domain
knowledge and finally (5) a set of relations between these
components.

Semantic Search engine: The system uses a special match-
ing algorithm to compare the representations of the query
and document then return a list of documents ranked by their
relevance. Through the user interface, the search engine can
interact with user in order to further refine the search result.

User Interface: Provide a means for interaction between
user and the whole system. Users input their requirement for

information in form of a sequence of keywords. It then displays
search result along with some search suggestions for potential
alternations of the query string.

Query Analyzer: Analyze the query then represent it as a
“semantic” graph. The output of query analyzing process then
be fed into search engine.

Semantic Collector and Indexing: Perform one crucial task
in supporting semantic search, that is to obtain a richer under-
standing and representation of the document repository. The
problems tackled in this module include keyphrase extraction
and lableling, relation extraction and document modeling.
This work presents a weighted graph based text representa-
tion model that can incorporate semantic information among
keyphrases and structural information of the text effectively.

Semantic Doc Base Manager (including Ontology Man-
ager): Perform fundamental storing and organizing task in the
system.

Fig. 1. Architecture of the SDB system

This paper describes the theoretical model of a semantic
document base system by giving formal definitions to the
“document representation” and the “similarity”, with the oc-
currences of keyphrases, concepts and the semantic relations
among them taken into consideration. Furthermore, there are
some other important problems in a SDBS implementation
point of view. The procedures as well as various kinds of data
formats are described in order to implement the above model
as a computerized system. The main models for representation
of semantic information related to document’s content will be
presented in the next section.

III. THE CLASSED KEYPHRASE BASED ONTOLOGY

Ontologies give us a modern approach for designing knowl-
edge components of Semantic Information Retrieval Systems.
Practical applications expect an ontology consisting of knowl-
edge components: concepts, relations, and rules that support

www.ijacsa.thesai.org 464 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

symbolic computation and reasoning. In this article, we present
an ontology model called Classed Keyphrase based Ontology
(CK-ONTO). The CK-ONTO was made to capture domain
knowledge and semantics that can be used to understand
queries and documents, and to evaluate semantic similarity,
first introduced in [20] and had some improvements in [4].
This ontology model was used to produce some practical
applications in Information Retrieval. It can also be used to
represent the total knowledge and to design the knowledge
bases of some expert systems.

The preliminary CK-ONTO, however, was more of a
lexical model than a fully structured Ontology. The central
points in previous versions of CK-ONTO were the vocabulary
of keyphrases (terms), as well as the internal relations between
those keyphrases. Concepts and their structure received little
attention.

In contrary, Gruber defined an ontology as an ’explicit
specification of a conceptualization’, which essentially means
‘An ontology defines (specifies) the concepts, relationships,
and other distinctions that are relevant for modeling a domain.
The specification takes the form of the definitions of repre-
sentational vocabulary (classes, relations, and so forth), which
provide meanings for the vocabulary and formal constraints on
its coherent use’ [21].

Another definition of ontology was also given in [22]:

‘An ontology may take a variety of forms, but necessarily
it will include a vocabulary of terms, and some specification
of their meaning. This includes definitions and an indication
of how concepts are inter-related which collectively impose a
structure on the domain and constrain the possible interpreta-
tions of terms.’

This paper presents a revised CK-ONTO model that is more
on the line with contemporary ontology definitions. We still
employ a vocabulary of keyphrases as the building block of our
model but focus our efforts on structuralized concepts and their
inter-relations. Ontologies must be both human-readable and
machine-processable. Also, because they represent conceptual
structures, they must be built with a certain composition.

Definition 1. The Classed Keyphrase based Ontology (CK-
ONTO), a computer interpretable model of domain knowledge
for various information retrieval tasks, consists of four com-
ponents:

(K, C, R, Rules), where

• K is a set of keyphrases in a certain knowledge
domain.

• C is a set of concepts in the domain.

• R is a set of relations that represent association be-
tween keyphrases in K or concepts in C.

• Rules is a set of deductive rules.

The structure of these components is presented in detail below,
using the Computer Science domain as example:

A. A set of keyphrases: K

A keyphrase is an unequivocal phrase of relative impor-
tance in the domain. It can be a term that signifies a specific

concept, an attribute of a concept or a unique entity in the
domain.

Keyphrase is a linguistic unit structured as a word or a
phrase. The syntactical classification of keyphrases yields three
kinds: single keyphrase, compound keyphrase and modified
keyphrase. A single keyphrase is either a single word or
fixed phrase. For example, computer, network, database, data
structure, operating system, algorithm analysis and design,
Arithmetic and logic unit, data mining . A fixed phrase func-
tions as a word, either with unique reference or as an idiom,
is common in technical usage. The dividing line between a
widely used ordinary phrase and a fixed phrase is not easy to
determine. The degree of fixedness depends on frequency of
occurrence and people’s perception of the usage.

Compound keyphrases, on the other hand, are formed by
two other keyphrases, or more. Based on the semantic of the
relationship between constituents, compound keyphrases can
be further classified as follows:

• Endocentric compound: one keyphrase is the ‘head’
and the others function as its modifiers, attributing
a property to the head. For example: database pro-
gramming, network programming, document retrieval,
wireless communication.

• Dvanda compound: takes the form of multiple
keyphrases concatenated together by using conjunc-
tions, prepositions. For example, data structures and
algorithm, computer graphic and image processing.

It is important to note that a single kephrase could be a
complex combination of multiple words. But this ‘combined
word’ contains only one keyphrase and thus can not be split
into multiple keyphrases like a compound keyphrase.

A modified keyphrase, often consists of an adjective and a
keyphrase, serves the same function as keyphrase. The adjec-
tive provides detail about, or modifies the original keyphrase.
For example, Low complexity, High complexity, classic Web
content, rich multi-domain knowledge base. There are numer-
ous combinations created from this method, because there is
no high stability so it may not have been collected in language
dictionaries.

So, syntatically, we can consider the set of keyphrase K
as K = {k|k is a keyphrase of knowledge domain},K =
K1∪K2∪K3, in which, K1, K2, K3 are three sets of elements
called single keyphrases, compound keyphrases and modified
keyphrases, respectively.

On the semantic side, the set of keyphrases K can be
partitioned into four subsets K = KA ∪ KE ∪ KC ∪ KN

in which:

KA,KE ,KC are three subsets of keyphrases that imply
attributes of some concepts, named entities (real-world objects
such as persons, locations, organizations, products, etc.) or
concepts respectively. And KN is a set of keyphrases that have
not been classifed. This semantic partition would prepare such
set of keyphrases as the building block for other components
of CK-ONTO discussed below. The partition is constructed by
first identifying the relevant objects of the application domain,
together with their relevant features.

www.ijacsa.thesai.org 465 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

B. A Set of Concepts: C

The main components of an ontology are concepts, rela-
tions, instances. A concept represents a set or class of entities
(or objects, instances) or ‘things’ within a domain.

Concepts are basic cognitive units, each associated with
a name and a formal definition providing an unambiguous
meaning of the concept in the domain.A preferred label (name)
is used for human readable purposes and in user interfaces.
The matching and alignment of things is done on the basis
of concepts (not simply labels) which means each concept
must be defined. Concept can be defined by its intension and
extensions. An extensional definition of a concept specifies a
set of particular objects (also called instances) that the concept
stands for. An intensional definition of a concept specifies
its internal structure (attributes or slots) in either formal or
informal way.

The definitional structure of each concept c ∈ C can be
modeled by (cnames, Statement, Kbs, Attrs, Insts).

• ∅ 6= cnames ⊆ KC is a set of keyphrases that
can be used to name this concept. A cnames is also
called a synset which means a series of alternate labels
to describe the concept. These alternatives include
synonyms, acronyms that refer to the same concept.

• Statement is an informal (natural language) defini-
tion of this concept. For example, the statement of
concept PROGRAMING LANGUAGE is ’A program-
ming language is an artificial language designed to
communicate instructions to a machine, particularly
a computer. Programming languages can be used
to create programs that control the behavior of a
machine and/or to express algorithms’. The statement
is a non-nullable human-readable string and does not
need to be interpretable by computer.

• Kbs ⊆ K is a set of “base” keyphrases where each
keyphrase can be a descriptive feature of the concept.
For example, concept PROGRAMING LANGUAGE
can be described by the following base keyphrases:
artificial language, instructions, computer, program,
algorithm. The first place to look for base keyphrases
could be the Statement of that concept.

• Attrs is either an empty set or a set of attributes of the
class, describes its interior structure.

• Finally, Insts is an empty set or a set of instances. If
Attrs is not empty, then each instance is a copy of
the abstract concept with actual values for attributes.
In case Attrs is an empty set, Insts would be a set of
instance names which are keyphrases related to each
other in certain semantics sense.

There are two most notable kinds of concepts. The first
kind often refers to an area of interest in the domain, it is
very difficult to define the exact attributes and instances of
these concepts. Therefore, contents of these concepts would be
described in our ontology through their base keyphrases and
their relations to other concepts. Their attributes and instances
would remain empty.

The second kind often refers to well-structured concepts,
which means we can specify both their attributes and instances.

TABLE I. THE ATTRIBUTES OF CONCEPT ALGORITHM

Attribute name type range sample value
isHeuristic Boolean true, false
isRecursive Boolean true, false

useDataStructure Instance {ARRAY, LIST,
GRAPH, TREE}

liked list, stack, bal-
anced tree, hash ta-
ble, etc.

hasComplexity Instance {COMPLEXITY} linear complexity,
logarit complexity,
exponential
complexity,
factorial
complexity, etc.

The structure of an attribute and instance for these concepts is
discussed below:

1) Attributes of a concept: Attributes (called properties or
slots) are definitional constituents of concepts. Each instance of
a concept will have the same set of attributes but with different
values.

Each attribute a ∈ Attrs is a triple
(attname, type, range), where attname ∈ KA is the
naming keyphrase of the attribute. The type of an attribute
can be primitive data type in computer like string, integer,
float, boolean, etc. For some attributes, the value could be an
instance of another concept. In such case the range of such
attribute would be a set of concepts from which instances can
come. For example, some attributes of concept ALGORITHM
are given in Table I.

2) Instances of a concept: Insts is the set of instances
belonging to the concept, represents extensional components
of the concept. All instances share the same structure as
defined by the concept and thus can be model as a tuple
(instname, values) where instname ∈ K\KA is the naming
keyphrase of that instance and values is the tuple of attribute
values. In general, the sets of instances and attributes are
expected to be disjoint. In case the concept has empty Attrs
but non-empty Insts, each instance in Insts would consist of a
name and an empty value set.

Some sample instances of concept ALGORITHM is given
in Table II. Also, another example, the concept PROGRAM-
MING is described by Fig. 2.

TABLE II. SAMPLE INSTANCES OF CONCEPT ALGORITHM

instname attribute value
binary search hasComplexity logarithm

useDataStructure sorted array
isHeuristic false
isRecursive true

heap sort hasComplexity linearithmic
useDataStructure array
isHeuristic false
isRecursive false

C. A Set of Binary Relations on C - RCC

The set of binary relations R is a tuple of two set R =
(RKK , RCC).

A binary relation r on C is a subset of C×C, i.e. a set of
ordered pairs of concepts in C. It encodes the information of

www.ijacsa.thesai.org 466 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

Fig. 2. An example of class Programming language in IT domain

relation: a concept c1 is related to a concept c2 if and only if
the pair (c1, c2) belongs to the set. The statement (c1, c2) ∈ r
is read “concept c1 is r-related to concept c2”, and is denoted
by c1rc2.

Each relation r will have an inverse denoted by r−1, which
is a relation with the order of two concepts reversed. In other
words ∀c1, c2 ∈ C, c1rc2 ⇐⇒ c1r

−1c2.

There are several kinds of semantic relations between
concepts. The amount of relations may vary depending on the
knowledge domain. These relations can be divided into two
groups: hierarchical relations, non-hierarchical relations. So,
relations also fall into two broad kinds:

1) Hierarchical relations among concepts: The most com-
mon forms of these are:

Hyponymy relation, also called ‘is a’ or ‘kind of’ relation
links specific concepts with more general meaning ones, like
SORTING ALGORITHMS is a more specific case of concept
ALGORITHMS. We denote this relation as rHY P ∈ RCC .
An interesting fact about this relation is that it can give us
insights into the instances and attributes of concepts. Given
two concepts c1, c2 ∈ C, it is possible to establish c1rHY P c2
if and only if the following conditions hold:

- Every instance of c1 is also an instance of c2

- Every attribute of c2 is also an attribute of c1

A class can include multiple sub classes or be included in
other classes. A subclass is a class that inherits some properties
from its superclass. The inheritance relationships of classes
give rise to a hierarchical structure among classes.

Meronymy relation (rPART), also known as ‘a part
of’ or ‘part-whole’ or ‘has a’ relation, is another important
hierarchical relation between concepts. For example, CPU is
a part of COMPUTER.

Sub-topic relation (rSUB) indicates that a concept is a sub
area of another one like ARTIFICIAL INTELLIGENCE and
COMPUTER SCIENCE, or, LINKED DATA and SEMANTIC
WEB. While these so-called ‘topical’ concepts are hard to
describe structurally, the capture of their hierachical relation
play a vital role in many retrieval tasks.

2) Non-hierarchical relations : The three aforementioned
hierarchical relations will incur three ’sibling’ relations denote
as rHY PSIB , RPARTSIB and rSUBSIB respectively. Two

concepts are sibling if they share a direct common parent in
their hierarchy.

Domain-range relation, rRANGE , links a concept to an-
other concept in the range of its attributes. Given c1, c2 ∈ C,
if there exists an attribute a of c1 whose type is ’instance’ and
c2 ∈ range of a, we can say that c2rRANGEc1. For example,
COMPLEXITY is in the range of attribute has Complexity of
ALGORITHM , thus (COMPLEXITY,ALGORITHM) ∈
rRANGE .

Depending on the domain knowledge, there exists many
other types of non-hierarchical relationships that link concepts
which are semantically related to each other without forming a
hierarchy and no clear structural definition, such as Expansion,
Cause, Influence, Instrument, Make, Possession, Source, Aim,
Location, Temporal, Manner, Support, Beneficiary, Property,
Agent, Circumstance, Related, etc.

Like binary relations general, our relations between con-
cepts may have some properties like symmetric, transitive or
reflexive, etc. A non-exhausted list of properties of relations
in RCC is given in Table III

TABLE III. PROPERTIES OF RELATIONS IN RCC

relation properties
Hierachical relations transitive, reflexive, antisymetric
Domain-range relation antisymetric
Sibling relations transitive, reflexive, symetric

D. A Set of Binary Relations on K: RKK

In addition to being a knowledge model of concepts and
their relations, CK-ONTO also resembles a lexical model, in
that it groups keyphrases together based on their meaning
similarity and labels the semantic relations among keyphrases.
This information is vital in many semantic retrieval tasks.

A binary relation r on K is a subset of K × K. The
statement (x, y) ∈ r is read“keyphrase x is r-related to
keyphrase y”, and is denoted by xry. Keyphrases are interlinked
by means of conceptual-semantic and lexical relations. There
are three kinds of relations among keyphrases:

1) Equivalence relations: link keyphrases that have the
same or similar meaning and can be used as alternatives for
each other. There are two types of equivalence relations. The
first one is ‘abbreviation’ relation, which links a short form
or acronym keyphrase to its full form like AI and Artificial
Intelligence or Twittworking and Twitter networking. This
relation, denoted as rabbr, is neither symmetric or transitive
since two completely different keyphrases can share the same
abbreviation, like Best First Search and Breadth First Search
can both be abbreviated as BFS.

The other type of equivalence is synonymy relation, de-
noted as rsyn,links keyphrases that can be used interchangably,
like Ontology Matching and Ontology Mapping. This relation
is fully symmetric and transitive, thus can be used to group
keyphrases that share the same semantic meaning. The dis-
tinction between these two relations, therefore, should come
from their semantical effects. If a short form keyphrase can

www.ijacsa.thesai.org 467 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

replace its full form ubiquitously with no additional disam-
biguation needed, that should be considered synonym rather
than abbreviation.

When creating a synonymous groups of keyphrase, one
should consider the spoke-and-hub model with one keyphrase
serves as the centroid (hub) for the group and links to its
synonymous keyphrase. The choice of hub keyphrase may
not be trivial but the most popular keyphrase in the domain
literature should be chosen in most cases.

2) Syntactical relations: that link compound keyphrase
with its components. For dvanda compound, we have a
simple ‘formed by’ relation (rformby) from the compound
keyphrase to each of its components. For endocentric com-
pound, however, we have the ‘head component’ keyphrase and
the ‘modifier component’ keyphrase, hence, there are ‘headed
by’ relation (rheadby) and ‘modified by’ relation (rmodby) from
an endocentric compound to its components respectively.

3) Semantic relations derived from concept relations: In in-
formation retrieval, there are many tasks that can be facilitated
by the processing of terms and their relations, without any need
for uncovering the structure of concepts. To better prepared
our model for such tasks, we enrich RKK with derived
version of relations from RCC including rhyp, rpart and rsub
as hierarchical relations; rhypsib, rpartsib, rsubsib, rrange and
rrelated as non-heirachical relations.

The exact keyphrase-keyphrase pair for each of these rela-
tions can be specified explicitly in addition to derivation from
each element of RCC . Since a keyphrase can express either
a concept, an attribute or an instance, we would need some
rules to deduce relations between keyphrases from relations
between concepts. These rules will be discussed in the next
section.

E. The Set of Rules

Rules is a set of deductive rules on facts related to
keyphrases and concepts. A rule can be described as follows:
rule : {f1, f2, ..., fn} ⇒ {g1, g2, ..., gm} with {f1, f2, ..., fn}
are hypothesis facts and {g1, g2, ..., gm} are goal facts of the
rule.

Facts are concrete statements about ‘properties of rela-
tions’, ‘relations between keyphrases’ or ‘relations between
concepts’. The notations for each kind of facts are listed below:

Facts about properties of relations are written as [<
relation symbol > is < property >]. For example, [
rsyn is symmetric] means that the synonym relations between
keyphrases is symmetric.

Facts about relations between keyphrases are writ-
ten as [< first keyphrase >< relation symbol ><
second keyphrase >]. For example, [‘quick sort’ rhyp ‘sort-
ing algorithm’] means that keyphrase quick sort has hyponymy
relation with keyphrase sorting algorithm.

Facts about relations between concepts are written as [<
first concept >< relation symbol >< second concept >
]. For example, [‘EXPERT SYSTEMS’ rSUB ‘ARTIFICIAL
INTELLIGENCE’] means concept EXPERT SYSTEMS is a
sub-topic of concept ARTIFICIAL INTELLIGENCE.

Some examples of rule include:

∀k1, k2, k3 ∈ K,∀r ∈ SRKK
where SRKK

is aa set of
symbols (or names) of the relations in RKK

rule 1: if [r is symmetric] and [k1rk2] then [k2rk1]

rule 2: if [r is transitive] and [k1rk2] and [k2rk3] then
[k1rk3]

rule 3: if [k1rsynk2] and [k2rk3] then [k1rk3]

Once keyphrases, classes and relations had been defined,
rules should be described for constraint checking and inferring
relation between two kephrases, between a keyphrase and a
class, and between two classes. Moreover, rules also help
(1) saving storage cost now that we don’t have to manually
store every single relationship, (2) enforce constraint and
help reduce workload of a knowledge engineer when building
ontology data, (3) the set of rules is an essential tool to
deduce the direct or indirect relationships between keyphrases
or concepts, the key step in evaluating the semantic similarity
among keyphrases and concepts.

The Roles of CK-ONTO in Document Retrieval Systems

There are many ways to utilized CK-ONTO in different
components of a document retrieval system.

• Document representation can be enriched.
CK-ONTO can be viewed as a specific knowledge
resource which be effective for language understand-
ing tasks, i.e. can be used to understand and inter-
pret queries and documents. In lexical models like
WordNet, concepts correspond to senses of words.
A concept in WordNet is represented as a synonym
set and each synset is provided a textual definition,
examples of its usage. Typical semantic relations
between synsets include is-a relation, instance-of re-
lation, part-of relation. In contrast, our CK-ONTO
contains many different lexical and semantic relations
between concepts or keyphrases. Keyphrases can refer
well-structuralized concepts or specific entities.
On the other hand, there are several existing gen-
eral ontologies that can provide internal structural
information about concepts or entities. However, they
are massive in size, require additional disambiguation
processing. Whereas CK-ONTO can facilitate quick,
painless keyphrase extraction and graph-based doc-
ument representation as pointed out in our previous
iteration [4].

• Relevance evaluation between concepts or keyphrases
is arguably the most common utilization of knowledge
resources in retrieval systems. The semantic relevance
between two concepts or keyphrases can be measured
through their relations to other concepts. This mea-
surement can then be used to expand query, ranking
entities, representing document, semantic matching
and so on. A good relevance evaluation strategy, tend
to be specifically tuned to maximize the utilization
of information provided in a specific resource. There-
fore, we will propose a semantic relevance evaluation
strategy based on CK-ONTO in the next section.

www.ijacsa.thesai.org 468 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

• The use of the ontology can also be useful for query
expansion by means of introducing related keyphrases
(or entities, concepts) and their content to expand
the query. A ’heavy’ domain ontology is preferred
for fine-grain and precise expansion. However, we
are yet to conduct formal experiment to substantiate
the usefuleness of CK-ONTO in supporting query
expansion tasks. Only system-wide experiment results
are discussed in this article.

• Ranking model can exploit the ontology for matching
the representations of texts. This is among the last
steps in a retrieval systems, to determine the order
of search results. A ranking scheme relied on earlier
versions of CK-ONTO can be found in [4].

To build a knowledge base in CK-ONTO model is a task
best supervised by well-trained domain experts. The process
often involves these following steps:

• Collect a set of keyphrases in the domain from existing
resources like dicitonaries, thesauri, Wikipedia, etc.

• Scan the document repository for any keyphrases that
could have been missed in the previous step.

• Identify concepts and define their structures in CK-
ONTO model.

• Determine the possible relations among concepts and
employ inference engine based on the set of rules to
deduce any additional relations among concepts and
keyphrases.

Since the performance of various retrieval tasks heavily
relied on ontology quality, it’s ineluctable to have manual
tuning from a team of experts in the domain. We built a
web-based CK-ONTO management tool to help co-ordinate
the efforts among teams of users. A screenshot of that tool is
given in Fig. 3.

Fig. 3. A screenshot of CK-ONTO management tool

IV. KEYPHRASE GRAPHS FOR DOCUMENT
REPRESENTATION

The work will focus on studying the method of text doc-
ument representation, with the aim of converting documents
into a structured form suitable for computer programs while
still being able to describe core content of that text. We first
briefly outline document representation formalism properties
that we consider to be essential.

A. Requirements for a Document Representation Formalism

The content of document can be understood and interpreted
in various ways. We are interested in document formalisms that
comply, or aim at complying, with the following requirements:

• To allow for a structured representation of document
content.

• To have a solid mathematically foundation.

• To allow users to have a maximal understanding and
control over each step of the building process and use.

Document representation formalisms can be compared accord-
ing to different criterias, such as expressiveness, formality,
computational efficiency, ease of use, etc. A model is con-
sidered good if the following criterias are met:

1) Expressiveness: One of the fundamental challenges of
text representation is the ability to represent information in
text. The Expresiveness measures how ”well” a representation
can reflect the content of a document, i.e, what concepts and/or
entities are mentioned in the document and what information
can be inferred about them. A good representation has to
capture both important structural information and semantic
information, whereas structural information comprising of:

• The set of selected representative terms from text:
A term is a simple word or phrase which helps to
describe the content of document, and which may
indeed occur in the document, once or several times
(also called keywords, or keyphrases). Besides, “rep-
resentative terms” can be more complex features like
n-grams, nouns phrases, etc. extracted using various
linguistic processing techniques

• Frequency of terms: the number of occurrences of
terms in a document or in a collection of documents
reflects their importance and specificity in the texts.

• The ordering information among terms.

• The co-occurrence of terms in different window sizes,
i.e. terms can occurrence together in a sentence, a
paragraph, or in a fixed window of n words and the
evaluation for the strength of this relation. There is an
assumption that if terms appear together in the units
(as a sentence, different parts of a sentence) with a
higher frequency, it means there is a close relationship
between them, so thus the corresponding link should
be weighted stronger.

• Location of terms in text: position information of
terms at any content item (title, abstract, subtitle,
content, etc.), at the beginning, middle or end of the
text.

We define three levels of effectiveness in capturing struc-
tural information, described in Table IV.

Richer document representation schemes can be obtained
by considering not only words or phrases but also semantic
relations between them. The meaning of a document is the
result of an interpretation done by a reader. This interpretation
task needs much more information than the data contained
in the document itself. The understanding the content of a
document involves not only the determination of the main
concepts mentioned in the document but also the determination
of semantic relations between these concepts. Besides, the
importance of representative concepts, how strongly they relate
to each other should also be considered. The semantic infor-
mation discussed in this paper is the meaning of a text derived

www.ijacsa.thesai.org 469 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

TABLE IV. LEVEL OF STRUCTURAL INFORMATION EXPRESSIVENESS

Criteria Level 1 Level 2 Level 3
Model can cap-
ture structural in-
formation

Record the set
of words appear
in the document,
with or without
weighting
parameter to
indicate the
importance of
those words in
the document.

Record set
of phrases or
features in
the document
along with their
weights, location
information

In addition to
level 2, also
record the
co-occurence
relation among
features.

Example model Bag of Words,
Vector Space
Models, etc.

Bag of complex
features such as
n-grams, Nouns
phrases, (head,
modifier, ...,
modifier) tuples,
etc.

Co-occurrence
Graph based on
the co-occurrence
of feature terms
in the document.

from lexical semantics which are the underlying meanings
of terms in the document and term relations or conceptual
semantics which capture the cognitive structure of meaning.
There are two main approaches to extracting semantic infor-
mation. The first one employs Natural Language Processing
techniques to parse the grammatical structure of the document
into computer friendly representation. In this article, however,
we will focus on the second approach, that is employing an
external knowledge source to infer the meaning of document.
The semantic information unearth using this approach may
consist of:

• List of concepts or entities discussed in the document.
Depending on the type of semantic resource being
used, the structure of concepts may vary. In lexi-
cal models, concepts correspond to senses of words
whereas concepts in knowledge models (abstract mod-
els of knowledge) stand for classes of real-world
entities. Lexical concepts may refer to entities, classes,
relations, attributes, or other senses of words and can
be organized along lexical relationships in a lexical
model. Knowledge models basically represent classes,
attributes associated with these classes, and relations
between classes.

• Relationships between concepts or entities reflected in
the document. There are various kinds of association
between concepts that raises a challenge of how to
explore fully the potential of them and how to use
some or all of them together.

• Weights associated with concepts (or entities) which
reflect their relevance to the aspects or topics of the
document.

• Weights associated with relationships between con-
cepts which capture the strength of those relationships,
i.e. the degree of associativity between concepts, how
strongly related the two corresponding concepts are.

Levels of effectiveness in capturing semantic information
may be considered as in Table V.

2) Formality: Components in a representation model have
to be defined on a strong foundation with logically and
mathematically sound notations. Further operations facilitated

TABLE V. LEVEL OF SEMANTIC INFORMATION EXPRESSIVENESS

Criteria Level 1 Level 2 Level 3
Model can cap-
ture semantic in-
formation

Represent
document as
a bag or vector
of concepts
(or entities)
mentioned in the
document with
or without
frequency
weighting.
Concepts are
linked to an
external semantic
resource

Represent
document as
a bag or vector
of concepts
where relations
between such
concepts in the
semantic resource
are exploited in
the weighting
process.

Represent
document as
a graph of
concepts with
vertex weights
reflecting the
importance of
concepts in
document and
edge weights
representing
the strength
of relationship
between two
corresponding
concepts.
Difference kinds
of relationships
are recorded

by the model also have to be well stated in the same notations
so that they can be proved and implemented.

The formality is vital since it helps with the disambiguation
and thus reduces error rate when using the model on real life
data.

3) Computational efficiency: The specification language of
the model has a simple structure but can represent knowledge
domain and content of documents adequately. Users can em-
ploy it to represent, update, search, store easily as well as
control over each step of the building process. Moreover, tech-
nical difficulty and utilization available tools or technologiza-
tion should be considred. We are interested in representation
formalisms that can be used for building systems able to solve
real, complex problems. It is thus essential to anchor these
formalisms in a computational domain having a rich set of
efficient algorithms so that usable systems can be built. Due to
the importance of natural language, a document representation
formalism should allow the user to easily understand the
results given by the system. The ability for describing the
natural semantics is a good empirical criteria for delimiting
the usability of the formalism.

Motivated by the previous work, this paper deals with
the problem of document representation, provides a more
expressive way to represent the texts for multiple tasks such
as document retrieval, document similarity evaluation, etc. We
propose graph based semantic models for representing doc-
ument content which consider the incorporation of structural
(syntactic) information and semantic information in texts to
improve performance. Exploiting domain specific or general
knowledge have been studied for acquiring fine - grained
information about concepts and their semantic relations, thus
resulting in knowledge-rich document models.

B. Modeling Document as Graph over Domain Knowledge

This subsection is devoted to an intuitive introduction of
Keyphrase Graphs. The graph-based document representation
formalism is introduced in detail. This formalism is based
on a graph theoretical vision and complies with the main
principles delineated in the previous subsection. Document
Representation has long been recognized as a central issue
in Document Retrieval. Very generally speaking, the problem

www.ijacsa.thesai.org 470 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

is to symbolically encode text document in natural language
in such a way that this encoded document can be processed
by a computer to obtain intelligent understanding.

We use the term “keyphrase graphs” (KGs in short) to
denote the family of formalisms and use specific terms,
e.g. simple keyphrase graph, weighted keyphrase graph, full
weighted keyphrase graph —for notions which are mathemat-
ically defined in this paper.

A simple keyphrase graph is a finite, directed, muligraph.
“Multigraph” means that a pair of nodes may be linked by
several edges. Each node is a keyphrase that occurs and of
relative importance in the domain. Edges express relationships
that hold between these keyphrases. Each edge has a label. An
edge is labeled by a relation name. A simple keyphrase graph
is built relative to an ontology called CK-ONTO and it has to
satisfy the constraints enforced by that ontology.

Definition 2. Let O = (K,RKK) be a sub-model derived
from a domain ontology in the CK-ONTO formalism. A simple
keyphrase graph (KG) defined over O, is a tuple (V,E, φ, lE)
where:

• V ⊂ K is the non-empty, finite set of keyphrases,
called set of vertices or nodes of the graph.

• E is a set of directed edges.

• φ : E → {(x, y)|(x, y) ∈ V 2, x 6= y} an incidence
function mapping every edge to an ordered pair of
distinct vertices. The edge represents a semantic (con-
ceptual) relationship between its two adjacent vertices.
The two vertices k1, k2 ∈ V are connected if there
exits a relation r ∈ RKK such that (k1, k2) ∈ r .

• lE : E → TR is a labeling function for edges. Every
edge e ∈ E is labeled with a relation name lE(e) ∈
TR. TR is a set of names of binary relations found in
RKK .

O is composed of two sets: a set of keyphrases and a set
of binary relations between keyphrases and can be considered
as a rudimentary ontology. In contrast to lexical resourses
like WordNet, our ontology contains many different, well-
controlled semantic relations. In some works, it is assumed
that O has a specific structure, such as a graph, thus a simple
keyphrase graph can be viewed as a subgraph of O. A KG has
nodes representing defined keyphrases in the domain ontology
and edges representing semantic relationships found in the
ontology between these keyphrases. Keyphrase nodes can refer
to concepts or specific entities of domain knowledge. Important
differences between the keyphrase graph model and other
semantic networks are to be pointed out:

Compared to Conceptual Graph (CG), the structure of
Keyphrase Graph is leaner. CGs are buit on a vocabulary of
three pairwise disjoint sets: the ordered set of concept types,
the set of relation symbols, and the set of typed individual
markers. A concept type can be considered as a class name
of all the entities having this type. In KG definition, on
the contrary, the vocabulary K is a mixture of concepts’
names (the counterpart of concept types), entities’ names (the
equivalence of individual markers) and many other things. A
concept node in CG refers to either a specific entity, labeled
by a pair (type, marker), or an unspecified entity with just the

‘type’ label. On the other hand, the nodes in KG are labeled
with only the keyphrase. This is possible because the majority
of information about each keyphrase can be inferred from CK-
ONTO, we can get by with fewer annotations on keyphrase
graph nodes.

Since the definition of CGs does not specified any rela-
tionship among concepts beyond simple a-kind-of relations.
The determination of possible semantic relationships between
concept types in CGs must use some complex natural lan-
guage processing techniques and external resources. Whereas
for keyphrase graphs, relationships can be quickly found by
exploiting information about relations within the ontology or
deducing from them.

Recently, various graph models use general kwowledge
bases (e.g. DBpedia, Freebase) as the backend ontologies.
Such knowledge bases contain knowledge about concepts or
real-world entities such as descriptions, attributes, types, and
relationships, usually in form of knowledge graphs. They share
the same spirit with controlled vocabulary but are created by
community efforts or information extraction systems, thus have
a large scale, wide-coverage [23].

Due to such wide-coverage, when comparing to a domain
specific ontology like CK-ONTO, those general knowledge
bases often have a higher degree of conceptual overlapping
and ambiguity. Thus various disambiguation techniques are
required when using those knowledge bases, an unnecessary
burden for retrieval tasks in a specific domain.

Definition 3. Let O = (K,RKK) be a sub-model derived
from CK-ONTO. A weighted keyphrase graph (wKG) defined
over O, is a tuple (V,E, φ, lE , wV , wE) where:

• (V,E, φ, lE) is the simple keyphrase graph.

• wV : V → R+ and wE : E → R+ are two mappings
describing the weighting of the vertices and edges.

In some works, not all keyphrases or all relations are
equally informative, so numerical weights associated with
them are necessary. Such weight might represent for example
cost, length, capacity, descriptive importance or degree of
associativity, depending on the problem at hand.

Graphs are commonly used to encode structural infor-
mation in many fields, and graph matching is an important
problem in these fields. The matching of a graph to a part
of another graph is called subgraph matching problem or
subgraph isomorphism problem. So, we are interested here in
subgraphs of a KG that are themselves KGs.

Definition 4. Let G = (V,E, φ, lE) be a simple keyphrase
graph. A sub keyphrase graph (subKG) of G is a simple
keyphrase graph G′ = (V ′, E′, φ′, l′E) (denoted as G′ ≤ G
) such that: V ′ ⊆ V , E′ ⊆ E, φ′, l′E are the restrictions of
φ, lE to E′ respectively, and φ′(E′) ⊆ V ′ × V ′ . Conversely,
the graph G is called a super keyphrase graph of G’.

Definition 5. Let G = (V,E, φ, lE , wV , wE) be a weighted
keyphrase graph. A sub weighted keyphrase graph (sub-
wKG) of G is a weighted keyphrase graph G′ =
(V ′, E′, φ′, l′E , w

′
V , w

′
E) (also denoted as G′ ≤ G) such

that: (V ′, E′, φ′, l′E) ≤ (V,E, φ, lE) and the weights of every
vertices and edges of G’ are equal to their counterparts in the
super keyphrase graph G.

www.ijacsa.thesai.org 471 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

A subKG of G can be obtained from G only by repeatedly
deleting an edge or an isolated vertex.

Keyphrase graphs are building blocks for representing dif-
ferent kinds of texts, e.q. used for the semantic representation
of documents and queries. Keyphrases are the most relevant
phrases that best characterize the content of a document.
Keyphrases provide a brief summary of the content, and thus
be used to index the document and as features in further
search processing. Furthermore, understanding the document
content involves not only the determination of the main
keyphrases occur in that document but also the determination
of semantic relationships between these keyphrases. Therefore,
each document can be represented by a compact graph of
keyphrases in which keyphrases are connected to each other by
semantic relationships. Nodes represent keyphrases extracted
from the document through references to explicit keyphrases
in a domain ontology. We can assign a weight to each
keyphrase in the given document, representing an estimate
of its usefulness as a descriptor of the document. Similarly,
each relation edge in the document graph also allocated a
weight (usually but not necessarily statistical) which reflects
the membership degree between two direct keyphrases. This is
a distinctive feature of weighted keyphrase graphs: they allow
to represent semantic and structural links between keyphrases
and measure the importance of keyphrases along with the
strength of relationships whereas poor representation models
cannot.

Definition 6. Let O = (K,RKK) be a sub-model derived from
CK-ONTO. Given a document d which belongs to a collection
D of documents in a specific knowledge domain. A weighted
keyphrase graph, which represents the document d (denoted as
docKG(d)), defined over O, is a tuple (V,E, φ, lE , wV , wE)
where:

• (V,E, φ, lE , wV , wE) is a weighted keyphrase graph
whose vertices and edges can be weighted with some
statistical or linguistic criterion.

• (lE , wE) are two labeling functions for edges of
the graph. Every edge e ∈ E is labeled by a pair
(lE(e), wE(e)) where lE(e) is a name of semantic
relation in RKK , wE(e) is the weight assigned to the
current edge . This weight is a measure of semantic
similarity between two keyphrases.

• wV is a labeling function for vertices of the graph
Each keyphrase vertex k ∈ V is assigned a weight
w(k, d), which is a measure of how effective the
keyphrase k is in distinguishing the document d from
others document in the collection

The most expressive keyphrase graph is called full
weighted keyphrase graph. The basic idea of the extension
from weighted keyphrase graph to full weighted keyphrase
graph is that there are various kinds of association between
keyphrase vertices considered. We consider different types of
relationships among keyphrases and their environment in the
domain ontology as well as in the documents.

Definition 7. Let O = (K,RKK) be a sub-model derived
from CK-ONTO. Given a document d which belongs to a
collection D of documents in a specific knowledge domain. A
full weighted keyphrase graph, which represents the document

d (denoted as fulldocKG(d)), defined over O, is a tuple
(V,E1, E2, φ1, φ2, lE1

, lE2
, wV , wE) satisfying the following

conditions:

• (V,E1, φ1, lE1 , wV , wE) is a weighted keyphrase
graph representing d .

• E2 is a set of directed edges representing syntactic
relationships between keyphrase vertices (the edge
set of graph is E = E1 ∪ E2) and φ2 : E2 →
{(x, y)|(x, y) ∈ V 2, x 6= y} maps every edge to
an ordered pair of distinct vertices. In addiction to
semantic relationships, the two keyphrase vertices
k1, k2 ∈ V can also be connected if there exits some
forms of syntactic relationship between them such as
co-occurrence or grammatical relationships.

• lE2
: E2 → TS is a labeling function for edges in E2.

TS is a set of names of binary syntactic relations used
for labeling such edges.

• wE : E → R+ is used for weighting edges.
Such weights capture the degree of relevance between
keyphrases in the graph.

• Two keyphrases are connected by co-occurence re-
lationship if they appear in the same sentence. The
edge connecting them is labeled “co-occurrence”, its
direction is based on the order in which those two
keyphrases appear. The weight of such edge reflects
how strongly the two keyphrase related and could be
measured by the frequency they appear together.

• The syntactic relationship is a special kind of co-
occurence relationship, when grammatical roles of the
two keyphrase can be inferred. The label, direction
and weight of edge in case may vary depending on
the domain knowledge and the parsing technique.

C. Weighted Keyphrase Graph Construction

1) A general framework for document graph generation:
We present a method to generate the structured representation
of textual content using CK-ONTO as the backend ontology.
The key idea of document representation by a keyphrase
graph is to link the keyphrases in the document text to
concepts/entities of a domain ontology in the CK-ONTO for-
malism, and to explore the semantic and structural information
among them in the ontology as well as in the text body.

Given an input text document d, the process of generating
a full weighted keyphrase graph fulldocKG(d) representing d
consists of the following stages:

• Step 1: Extract keyphrases in the text d, that corre-
spond to defined keyphrases in the knowledge base
CK-ONTO. This step is in iteself an active research
problem, resulting in a variety of existing tools. How-
ever, in some specific domains, human intervention
is still unavoidable to form a concise list of vertices
of the graph. Then weights will be assigned to each
vertex and some popular weights like tf, idf¸, ect. are
good starting point.

• Step 2: Connect the extracted keyphrase vertices using
their semantic and/or structural relationships. Each

www.ijacsa.thesai.org 472 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

pair of keyphrases ki and kj are connected by an
edge in two cases: 1) If they are directly linked by
a relation defined on CK-ONTO, that relation name
is also used to label the edge. 2) If they occur
together in a sentence, syntactic parsing techniques
are employed to determine the syntactical relation
between them, otherwise they only have simple “co-
occurrence” relation.
Based on the observation that the core aspects
of a document should be a set of closely re-
lated keyphrases, the strength of associations among
keyphrases are used for the representation to better
reflect the semantics of the text. The weight on the di-
rected edge r connecting ki and kj reflects the strength
of relationship between two keyphrases, based on their
features and relationships in the domain ontology.
Moreover, keyphrases that frequently appear together
in a document or in many documents of the collection
tend to have stronger links between them. This kind
of association reflects how often two keyphrases share
contexts. However, the exact formula for edge’s weight
may vary depending on the type of the document.

• Step 3: If a group of synonym keyphrases are ex-
tracted, remove all but the one with highest weight
and update the weight of this keyphrase.

• Step 4: Compute the weight for each edge to evaluate
the strength of the corresponding relation.

A query may be specified by the user as a set of keyphrases
or in natural language. In the latter case, the query can be
processed exactly like a miniature document in similar manner.
A natural language query can receive the usual processing, i.e.,
keyphrase extraction, relationship identification, etc. transform-
ing it into a graph of keyphrases.

2) Assigning weights to keyphrase vertices and relation
edges: Each keyphrase vertex k of the keyphrase graph
representing the document d is assigned a weight w(k, d),
which is a measure of how effective the keyphrase k is in
distinguishing the given document d from other documents
in the same collection. There are many strategies to weight
keyphrase nodes and a variety of weighting schemes have been
used. The exact scheme for automatic generation of weights
may vary depending on the characteristics of the document
repository. The formulas below were used in some of our
applications and are listed here for examplary purpose.

The weight associate with the keyphrase node k of the
keyphrase graph docKG(d), representing an estimate of the
usefulness of the given keyphrase as a descriptor of the
document d, is computed by:

w(k, d) = tf(k, d)× idf(k,D)× ip(k, d) (1)

The “term frequency” tf(k,d) is the frequency of oc-
currence of the keyphrase k within the given document d,
that reflects the importance of the keyphrase within a given
document according to the number of times it appears in the
document, is computed by:

tf(k, d) = c+ (1− c) n(k, d)

max({n(k′, d)|k′ ∈ d})
(2)

where n(k, d) is the number of occurrences of the
keyphrase k in the document d. Parameter c ∈ [0, 1] is
the predefined minimum tf value for every keyphrase. This
parameter reflects one’s confident in the keyphrase extraction
process, that means any keyphrase extracted must have a
certain value of importance as a descriptor of the document
and in the worst case it should have a tf of at least c.

In large (long) documents like books and thesis, some
’popular’ keyphrases can appear a thousand fold more times
than a more specific keyphrase, leading to a very low frequency
for this specific keyphrase. This parameter also help prevent
keyphrases from being overshadowed in large documents. The
value of c is chosen through experimenting and can be fine-
tuned to suit different specific applications.

The “Inverse document frequency” idf(k, D) is a measure
of how widely the keyphrase k is distributed over the given
collection of documents D and computed by:

idf(k,D) = log

(
|D|

1 + |{d ∈ D, k ∈ d}|

)
(3)

where |D| is the total number of documents in the collection
and |{d ∈ D, k ∈ d}| is the number of documents where the
keyphrase k appears.

The “Importance of Position” ip(k,d) represents an esti-
mate of the importance of keyphrase k in document d based
on the location of occurrence of k in the document, is defined
as:

ip(k, d) = a+ (1− a)

∑
i∈A wi∑
i wi

(4)

in which, wi is the weight assigned for the ith component
of document d , representing the importance of ith component
of document structure. The set of the index of all components
in which k appear defined as A = {x|nx(k, d) > 0}, on top
of that we can defined Parameter a = max(wi|i ∈ A) as
the weight of the most important component where k appears,
also serves as the predefined minimum value for ip(k, d). The
number of a document’s component and the weight for each
component is different for each type of document. In a paper,
for example, the title and abstract are much more important
in helping readers quickly grasp the general meaning of the
text, so the keyphrases appear in these components are always
considered to be more significant and should have the largest
weight.

By adopting tf×idf×ip weighting scheme, such weighting
scheme assumes that the best descriptors of a given document
will be the keyphrases that occur often in the document and
very rarely in other documents and they are likely to occur in
important content items of the document (such as title, subtitle,
abstract, etc.).

Similarly, weights are also assigned to relation edges in
the graph. The weight on the directed edge r connecting ki
and kj reflects the strength of the relationship between pair

www.ijacsa.thesai.org 473 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

of keyphrases. Commonly, if keyphrases appear together in
a sentence with a higher frequency (within given document),
it means there is a stronger link between them. However, in
some types of documents, the number of times that keyphrases
occur in the texts could be low, so ki and kj rarely co-occur
more than once. Therefore, the weight assigned to an edge
can be considered by the relative frequency of co-occurrence
of its both adjacent keyphrase vertices (in a sentence) over the
given collection. Thus, the formula for edge’s weight may vary
depending on the type of the document. An example forumla
will be given in Section ??.

We demonstrate the benefits of these semantic representa-
tions in the following search task:

V. GRAPH BASED DOCUMENT RETRIEVAL

This paper deals with the problem of document representa-
tion for the task of ad-hoc document retrieval. The main task
is to retrieve a ranked list of (text) documents from a fixed
corpus in response to free-form keyword queries. In this work,
the query and documents are modeled by enhanced graph-
based representations. We define several semantic similarity
measures which consider both semantic and statistical infor-
mation in documents to improve search performance.

A. Semantic Relevance Evaluation

Relevance evaluation between the target query and docu-
ments is done by calculating the semantic similarity between
two keyphrase graphs that represent them. A keyphrase graph
is constituted by keyphrase nodes and relation edges, so the
similarity between two keyphrase graphs is calculated by
means of their pairwise similarity.

1) Semantic similarity between two keyphrases: This sub-
section will discuss a method to estimate the similarity between
two keyphrases, the most basic components in CK-ONTO,
from which other similarity metric can be built upon.

Let α : K×K → [0, 1] be the mapping to measure seman-
tic similarity between two keyphrases. Value 1 represents the
equivalence between two keyphrases and value 0 corresponds
to the lack of any semantic link between them. To calculate
the value of α we first have to present some preliminary
definitions:

Definition 8. Given a knowledge domain modeled by CK-
ONTO O = (K, C, R, Rules) and two keyphrases k, k′ ∈ K, the
keyphrase k’ is called directly reachable from the keyphrase
k if there exists a relation r ∈ RKK such that (k, k′) ∈ r (or
written as k r k’). We can also said that k’ is directly reachable
from k by r.

When k’ is directly reachable from k by relation r ∈ RKK ,
the triplet (k, r, k′) could be assigned a decimal number
in the interval (0.0 ... 1.0], denoted as val(k, r, k′). This
number stands for the axiomatic similarity degree of k and
k’ according to r.

The similarity degree of two keyphrases linked by a relation
depends mostly on that relation. For example, two keyphrase
linked by synonym relation must have much larger similarity
degree than two keyphrases linked by hyponym relation. On
the other hand, two pairs of keyphrases linked by the same

relation may have slightly different semantic similarity. This
value should be established by a panel of experts in the given
domain adhering to some constraints, for example:

• ∀k1, k2, k3, k4, k5, k6 ∈ K, if k1rik2, k3rjk4, k5rtk6,
where ri is a equivalence relation, rj is a hierarchical
relation and rt is a non-hierarchical relation then
val(k1, ri, k2) > val(k3, rj , k4) > val(k5, rt, k6)

• ∀k, k′ ∈ K if krik′ where ri ∈ {rsyn, rabbr} then
val(k, ri, k

′) ≈ 1

Definition 9. Given a knowledge domain modeled by CK-
ONTO O = (K, C, R, Rules) and two keyphrases k, k′ ∈ K,
the keyphrase k’ is reachable from the keyphrase k if there is
a chain of keyphrases k1, k2, ..., kn with k1 = k and kn = k′

such that ki+1 is directly reachable from ki, for i = 1,..., n-1.

Let RKK = {r1, r2, ..., rm} be a set of
binary relations on K, sequence of integers
S = (s1, s2, ..., sn−1), si ∈ [1,m], rsi ∈ RKK , the notation
(k1rs1k2, k2rs2k3, ...kn−1rsn−1

kn), called a path of length
n-1 from k to k’ in CK-ONTO, denotes a finite sequence
of relations which joins a sequence of distinct keyphrases
and obtained from the reachable relation between k and k’.
(rs1 , rs2 , ..., rsn−1) is the relation sequence of the path and
(k1, k2, ..., kn) is the keyphrase sequence of the path.

Definition 10. Given a path
(k1rs1k2, k2rs2k3, ...kn−1rsn−1

kn) from k1 to kn in
CK-ONTO, the weight of such path is defined by the
formula

V (k1rs1k2, k2rs2k3, ...kn−1rsn−1
kn) =

n−1∏
1

val(ki, rsi , ki+1)

Definition 11. For all k, k′ ∈ K, the mapping α measuring
semantic similarity between k and k’ would be defined as
follows:

• α(k, k′) = 1 if k = k′

• α(k, k′) = 0 if k’ is not reachable from k

• α(k, k′) = Max({V (P) |P is a path from k to k’})
otherwise

There may exist many paths from k to k’ and the value
of α(k, k′) would be the maximum weight of those paths. So
to calculate α(k, k′) we have to solve the maximum weight
path problem, which is to find the path of maximum weight
from keyphrase k to k’.

However, one may note that if we extend an existing path
by adding one more relation and keyphrase to it, its weight will
be multiplied by a number between 0 and 1, thus will likely
to decrease. Therefore, our maximum weight path problem is
indeed a special case of shortest path problem which can be
solved quite easily.

The algorithm 1 is a modified version of the classic Dijkstra
algorithm that can calculate alpha between two keyphrase.
The typical complexity of Djkstra algorithm implement using
binary heap is O((|E| + |V |) ∗ log|V |) whereas in our case,
|E| =

∑
r∈RKK

|r| and |V | = |RKK | ∗ |K|

www.ijacsa.thesai.org 474 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

Algorithm 1 Calculate semantic similarity between two
keyphrase k1 and k2
Data: O = (K,C,R,Rules) - the knowledge domain mod-

eled by CK-ONTO, where R = (RKK , RCC)
Input : Two keyphrases k1, k2 ∈ K
Output: The semantic similarity α(k1, k2)
Q ← Empty Priority Queue /* Each item in Q

is a {keyphrase, value} pair and item with
maximum value is at the front of the
queue */

visited ← Empty hash table /* Used to keep track
of visited keyphrase */

Q.enQueue({k1, 1})
while Q is not empty do
{k, value} ← Q.DeQueue()
visited.insert(k)
if k = k2 then

return value
else

foreach relation r in RKK do
foreach keyphrase k’ in K where k r k′ do

/* We consider every keyphrase
k′ with whom k have
relationship r */

nextV alue← value× val(k, r, k′)
if visited.Contain(k′) = false then

Q.enQueue({k′, nextV alue})
end

end
end

end
end
return 0 /* There is no more keyphrase to

visit */

2) Semantic similarity between two relations: When deal-
ing with the determination of possible relationships between
keyphrases, one may notice that there could be more than
one way to making sense of the relation between a pair of
keyphrases. For example, when two keyphrases that occur in
the same sentence, one can try to deduce their relation in terms
of grammatical role in the sentence or just simply leave them as
having ’co-occurence’ relation, whatever suits the application
at hand. Another example is the ’kind-of’ relation and ’sub-
topic’ relation. They are sometimes interchangeable (depend
on how one categorizes the set of keyphrase). This notion of
interchangeability between relations gives rise to the demand
for semantic similarity evaluation between two relations:

Let β : TR ∪ TS × TR ∪ TS → [0, 1] be a mapping which
allows to value the semantic similarity between two relations.
TR is a set of relation names found in RKK and TS is a set of
names of syntactic relations between keyphrases. Because the
number of relations is small, we can determine the values of
β through an arbitrary pre-defined lookup table. Although the
expression of this function can be determined arbitrarily (even
the values of β can manually been chosen), some constraints

should be considered, for example:

• ∀r ∈ TR ∪ TS , β(r, r) = 1.

• β(synonymy, abbreviation) = 1.
• Relations that are in the same group (such as Hi-

erarchical relations) should have more semantically
likeness than relations in different groups.

3) Semantic similarity between two keyphrase graphs:
The fundamental notion for studying and using KG is ho-
momorphism, also called a projection. A KG projection is a
mapping between two KGs that preserves the KG structure
and provides means to evaluate the relevance between two
KGs. More concretely, a projection from a KG H to a KG G
is a function from the nodes of H to the nodes of G, which
respects their structure, i.e. it maps adjacent vertices to adjacent
vertices.

Definition 12. Let H = (VH , EH , φH , lEH
) and G =

(VG, EG, φG, lEG
) be two simple keyphrase graphs defined

over the same O = (K,RKK) of CK-ONTO. A KG projection
from H to G is an ordered pair Π = (f, g) of two mappings
f : EH → EG, g : VH → VG satisfying the following
conditions:

• f and g are injective functions.

• The projection preserves the relationships between
vertices of H, i.e. for all e ∈ EH , g(adji(e)) =
adji(f(e)), adji(e) denotes the ith vertex adjacent to
edge e.

• ∀e ∈ EH , β(lEH
(e), lEG

(f(e))) 6= 0.

• ∀k ∈ VH , α(k, g(k)) 6= 0.

The following condition can be set if desired: ∀r, r′ ∈ TR∪
TS where r 6= r′, β(r, r) 6= 0. This condition allows that there
exists a projection from any relation edge to any other one.

The definition of KG projection provides the vessel through
which we can evaluate the relevance between two piece of texts
represented by keyphrase graphs. However, some texts can be
considered as related to each other even if only a portion of
them are similar. Therefore, it could be more feasible to find a
projection from only a portion of keyphrase graph to another
keyphrase graph. We call this a partial projection:

Definition 13. There is a partial projection from a keyphrase
graph H to a keyphrase graph G if there exists a projection
from H’, a sub keyphrase graph (subKG) of H (H’ ≤ H), to
G.

Below described formula allows valuation of one projec-
tion. In valuation formula of the projection from H to G, H is
a query graph and G is a document graph.

Definition 14. Let H is a keyphrase graph of the query q and
G is a keyphrase graph of the document d and H’ ≤ H. A
valuation of a partial projection Π from H’ to G is defined in
formula (5):

v(Π) =
|VH′ |/|VH |

∑
k∈VH′

w(g(k), d) · α(k, g(k)) +
∑

e∈EH′
β(e, f(e)) · w(e)

|VH′ |+ |EH′ |
(5)

www.ijacsa.thesai.org 475 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

The main idea of a searching method is the semantic
relevance calculation between a query and a document. There-
fore, it is necessary to evaluate the similarity between two
keyphrase graphs that represent them. There can be a (total)
KG projection from the query graph to document graph even if
the document does not perfectly fit the query. The valuation of
this projection will not be maximum. However, there may not
be any total projection between the two graphs even though
they may be related, and then partial projections between them
are necessary. The result of relevance evaluation would be the
maximum value of those partial projections.

Definition 15. Let H is a keyphrase graph of the query q
and G is a keyphrase graph of the document d. Semantic
similarity between two keyphrase graphs H and G is defined
as: Rel(H,G) = Max({v(Π)|Π is a partial projection from
H’ to G, H ′ ≤ H)}

The problem of finding a partial projection between two
keyphrase graphs such that the value of projection is maxi-
mized is posed. The process for finding the maximum partial
projection between two keyphrase graphs is very complicated.
The general way to calculate Rel(H,G) is to start with finding
all sub keyphrase graphs of H and then for each sub keyphrase
graph H’ of H to find every projections from H’ to G
and return the maximum evaluation value of all projections.
Unfortunately, the computation involved in this way may be
a NP-complete problem. In this paper, we do not follow the
definition of maximum partial projection in a mathematical
way as well as find the optimal solution.

Fig. 4 and 5 shows a document graph and the best projec-
tion from a query with the relevance ratio of 53.7%.

Fig. 4. An excerpt from a job posting (document)

B. Semantic Search Algorithm

With all the similarity measurement defined, the next ingre-
dient for the semantic search system would be the algorithms
to effectively calculate all those measurement. First we have to
find all sub kepyrase graph of the query keyphrase graph. Since
query keyphrase graphs are usually small, about 6 vertices or
less, we can exhaustively search for all sub KG using algorithm
2

Exhaustively search for all projections between two
keyphrase graph however is not a trivial task, so we opted
for a heuristic approach as presented in algorithm 5.

Fig. 5. An excerpt of keyphrase graph corresponding to above document and
an example of keyphrase graph matching

Algorithm 2 Find every sub keyphrase graph of KG
Function findAllSubKG(subkg, kg, minSize)

input : subkg the collection of all sub keyphrase graph
- passed by reference

input : kg the orginal keyphrase graph - passed by value
input : minSize the minimum number of keyphrase in

a sub keyphrase grap - default to 1
Result: All keyphrase graph of kg will be stored in subkg

if Count(Vertices(kg)) > minSize then
foreach keyphrase k in Vertices(kg) where k has

no relation do
tmp← kg
tmp.RemoveKeyphrase(k)
subkg ← subkg ∩ {tmp}
findAllSubKG(subkg, tmp, minSize)

end
foreach relation r in Relations(kg) do

tmp← kg
tmp.RemoveKeyphrase(k)
subkg ← subkg ∩ {tmp}
findAllSubKG(subkg, tmp, minSize)

end
end

end

VI. APPLICATION AND EXPERIMENT

This section discuss the hand-on experience in building a
semantic document retrieval system with SDB framework. We
present a few most notable experiment systems we have built,
especially the newest - it job posting retrieval system and how
we evaluate its retrieval performance.

The section also discuss the experiment and evaluation
setup for our SDB framework. The contemporary trend is
evaluating each key tasks in the systems using standardized
dataset. This line of evaluation would allow for easier compar-
ison between approaches as well as help pointing weakpoints
for future refinements. However, this paper want to strive for

www.ijacsa.thesai.org 476 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

Algorithm 3 Evaluate all projections from keyphrase graph h
to larger keyphrase graph g
input : keyphrase graph h
input : a smaller keyphrase graph g
output: The maximum relevance value of all projection from

g to a subKG of h

isolateProjection ← Maximum weight matching from all
isolated keyphrase in g to isolated keyphrase in h

result ← 0
matchComplete ← TRUE
foreach relation rh in h do

foreach relation rg in g where β(rh, rg) > 0 do
/* We consider every keyphrase k′

with whom k have relationship r */
if α(rh.sourcce, rg.source) = 0 or
α(rh.destination, rg.destination) = 0 then

continue /* source and destination
keyphrase of rh and rg have no
relevance */

end
projection ← Empty matching
projection (rh)← rg
projection (rh.source)← rg.source
projection (rh.destination)← rg.destination
Q ← Empty Queue
Q.enQueue(rg.source)
Q.enQueue(rg.destination)
while Q is not Empty do

kg ← Q.deQueue()
kh← projection (kh)
hNeighbors ← { adjacent keyphrase vertices i

from kh in h where projection (i) is null }
gNeighbors ← { adjacent keyphrase vertices i
from kg in g where projection (i) is null }

if gNeighbors not = ∅ then
matched ← the maximum weight matching

from gNeighbors to hNeighbors
if matchednot = null then

projection ← matched ∪ projection
Q.enQueue (gNeighbors)

end
else

matchComplete ← FALSE
break

end
end

end
if matchComplete not =FALSE then

projection ← matched ∪ isolateProjection
result = max (result, evaluate (projection))

end
end

end
return result

real-world applications with extrinsicly evaluating. Therefore
an application-specific dataset that can simulate real-world
documents and queries may be a better setup.

A. Meet ITJPRS: An IT Job Posting Retrieval System

The prime motivation for this system is to help job-seekers,
people who are interested in another career opportunity, in
searching for the most relevant job description on various job
posting websites.

We target the Information Technology job posting domain
for this systems due to the sheer amount of job postings
available online, as well as a large number of potential users.
Especially in Viet Nam, where the Tech Industry is fast
growing and oversee a high job switching rate.

The special nature of job postings also provides interesting
challenges for retrieval systems. Most job postings are very
brief but contain a lot of keywords and catchphrases. They
also do not conform to formal grammar and as our experiment
will later show, traditional text retrieval systems have a lot of
struggle with them.

While building the system as well as the experiment
settings, we focus solely on the job’s description. Special
information about employment conditions, like salary, benefits,
work hours, etc., if ever mentioned in the job posting, are not
given any special consideration.

Our userbase demographic survey reveals three groups
of job-seekers. The first group includes people interested in
information technology domain but haven’t completed or even
received any training. They are not really looking for new
position, and only want to take a peek and the available op-
portunities in this field and thus they do not have any particular
information need and tend to throw trending keywords at the
retrieval system. While our system may serve this group of
users, we do not really focus efforts on their usecase.

The second group of users are people looking for their
first job in the field. This group have a rough sketch of their
information need but struggle to find the best keywords to
describe it. While we provided some filters and suggestions to
help them narrow down the retrieved results. We don’t evaluate
the retrieval performance in their usecase.

Our focal group of users are experienced job-seekers who
have worked for at least a year or more than one jobs in
Information Technology industry. This group can describe
their information need effectively both in natural language
as well as through selected keywords. They are the dominant
demographic group in our assessors forces, helped us forming
the experiment scenario and evaluated our system performance.

B. Design SDB for ITJPRS

The IT Job-posting retrieval system are built using SDB
framework, the blue print design for this system can found in
Fig. 6. Some important steps are discussed in detail below:

1) Building IT Jobs knowledge base: The first step in
building a knowledge base in CK-ONTO formalism is to
collect the set of keyphrases in the domain. Our starting point
would be other reputable open-access resources. Many lexical

www.ijacsa.thesai.org 477 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

Fig. 6. Architecture of the IT Job posting retrieval system

resources provide a list of keyphrase in a domain along with
some manner or categorization for those keyphrase.

Another source we used was the website
whatis.techtarget.com, which provides an extensive and
up-to-date list of ‘terms’ in information technology domain,
organized in a hierarchy of ‘topics’.

Another source of keyphrases is the name of softwares and
other Information Technology toolkits deployed in enterprise
environment. We notice that a considerable amount of job
postings often require hands-on experience with a foray of
tools and softwares, many of which are yet to be registered as
a term in other lexical resources. Therefore, we also included
the list of softwares we found on trustradius.com, a review
aggregate service with a hefty list of softwares organized into
many categories.

We then cross-referenced with Wikipedia to acquire the
definitions of terms as well as the relations among terms.
All the data from those sources was indispensible to our
knowledge engineers when building the knowledge base.

2) Building weighted keyphrase graphs to represent job
posting: Building a keyphrase graph to represent a job posting
follows the general framework described in Section IV-C1.
However, the challenging characteristics of job postings would
dictate some special attention when connecting keyphase ver-
tices in the graph and assigning weighs for those edges.

To determine syntactical relationships among keyphrases
that appear in the same sentence, we perform POS tagging
using the Stanford Parser on that sentence with special care
to make sure the Pos-Tagger won’t break keyphrases down
into multiple normal words. Then we devise a list of syn-

tactical rules to determine the relationships between tagged
keyphrases. The nodes and edges will be assigned weights
using the same formulas presented in Section IV-C1 with the
parameter c in ’term frequency’ formula set to 1.

We allocated each edge of the graph a weight coming from
its frequency information in the whole document repository.
It is assumed that if two keyphrase vertices connected by
the same relationship occur in a lot of document graphs
then we can safely say that this relationship between them
should be strong and a large weight should be assigned to the
corresponding edge. Given an edge e in the document graph
docKG(d) connects two keyphrases k1, k2, e is labeled with
a relation symbol r, and thus can denoted as e = (k1, r, k2).
The example formula for calculating the weight of e is given
below:

w(e) =
tf(e,D)

Max({tf(e′, D)|e′ ∈ KG(D)})
(6)

in which, tf(e,D) is the number of documents in D where its
keyphrase graph contains e (thus it is a “global” statistic) and
KG(D) is the set of keyphrase graphs that each represents a
document in D.

C. Evaluating Job Posting Retrieval Performance

1) Experiment setup: We evaluate our system performance
in ad hoc search, the most standard retrieval task, in which a
system aims to collect a list of job-postings that are relevant
to an arbitrary user’s information need. Our model users are
experienced job-seekers in Information Technology domain,
who frequently look for and read job-postings, and thus are
quite familiar with keyphrases in the domain.

www.ijacsa.thesai.org 478 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

A typical test collection for text retrieval system consists
of 3 parts: (1) a collection of documents, (2) a set of sample
queries and (3) the golden standard relevance assessment that
states which document is relevant to which query by a group
of human accessory experienced in the domain.

2) Documents: For our document collection, we collected
job postings on the website stackoverflow.com1 during three
months of summer, 2018. To assert the high quality of collected
documents, we only download job-postings that filled in all
following fields: title, job overview, company’s name, expected
salary, technology, job descriptions, benefit and company
overview. A total of 2500 job postings was downloaded in
HTML format, we then parsed them into plain texts for the
retrieval system to process.

3) Topics: We format our sample queries in a similar fash-
ion to TREC “topics”. Each topic represents an information
need from users and contains a title field and a narrative
field. The title contains between one to five keyphrases that
best describe the information need. This is the data that was
given to the system as a search query. The narrative field is
a natural language statement that gives a concise description
of the information need and potential relevant job-postings.
This field is used to co-ordinate our assessors, making sure all
assessors have the same understanding of each topic to judge
its relevance to documents.

To make sure the information need in our experiment
reflect real world situations, half of our topics was inspired
by suggestions from popular search engines. Our assessors
would input one keyphrase into the search engine then scan the
suggestions for valid job-seeker’s need and build a topic around
them. Since most search engines will suggest queries as you
type based on previous search request history they received,
those suggestions give an insight to real queries submitted by
a broad user-base. Around 50 topics were built in this way.
Another 50 topics were synthesized by our accessors, based
on their own experience in job seeking as well as in coporate
recruiting process.

4) Relevance assessing: The relevance assessments are the
combining factor that turn documents and topics into a test
collection. We told our assessors to assume that they have the
information need described in the topic and they are ‘between
jobs’. If there is a reasonable chance they would apply for
the opening described in the job posting, that job posting
is to be marked as ‘relevant’, otherwise, that posting is to
be marked as ‘irrelevant’. Assessors are also told to look
at job title, overview and description only, information like
company’s name, benefits and working conditions are hidden
from assessors.

It is a well known fact that the relevance is highly sub-
jective, the assessments may vary not only across assessors
but also vary for the same assessor across different times.
To circumvent this, we schedule our assessors to work only
on a subset of topics that he/she feels most comfortable
with. We make sure those subsets overlap so that each topic-
document pair is assessed by at least five assessors. To avoid
assessing fatigue and to ensure that documents are assessed
independently from each others, assessors are told to work on

1stackoverflow.com/jobs

a batch of 500 documents at a time. They would assess one
topic across 500 documents, then go on to the next topic. Only
when they complete their set of topics that they comeback to
judge the first topic across another 500 documents.

Working in this manner, it took our assessors about six
months to complete their work. We then combine assessors’
opinion in a majoritarianism manner. A document is relevant
to a query only if more than half the number of assessors agree
it is relevant.

5) Evaluation results and discussion: The classic recall and
precision index are used to evaluate the effectiveness of the our
document retrieval system. We compared our system against
Lucene, a traditional search engine that has been long estab-
lished as the baseline for information retrieval. The verbatim
installation of Lucene however, got abysmal performance with
only single digit precision overall as seen in Table VI. This is
owing the characteristics of job postings we mentioned before.
While some jobs may have vastly different job descriptions.
In Lucene’s eye, a good response for the query ‘front-end web
developer’ could be job-postings for ‘junior mobile developer’
or ‘senior game developer’ or anything contain the term
‘develope’.

To dewindle this challenge, we also run Lucene with our
customized tokenizer to make sure that Lucene can recognize
keyphrases in the domain. This ‘Lucene + CK-tokenizer’
method achieved a drastical improvement in precision while
maintained a decent recall rate and would serve as the new
baseline for our comparisions.

Another improvement that can be done on behalf of Lucene
is to perform query expansion using our knowledge base
before passing the keyphrase sets to Lucene. We experimented
to find out the best limit for the expansion, starting off
with keyphrases that have ‘equivalence’ relationships with the
original query, then keep adding keyphrases while watching
the performance record. It is observed that F1-score would
peak out with the inclusion of both ‘equivalence’ keyphrases
and ‘hyponymy’ keyphrases, including evermore keyphrases
would just diminish the precision. This ‘Lucence + CKQe’ ex-
periment helps evaluating the potent of our CK-ONTO model
in boosting the performance of traditional simple baseline
retrieval method.

For our method, we performed one extra experiment be-
sides the final method presented in this article. We created
an SDB system that represents job-postings using the form
of keyphrase graph with only semantic relation edges. That
means even if two keyphrases appear in the same sentence
in the document, they will not be linked by an edge if
their relationships cannot be found in the knowledge base.
This ‘SDB+docKG’ experiment helps attesting the potential of
combining semantic relationships and syntatical relationships.

TABLE VI. PERFORMANCE OF JOB SEEKING SYSTEM (IN PERCENTAGE)

Model Precision Recall F-score
SDB + fulldocKG 77.1 77.8 77.4
SDB + docKG 70.3 71.9 71.1
Lucene 8.7 98.5 16.0
Lucene + CKTokenizer 43.7 58.5 50.0
Lucene+ CKQe 45.1 70.3 54.9

www.ijacsa.thesai.org 479 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

TABLE VII. PROTOTYPE KNOWLEDGE BASE METRICS

statistic Computer Sci-
ence KB

IT-Jobs KB Labor & Em-
ployment KB

keyphrases 15968 6755 2764
concepts 10946 4356 1523
keyphrase relationships 192089 40757 20347

One can observe that our models can maintain better
performance compare to two other models. While the Lucence
combine with query expansion model can provide quite high
recall, it still falls short in precision and F measurements.

D. Others Applications Facilitated by SDB Framework

Throughout the development of SDB, we have imple-
mented and tested it in three document retrieval systems:

• The learning resource repository management system
[20] (educational assistance program) in the University
of Information Technology HCM City, Vietnam. This
system employs our first version of CK-ONTO to
provide semantic search on a repository of English
documents (mostly textbooks) in Computer Science
domain.

• The Vietnamese online news aggregating system [24]
in Labor and Employment domain alongside Public
Investment and Foreign Investment domain. This sys-
tem periodically aggregates news articles and provides
semantic search capability. It was used Binh Duong
Department of Information and Communications, Viet
Nam.

Corresponding to those two systems, we built two proto-
type knowledge bases in CK-ONTO model: Computer Science
KB, and Labor & Employment KB. The size of those knowl-
edge bases are described in Table VII.

The prebuilt knowledge bases was used when extract-
ing keyphrases from documents in order to help with the
disambiguation of terms. After that, they also helped with
determining the relations between keyphrases and forming
a graph based representation of documents, which will be
used in various retrieval tasks later on. Also, knowledge
bases was used when processing queries that users put into
the systems. They enable query expansion to include more
relevance keyphrases into the search, and support interactive
search by suggesting user with potential keyphrases. And
finally, the most important use of knowledge base in document
retrieval would be to estimate semantic similarity between
keyphrases and between concepts. These semantic similarity
metrics would be the basis for determining the relevance
between document and query or between documents, which
is the essence of semantic search.

VII. CONCLUSIONS

In this paper, we proposed a method for designing a kind
of document retrieval systems, called Semantic Document
Base Systems (SDBS). A semantic document base system is
distinguished from a traditional document retrieval system by
its capability of semantic search on a content-based indexed
document repository in a specific domain.

The Classed Keyphrase based Ontology (CK-ONTO in
short) was made to capture domain knowledge and semantics
that can be used to understand queries and documents, and to
evaluate semantic similarity. CK-ONTO contains keyphrases
of relative importance in the domain, which is the building
block for other components. Another main component is a set
of concepts with definitional structures to provide an unam-
biguous meaning of the concept in the domain. In addition
to being a knowledge model of concepts and their relations,
CK-ONTO also resembles a lexical model, in that it groups
keyphrases together based on their meaning similarity and
labels the semantic relations among keyphrases. Finally, there
is a set of rules for constraint checking and inferring relation
between two kephrases, between a keyphrase and a class, and
between two classes. The structure of CK-ONTO is general
and can be easily extended to fit different knowledge domains
as well as different kind of applications.

To model document content and to design measures along
with algorithms for evaluating the semantic relevance between
a query and documents, keyphrase graph - based models
and weighting schemes were proposed. Each document can
be represented by a compact graph of keyphrases in which
keyphrases are connected to each other by semantic relation-
ships. A distinctive feature of weighted keyphrase graphs:
they allow to represent semantic and structural links between
keyphrases and measure the importance of keyphrases along
with the strength of relationships whereas poor representation
models cannot. Relevance evaluation between the target query
and documents is done by calculating the semantic similarity
between two keyphrase graphs that represent them. We defined
a KG-projection between two KGs along with necessary for-
mulas and algorithms to evaluate the similarity between them.

The proposed design method has been applied in a foray
of applications, the latest of which is IT Job-posting retrieval
system. The designing process of that system was presented in
depth along side with experimental setup and dataset preparing
and evaluating process.

As future work, we are planning on building a public
gateway to provide access to our aforementioned knowledge
bases. Moreover, we are revising said knowledge bases as to
enable linking data between our knowledge bases and others
knowledge sources on Semantic Web. Finally, we are resolved
to incrementally update the CK-ONTO model and periodically
release new versions. A few elements of CK- ONTO that still
in need of additional work are the inferring rule and a formal
reasoning engine to go along with it. Besides tools to help
knowledge engineer through automation of some tasks are in
dire need. Moreover, the rich choices of available weighting
schemes and techniques also raise a challenge of how to
incorporate them together and fully explore the potential of
keyphrase graphs for better retrieval performance. And finally,
the algorithms to calculate similarity between keyphrase graphs
can also use some improvements.

ACKNOWLEDGMENTS

This research is funded by Vietnam National University
HoChiMinh City (VNU-HCM) under grant number C2018-
26-08

www.ijacsa.thesai.org 480 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 10, 2019

REFERENCES

[1] Bizer, Christian, Jens Lehmann, Georgi Kobilarov, Sören Auer, Chris-
tian Becker, Richard Cyganiak, and Sebastian Hellmann. ”DBpedia-A
crystallization point for the Web of Data.” Web Semantics: science,
services and agents on the world wide web 7, no. 3 (2009): 154-165.

[2] Ngo, Quoc Hung, Nhien-An Le-Khac, and Tahar Kechadi. ”Ontology
Based Approach for Precision Agriculture.” In International Conference
on Multi-disciplinary Trends in Artificial Intelligence, pp. 175-186.
Springer, Cham, 2018.

[3] Salatino, Angelo A., Thiviyan Thanapalasingam, Andrea Mannocci,
Francesco Osborne, and Enrico Motta. ”The computer science ontology:
a large-scale taxonomy of research areas.” In International Semantic
Web Conference, pp. 187-205. Springer, Cham, 2018.

[4] ThanhThuong T. Huynh, Nhon V. Do, TruongAn PhamNguyen, and
NgocHan T. Tran. ”A Semantic Document Retrieval System with
Semantic Search Technique Based on Knowledge Base and Graph
Representation.” In SoMeT, pp. 870-882. 2018.

[5] Yuan Ni, Qiong Kai, Xu Feng Cao. ”Semantic Documents Relatedness
using Concept Graph Representation”, WSDM ’16 Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining,
Pages 635-644, ACM, 2016.

[6] Thomas Hofmann, ”Probabilistic Latent Semantic Indexing”, Proceed-
ings of the Twenty-Second Annual International SIGIR Conference on
Research and Development in Information Retrieval (SIGIR-99), 1999.

[7] Blei, David M.; Ng, Andrew Y.; Jordan, Michael I. Lafferty, John.
”Latent Dirichlet Allocation”. Journal of Machine Learning Research.
3 (4–5): pp. 993–1022. doi:10.1162/jmlr.2003.3.4-5.993.

[8] Mikolov, Tomas; et al. ”Efficient Estimation of Word Representations
in Vector Space”, 2013. arXiv:1301.3781

[9] Gabrilovich, Evgeniy, Markovitch, Shaul, Computing Semantic Re-
latedness using Wikipedia-based Explicit Semantic Analysis, IJCAI
International Joint Conference on Artificial Intelligence. Vol. 6, 2007.

[10] Chenyan Xiong , Jamie Callan , Tie-Yan Liu, Bag-of-Entities Rep-
resentation for Ranking, Proceedings of the 2016 ACM International
Conference on the Theory of Information Retrieval, September 12-16,
2016, Newark, Delaware, USA.

[11] Hadas Raviv, Oren Kurland, and David Carmel. 2016. Document
retrieval using entity-based language models Proceedings of the 39th
International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 2016). ACM, 65–74.

[12] Faezeh Ennsan, Ebrahim Bagheri, Document Retrieval Model Through
Semantic Linking, ACM, WSDM, 2017.

[13] Chenyan Xiong , Jamie Callan , Tie-Yan Liu, Word-Entity Duet
Representations for Document Ranking, Proceedings of the 40th In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, August 07-11, 2017, Shinjuku, Tokyo, Japan
[doi¿10.1145/3077136.3080768]

[14] S S Sonawane, P A Kulkarni, Graph based Representation and Analysis
of Text Document: A Survey of Techniques, International Journal of
Computer Applications 96(19):1-8, 2014.

[15] Faguo Zhou, Fan Zhang and Bingru Yang, Graph-based text represen-
tation model and its realization, In Natural Language Proceeding and
knowledge Engineering (NLP-KE), 2010, pp 1-8.

[16] Francois Rousseau, Michalis Vazigiannis, Graph-of-word and TW-
IDF: New Approach to Ad Hoc IR, Proceedings of the 22nd ACM
international conference on Conference on information and knowledge
management 2013, pp. 59-68.

[17] Jianging Wu, Zhaoguo Xuan and Donghua Pan, Enhancing text
representation for classification tasks with semantic graph structures,
International Journal of Innovative Computing, Information and Control
Volume 7, Number 5(B), 2011.

[18] Michael Schuhmacher, Simone Paolo Ponzetto, Knowledge-based graph
document modeling, WSDM ’14 Proceedings of the 7th ACM interna-
tional conference on Web search and data mining, Pages 543-552, 2014.

[19] Yuan Ni, Qiong Kai Xu, Feng Cao, Semantic Documents Relatedness
using Concept graph representation, ACM, WSDM, 2016.

[20] Nhon V. Do, ThanhThuong T. Huynh, and TruongAn PhamNguyen.
”Semantic representation and search techniques for document retrieval
systems.” In Asian Conference on Intelligent Information and Database
Systems, pp. 476-486. Springer, Berlin, Heidelberg, 2013.

[21] Gruber, Tom. Ontology. springer US, 2009.
[22] M. Uschold, M. King, S. Moralee, and Y. Zorgios, The Enterprise

Ontology, The Knowledge Engineering Review, 13(1):31-89, 1998.
[23] Chenyan Xiong, Jamie Callan, Tie-Yan Liu, Word-Entity Duet Represen-

tations for Document Ranking, SIGIR’17, August 7-11, 2017, Shinjuku,
Tokyo, Japan, ACM 2017.

[24] Nhon V. Do, Vu Lam Han, and Trung Le Bao. ”News Aggregating
System Supporting Semantic Processing Based on Ontology.” In Knowl-
edge and Systems Engineering, pp. 285-297. Springer, Cham, 2014.

www.ijacsa.thesai.org 481 | P a g e

