
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

9 | P a g e

www.ijacsa.thesai.org

On the Possibility of Implementing High-Precision

Calculations in Residue Numeral System

Otsokov Sh.A
1

Dept. of Computing Machines, Systems and Networks

National Research University "Moscow Power Engineering

Institute" Moscow, Russian Federation

Magomedov Sh.G
2

Dept. of Intelligent Information Security Systems

MIREA Russian Technological University

Moscow, Russian Federation

Abstract—This article proposes a method for accelerating

high-precision calculations by parallelizing arithmetic operations

of addition, subtraction and multiplication. The proposed

approach allows us to apply the advantages of the residue

numeral system: absence of carry-overs when adding,

subtracting, multiplying and reducing high-precision calculations

with numbers of high digit capacity to parallel and independent

execution of arithmetic operations with numbers of low digit

capacity across many modules. Due to the complexity of

performing non-modular operations such as: inverse

transformation into a positional numeral system, number

comparisons, sign identification and number rank calculation in

a residue numeral system, the effect of acceleration of high-

precision calculations is possible when solving some

computational problems with a small number of non-modular

operations, for example: determination of the scalar product of

vectors, discrete Fourier transformation, iterative solution of

systems of linear equations by the methods of Jacoby, Gaussa-

Zeidel, etc. Implementation of the proposed method are

demonstrated by the example of finding the scalar product of

vectors.

Keywords—High-precision calculations; residue numeral

system; positional numeral system; number conversion; rank

determination

I. INTRODUCTION

The double-precision floating-point format, supported by
modern computer processors, is sufficient to solve many
computational problems. However, certain tasks exist in
computational practice, for example, in the fields of
nanoelectronics, nuclear physics, robotics, computational
geometry and others, where high-precision computer
calculations are required [1-4] and traditional double-precision
floating-point computer calculations provide the wrong result
[5-6].

High-precision calculations have been programmatically
implemented and for various programming languages there are
libraries and packages supporting floating-point calculations of
arbitrary accuracy, for example, ZREAL, MParith, GMP etc.
[7-11]

A significant drawback of such libraries and packages is a
sharp decrease in the computational speed with increasing
accuracy or the length of the mantissa of a floating-point
number. Attempts to speed up high-precision calculations at
the level of floating-point arithmetic algorithms do not provide
significant gains due to the fact that arithmetic operations of

addition, subtraction and multiplication of numbers in a
positional numeral system are poorly parallelized due to inter-
digit carry.

These studies were conducted with the support of RTU
MIREA within the framework of the initiative research work of
MSEC-5 "Development of an automated procurement
management system".

The purpose of this article is to propose a method for
speeding up high-precision calculations by switching to a
residue number system (RNS) in which the operations of
addition, subtraction and multiplication can be parallelized. In
RNS integers are represented by their values modulo several
pairwise coprime integers called the moduli, and arithmetic
operations are performed in parallel and independently for each
of the moduli [12-16]. The final result of these calculations is
converted to a positional numeral system.

Speeding up of arithmetic operations is achieved due to the
fact that parallel calculations are performed with low-digit
numbers.

The disadvantages of RNS include the difficulty of
performing such operations as division, comparison, left and
right shifts, rounding, converting a number to a positional
numeral system and others, that are called non-modular
operations [12]. Therefore, modular arithmetic is mainly used
for tasks in which no or a small number of non-modular
operations are required, for example, determining the scalar
product of vectors, etc. [17].

Modular arithmetic is integer, but arithmetic operations
with rational numbers can also be carried out in RNS [16].

Authors in [18-19] describe the method for representing
numbers and the algorithms for performing arithmetic
operations in RNS, including division. In this article two ways
of representing floating-point numbers in RNS are discussed
and the possibilities for parallelizing arithmetic operations of
addition, subtraction and multiplication are explored.

In the next section a possible way of representing numbers
in RNS and a mixed numeral system is considered.

II. RESIDUE NUMBER SYSTEM

First, confirm that you have the correct template for your
paper size. This template has been tailored for output on the
US-letter paper size.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

10 | P a g e

www.ijacsa.thesai.org

Consider a set of integers p1, p2, ..., pn, called the moduli,
such that the following inequality holds:

2=p1<p2<, ..., <pn (1)

Let be the product of all the moduli:

 (2)

According to the Chinese remainder theorem [14], all
integers belonging to the range.

[0, …, P–1] (3)

have a unique representation in the residue number system
by the moduli (1).

Since p1, p2, ..., pn are prime numbers and one of them
equals 2, their product Р is an even number and the following
ranges are used to represent positive and negative numbers
[12]:

[0, ..., P/2–1], [P/2, ..., P–1] (4)

for positive and negative numbers respectively.

Thus, in RNS all integers from the following range are
unambiguously represented:

[–P/2, ..., P/2] (5)

Let P/2>q^(nf)–1.

Any integer belonging to the range (2) has a unique
representation in the mixed number system.

III. REPRESENTATION OF FLOATING-POINT NUMBERS IN

RNS

Consider the following representation of floating-point
numbers:

A=K⋅qt
 (6)

where A is a floating-point number, K is the mantissa of A,
an integer such that |K|≤q^(nf)–1, q is the base of the numeral
system, t is the order, an integer such that |t|≤kf, nf is a natural
number characterizing the length of the mantissa of the
floating-point number, kf is a natural number characterizing the
maximum order of representable numbers.

The floating-point format (6) differs from the traditional
floating-point number format [6] and is more convenient for
representation in RNS.

Table I shows the maximum and minimum positive and
negative numbers representable in (6):

The range of representable numbers in (6) is the following:

(–q^(nf+kf), q^(nf+kf)) (7)

Consider the following representation of the floating-point
format (6) in RNS:

A=[(α1,α2,...,αi,...,αn),t] (8)

where αi=|K|pi.

TABLE. I. REPRESENTABLE NUMBER RANGES

Maximum positive q^(nf+kf)

Minimum positive q^(–kf–nf)

Minimum negative –q^(nf+kf)

Maximum negative –q^(–kf–nf)

Given the complexity of performing non-modular
operations in RNS, in particular the left shift, alignment of
orders during addition and subtraction is performed by the right
shift.

For the same reason, because of the complexity of the
effective implementation of the normalization operation, this
article describes an unnormalized floating-point format (8) and
there is no normalization operation.

In the next section the rules for performing arithmetic
operations of addition, subtraction and multiplication are
considered.

IV. RULES FOR PERFORMING ARITHMETIC OPERATIONS

WITH A FLOATING POINT IN RNS

Consider two floating-point numbers in the format (8):

A1=[(α1,α2,...,αi,...,αn),t1] (9)

A2=[(β1,β2,...,βi,...,βn),s1]

1) The product of the numbers A1⋅A2 is

A3=A1⋅A2=[(χ1,χ2,...,χi,...,χn),t1+s1] (10)

where

(χ1,χ2,...,χn)=(α1⋅β1 mod p1,α2⋅β2 mod p2,...,αn⋅βn mod pn)

2) The sum of the numbers A1+A2 is

A4=A1+A2=K4⋅q
z

Let s1>t1. Then

A1±A2=K1⋅q^(t1)±K2⋅q^(s1)=q^(t1)⋅(K1±q^(s1–t1)⋅K2)=

=[(δ1,δ2,...,δn),t1] (11)

where

(δ1,δ2,...,δn)=(α1±q^(s1–t1)⋅β1 mod p1,α2±q^(s1–t1)⋅β2 mod

p2,...,αn±e⋅q^(s1–t1) mod pn), z=t1

The diagram of high-precision calculations in modular
arithmetic is shown in Fig. 1.

Fig. 1. Diagram of High-Precision Calculations in Modular Arithmetic.

Р = 𝑝𝑖

𝑛

𝑖=1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

11 | P a g e

www.ijacsa.thesai.org

In accordance with this diagram, the source data is
converted from a positional numeral system to RNS by moduli
(1). Then k arithmetic operations are carried out and the result
is converted to a positional numeral system.

Using formulas (10) and (11), it is possible to carry out
arithmetic operations with floating-point numbers according to
the rules of modular arithmetic in parallel and independently
for individual moduli. In this case, the mantissa and orders are
calculated in parallel and independently from each other by
formulas (10) and (11). Complexity arises when the result is
outside of the allowed range defined by the moduli. In this
regard, two questions arise:

1) How to choose the moduli so that the result is not

outside the allowed range?

2) How to convert results from RNS to a positional

numeral system?

To answer the first question, it is enough to estimate the top
boundary of the result and choose the moduli so that in RNS all
numbers smaller than this estimate are uniquely represented. In
the next section an estimation method using the example of
calculating the scalar product of two vectors is considered [20].

V. METHOD FOR CHOOSING THE MODULI

Let us estimate the order of the result of the scalar product
of two vectors.

Consider two vectors X=(x1,x2,...,xk), Y=(y1,y2,...,yk)

The scalar product is determined by the formula:

(X,Y)=x1⋅y1+x2⋅y2+...+xk⋅yk (12)

Consider two floating-point numbers in the format (6).

Then for multiplication the following is true:

A3=A1⋅A2=K1⋅K2⋅q^(t+s)<q^(nf)⋅q^(nf)⋅q^(t+s)=

=q^(2⋅nf)⋅q^(t+s)

which means

A3=K3⋅q^(t+s), | K3|≤q^(2⋅nf), |t+s|≤2⋅kf (13)

Substituting xi⋅yi=Ki⋅q^(ti) in (12) using the format (6) and
considering (13) the scalar product can be presented as:

(X,Y)=K1⋅q^(t1)+K2⋅q^(t2)+...+Kk⋅q^(tk)

Let t1=min(t1,...,tk). Then

(X,Y)=q^(t1) (K1+K2⋅q^(t2–t1)+...+Kk⋅q^(tk–t1))≤

≤q^(t1) (K1+q^(2⋅nf)⋅q^(4⋅kf)+...+q^(2⋅nf)⋅q^(4⋅kf))≤

≤q^(t1) k⋅q^(2⋅nf)⋅q^(4⋅kf)

From this expression it follows that the maximum value of
the mantissa for the scalar product (12) is

k⋅q^(2⋅nf)⋅q^(4⋅kf)

Then to represent the mantissa of the result of the scalar
product in RNS the moduli should be chosen so that the
following inequality holds:

P/2≥k⋅q^(2⋅nf)⋅q^(4⋅kf) (14)

To answer the second question regarding the conversion of
numbers from RNS to a positional numeral system, an
auxiliary method for determining the rank of a number that is
used in the conversion process is considered.

VI. AUXILIARY METHOD TO DETERMINE THE RANK OF A

NUMBER

Any integer A∈[0,P–1] can be represented as:

 (15)

Where Bi are orthogonal bases, rank is the largest positive
integer such that A<P.

Orthogonal bases Bi are constants for RNS with given
moduli and are determined by the formulas:

Bi=mi⋅P/pi, (16)

Maximum possible value of rank is determined by the
following equations:

This shows that

Consider an auxiliary method to determine the rank of a
number.

An additional module is introduced

From (15) follows:

then:

 (17)

In (17) all calculations are performed modulo pn+1.

The diagram for quick rank calculation is shown in Fig. 2.

𝐴 = 𝐵𝑖 ⋅

𝑛

𝑖=1

𝛾𝑖 -𝑟𝑎𝑛𝑘 ⋅ 𝑃

𝑚𝑖 =
𝑃

𝑝𝑖

р𝑖

−1

 𝐵𝑖 ⋅

𝑛

𝑖=1

𝛽𝑖 ≤ 𝐵𝑖 ⋅

𝑛

𝑖=1

(𝑝𝑖 − 1) <

< 𝐵𝑖 ⋅

𝑛

𝑖=1

𝑝𝑖 = 𝑚𝑖 ⋅
𝑃

𝑝𝑖
⋅

𝑛

𝑖=1

𝑝𝑖 = 𝑚𝑖 ⋅ 𝑃 =

𝑛

𝑖=1

= 𝑃 ⋅ (р𝑖 − 𝑛)

𝑛

𝑖=1

𝑟𝑎𝑛𝑘 < (𝑝𝑖

𝑛

𝑖=1

− 𝑛)

𝑝𝑛+1 > 𝑝𝑖

𝑛

𝑖=1

− 𝑛

𝑟𝑎𝑛𝑘 = 𝐵𝑖 ⋅

𝑛

𝑖=1

𝛾𝑖 -𝐴 ⋅ 𝑃−1

𝑟𝑎𝑛𝑘 = 𝐵𝑖 𝑝𝑛+1
⋅

𝑛

𝑖=1

 𝛾𝑖 𝑝𝑛+1
− 𝐴 𝑝𝑛 +1

 ⋅ 𝑃−1 𝑝𝑛+1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

12 | P a g e

www.ijacsa.thesai.org

Fig. 2. Diagram for quick rank calculation.

According to the above diagram, the rank value can be
calculated by the formula (17) using ⌈log2n⌉+2 modular
operations of addition and multiplication.

Next, a method of converting numbers from RNS to a
positional numeral system is considered.

VII. CONVERTING NUMBERS FROM RNS TO A POSITIONAL

NUMERAL SYSTEM

Let A be a number in the format (8) to be converted to a
positional numeral system in the floating-point format with the
mantissa length nf

A=[(γ1,γ2,...,γi,...,γn), t]

A method for accelerated calculation of the value of
expression (15) in a signed-digit numeral system with numbers
in the range [-6, ..., 6] is considered.

Let Bi, P be constants in the floating-point format with the
mantissa length nf.

The expressions

j⋅Bi,j=1..pi–1, (18)

Are constants and can be stored in computer memory, then
the conversion process can be represented in the form of the
following diagram (Fig. 3).

According to the diagram, the result of the conversion can
be calculated by the formula (15) in ⌈log2n⌉+1 steps for a
known value of rank. The adjustment block shown in Fig. 3
normalizes the mantissa of the result. If the mantissa contains
more than nf digits, then the order of the result should be
reduced by the number of discarded digits.

Fig. 3. Diagram for Conversion from RNS to a Positional Numeral System.

VIII. EXAMPLE

Given:

nf=2, kf=2, q=10

Two vectors X=(1⋅ 102,5⋅ 10-1,3⋅ 102), Y=(1,2,3)

Then according to (14)

P/2≥3⋅ 104⋅ 108=3⋅ 1012

The chosen moduli are:

p1=2269, p2=2437, p3=2791, p4=3169

P=48907121298487

B1=35737332354734

B2=32129791218251

B3=42756494435080

B4=36097745887397

The result of the scalar product in RNS is

(X,Y)=[(1736,1586,1214,836), –1]

After conversion from RNS to the floating-point format
with a given length of the mantissa the following can be
obtained:

(X,Y)=40⋅10
1

IX. CONCLUSION

This article proposes an approach to speeding up high-
precision computing with the following limitations:

1) It should be used for tasks with a predetermined number

of operations for which the order of the result can be estimated.

2) Three modular arithmetic operations are considered:

addition, subtraction and multiplication (as well as division by

a constant, which can be replaced by multiplication).

𝑗 ⋅ 𝑃, 𝑗 = 1. . (𝑝𝑖

𝑛

𝑖=1

− 𝑛)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

13 | P a g e

www.ijacsa.thesai.org

3) The remaining non-modular operations such as

rounding and comparison are difficult to implement in RNS.

Therefore, the proposed approach will be effective for the tasks

that contain a small number of non-modular operations. In

addition to the scalar product, such tasks include, for example,

the discrete Fourier transform, iterative solution of linear

equation systems by Jacoby, Gaussa-Zeidel methods, solution

of the Cauchy problem by Euler method, etc.

4) Possible direction of further research is the software

implementation of high-precision calculations in RNS

arithmetic on GPU.

REFERENCES

[1] D.H. Bailey, R. Barrio, J.M. Borwein, “High-precision computation:
Mathematical physics and dynamics” in Applied Mathematics and
Computation, Vol. 218, No. 20, 2012, pp. 10106-10121.

[2] D. H. Bailey, J. M. Borwein, “High-Precision Arithmetic in
Mathematical Physics” in Mathematics, 3 (2015), pp. 337–367.

[3] D.H. Bailey, “High-Precision Computation and Mathematical Physics”
Lawrence Berkeley National Laboratory, 2009.

[4] Demidova L., Nikulchev E., Sokolova Yu. (2016). BIG DATA
classification using the svm classifiers with the modified particle swarm
optimization and the svm ensembles. international journal of advanced
computer science and applications T.7, №5, P. 294-312.

[5] “Non-obvious features of real numbers” [www.delphikingdom.com/asp/
viewitem.asp?catalogid=374]

[6] A.A. Amosov, Y.A. Dubinskiy, N.V. Kopchenkova, Computational
Methods for Engineers. Moscow: “High School”, p. 544, 1994.

[7] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, “MPFR:
a multiple-precision binary floating-point library with correct rounding”
in ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article
No. 13, 2007.

[8] MParithm - package for high precision computation, 2015
[www.wolfgang-ehrhardt.de/mp_intro.html]

[9] GNU Scientific Library 2.5 released, 2018
[https://savannah.gnu.org/forum/forum.php?forum_id=9175]

[10] “Operations with multi-bit real numbers of ZReal type”
[http://ishodniki.ru/list/index.php?action=name&show=pascal-math&cat
=11]

[11] D.H. Bailey, X.S. Li, B. Thompson, “ARPREC: An arbitrary precision
computation package” Sep 2002 [http://crd.lbl.gov/~dhbailey/dhbpapers/
arprec.pdf].

[12] I.I. Dzegelenok, Sh.A. Otsokov, “Algebraization of numerical
representations in providing high-precision supercomputer calculations”
in Vestnik MPEI, No 3, 2010, pp. 107-116.

[13] I.Ya. Akushskiy, D.I. Yuditskiy, Machine arithmetic in residual classes.
Moscow: Soviet Radio, p. 440, 1968.

[14] R. Graham, D. Knuth, O. Patashnik, Concrete math. Computer Science
Foundation. Williams, p. 784, 2015.

[15] A.R. Omondi, B. Premkumar, “Residue Number Systems: Theory and
Implementation”, Imperial College Press, 2007.

[16] Magomedov Sh. Organization of secured data transfer in computers
using sign-value notation. ITM Web of Conferences. 2017. Т. 10.
DOI: 10.1051/itmconf/20171004004.

[17] R.A. Solovyev, E.S. Balaka, D.V. Telpukhov, “A device for calculating
the scalar product of vectors with error correction based on a system of
residual classes” in Problems of developing promising micro- and
nanoelectronic systems. Vol. IV, A.L. Stempkovskiy Ed. Moscow: The
Institute for Design Problems in Microelectronics RAS, 2014, pp. 173-
178.

[18] E. Kinoshita, H. Kosako, Y. Kojima, “Floating-point arithmetic
algorithms in the symmetric residue number system” in Computers,
IEEE Transactions on, vol. C-23, No. 1, 1974, pp. 9–20.

[19] K. S. Isupov, A. N. Mal’tsev, “A parallel-processing-oriented method
for the representation of multi-digit floating-point numbers” in
Vychislitel’nyye metody i programmirovaniye, 15:4 (2014), pp. 631–
643.

[20] A. Lebedev, S. Magomedov. “A tool for automatic parallelization of
affine programs for systems with shared and distributed memory”.
Russian Journal of Technology. 2019;7(5):P.7-19. https://doi.org/
10.32362/2500-316X-2019-7-5-7-19.

https://elibrary.ru/contents.asp?issueid=1813630
https://doi.org/10.1051/itmconf/20171004004

