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Abstract—This article proposes a method for accelerating 

high-precision calculations by parallelizing arithmetic operations 

of addition, subtraction and multiplication. The proposed 

approach allows us to apply the advantages of the residue 

numeral system: absence of carry-overs when adding, 

subtracting, multiplying and reducing high-precision calculations 

with numbers of high digit capacity to parallel and independent 

execution of arithmetic operations with numbers of low digit 

capacity across many modules. Due to the complexity of 

performing non-modular operations such as: inverse 

transformation into a positional numeral system, number 

comparisons, sign identification and number rank calculation in 

a residue numeral system, the effect of acceleration of high-

precision calculations is possible when solving some 

computational problems with a small number of non-modular 

operations, for example: determination of the scalar product of 

vectors, discrete Fourier transformation, iterative solution of 

systems of linear equations by the methods of Jacoby, Gaussa-

Zeidel, etc. Implementation of the proposed method are 

demonstrated by the example of finding the scalar product of 

vectors. 
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I. INTRODUCTION 

The double-precision floating-point format, supported by 
modern computer processors, is sufficient to solve many 
computational problems. However, certain tasks exist in 
computational practice, for example, in the fields of 
nanoelectronics, nuclear physics, robotics, computational 
geometry and others, where high-precision computer 
calculations are required [1-4] and traditional double-precision 
floating-point computer calculations provide the wrong result 
[5-6]. 

High-precision calculations have been programmatically 
implemented and for various programming languages there are 
libraries and packages supporting floating-point calculations of 
arbitrary accuracy, for example, ZREAL, MParith, GMP etc. 
[7-11] 

A significant drawback of such libraries and packages is a 
sharp decrease in the computational speed with increasing 
accuracy or the length of the mantissa of a floating-point 
number. Attempts to speed up high-precision calculations at 
the level of floating-point arithmetic algorithms do not provide 
significant gains due to the fact that arithmetic operations of 

addition, subtraction and multiplication of numbers in a 
positional numeral system are poorly parallelized due to inter-
digit carry. 

These studies were conducted with the support of RTU 
MIREA within the framework of the initiative research work of 
MSEC-5 "Development of an automated procurement 
management system". 

The purpose of this article is to propose a method for 
speeding up high-precision calculations by switching to a 
residue number system (RNS) in which the operations of 
addition, subtraction and multiplication can be parallelized. In 
RNS integers are represented by their values modulo several 
pairwise coprime integers called the moduli, and arithmetic 
operations are performed in parallel and independently for each 
of the moduli [12-16]. The final result of these calculations is 
converted to a positional numeral system. 

Speeding up of arithmetic operations is achieved due to the 
fact that parallel calculations are performed with low-digit 
numbers. 

The disadvantages of RNS include the difficulty of 
performing such operations as division, comparison, left and 
right shifts, rounding, converting a number to a positional 
numeral system and others, that are called non-modular 
operations [12]. Therefore, modular arithmetic is mainly used 
for tasks in which no or a small number of non-modular 
operations are required, for example, determining the scalar 
product of vectors, etc. [17]. 

Modular arithmetic is integer, but arithmetic operations 
with rational numbers can also be carried out in RNS [16]. 

Authors in [18-19] describe the method for representing 
numbers and the algorithms for performing arithmetic 
operations in RNS, including division. In this article two ways 
of representing floating-point numbers in RNS are discussed 
and the possibilities for parallelizing arithmetic operations of 
addition, subtraction and multiplication are explored. 

In the next section a possible way of representing numbers 
in RNS and a mixed numeral system is considered. 

II. RESIDUE NUMBER SYSTEM 

First, confirm that you have the correct template for your 
paper size. This template has been tailored for output on the 
US-letter paper size. 
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Consider a set of integers p1, p2, ..., pn, called the moduli, 
such that the following inequality holds: 

2=p1<p2<, ..., <pn              (1) 

Let   be the product of all the moduli: 

               (2) 

According to the Chinese remainder theorem [14], all 
integers belonging to the range. 

[0, …, P–1]              (3) 

have a unique representation in the residue number system 
by the moduli (1). 

Since p1, p2, ..., pn are prime numbers and one of them 
equals 2, their product Р is an even number and the following 
ranges are used to represent positive and negative numbers 
[12]: 

[0, ..., P/2–1], [P/2, ..., P–1]            (4) 

for positive and negative numbers respectively. 

Thus, in RNS all integers from the following range are 
unambiguously represented: 

[–P/2, ..., P/2]              (5) 

Let P/2>q^(nf)–1. 

Any integer belonging to the range (2) has a unique 
representation in the mixed number system. 

III. REPRESENTATION OF FLOATING-POINT NUMBERS IN 

RNS 

Consider the following representation of floating-point 
numbers: 

A=K⋅qt
                (6) 

where A is a floating-point number, K is the mantissa of A, 
an integer such that |K|≤q^(nf )–1, q is the base of the numeral 
system, t is the order, an integer such that |t|≤kf, nf is a natural 
number characterizing the length of the mantissa of the 
floating-point number, kf is a natural number characterizing the 
maximum order of representable numbers. 

The floating-point format (6) differs from the traditional 
floating-point number format [6] and is more convenient for 
representation in RNS. 

Table I shows the maximum and minimum positive and 
negative numbers representable in (6): 

The range of representable numbers in (6) is the following: 

(–q^(nf+kf), q^(nf+kf))             (7) 

Consider the following representation of the floating-point 
format (6) in RNS: 

A=[(α1,α2,...,αi,...,αn ),t]             (8) 

where αi=|K|pi. 

TABLE. I. REPRESENTABLE NUMBER RANGES 

Maximum positive q^(nf+kf ) 

Minimum positive q^(–kf–nf ) 

Minimum negative –q^(nf+kf ) 

Maximum negative –q^(–kf–nf ) 

Given the complexity of performing non-modular 
operations in RNS, in particular the left shift, alignment of 
orders during addition and subtraction is performed by the right 
shift. 

For the same reason, because of the complexity of the 
effective implementation of the normalization operation, this 
article describes an unnormalized floating-point format (8) and 
there is no normalization operation. 

In the next section the rules for performing arithmetic 
operations of addition, subtraction and multiplication are 
considered. 

IV. RULES FOR PERFORMING ARITHMETIC OPERATIONS 

WITH A FLOATING POINT IN RNS 

Consider two floating-point numbers in the format (8): 

A1=[(α1,α2,...,αi,...,αn ),t1]             (9) 

A2=[(β1,β2,...,βi,...,βn),s1] 

1) The product of the numbers A1⋅A2 is 

A3=A1⋅A2=[(χ1,χ2,...,χi,...,χn),t1+s1]          (10) 

where 

(χ1,χ2,...,χn)=(α1⋅β1 mod p1,α2⋅β2 mod p2,...,αn⋅βn mod pn) 

2) The sum of the numbers A1+A2 is 

A4=A1+A2=K4⋅q
z
 

Let s1>t1. Then 

A1±A2=K1⋅q^(t1)±K2⋅q^(s1)=q^(t1)⋅(K1±q^(s1–t1)⋅K2)=  

=[(δ1,δ2,...,δn),t1]            (11) 

where 

(δ1,δ2,...,δn)=(α1±q^(s1–t1)⋅β1 mod p1,α2±q^(s1–t1)⋅β2 mod 

p2,...,αn±e⋅q^(s1–t1) mod pn), z=t1 

The diagram of high-precision calculations in modular 
arithmetic is shown in Fig. 1. 

 

Fig. 1. Diagram of High-Precision Calculations in Modular Arithmetic. 

Р =  𝑝𝑖

𝑛

𝑖=1
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In accordance with this diagram, the source data is 
converted from a positional numeral system to RNS by moduli 
(1). Then k arithmetic operations are carried out and the result 
is converted to a positional numeral system. 

Using formulas (10) and (11), it is possible to carry out 
arithmetic operations with floating-point numbers according to 
the rules of modular arithmetic in parallel and independently 
for individual moduli. In this case, the mantissa and orders are 
calculated in parallel and independently from each other by 
formulas (10) and (11). Complexity arises when the result is 
outside of the allowed range defined by the moduli. In this 
regard, two questions arise: 

1) How to choose the moduli so that the result is not 

outside the allowed range? 

2) How to convert results from RNS to a positional 

numeral system? 

To answer the first question, it is enough to estimate the top 
boundary of the result and choose the moduli so that in RNS all 
numbers smaller than this estimate are uniquely represented. In 
the next section an estimation method using the example of 
calculating the scalar product of two vectors is considered [20]. 

V. METHOD FOR CHOOSING THE MODULI 

Let us estimate the order of the result of the scalar product 
of two vectors. 

Consider two vectors X=(x1,x2,...,xk), Y=(y1,y2,...,yk ) 

The scalar product is determined by the formula: 

(X,Y)=x1⋅y1+x2⋅y2+...+xk⋅yk (12) 

Consider two floating-point numbers in the format (6). 

Then for multiplication the following is true: 

A3=A1⋅A2=K1⋅K2⋅q^(t+s)<q^(nf)⋅q^(nf)⋅q^(t+s)= 

=q^(2⋅nf)⋅q^(t+s) 

which means 

A3=K3⋅q^(t+s), | K3|≤q^(2⋅nf), |t+s|≤2⋅kf         (13) 

Substituting xi⋅yi=Ki⋅q^(ti) in (12) using the format (6) and 
considering (13) the scalar product can be presented as: 

(X,Y)=K1⋅q^(t1)+K2⋅q^(t2)+...+Kk⋅q^(tk) 

Let t1=min(t1,...,tk). Then 

(X,Y)=q^(t1) (K1+K2⋅q^(t2–t1)+...+Kk⋅q^(tk–t1))≤ 

≤q^(t1) (K1+q^(2⋅nf)⋅q^(4⋅kf)+...+q^(2⋅nf)⋅q^(4⋅kf))≤ 

≤q^(t1) k⋅q^(2⋅nf)⋅q^(4⋅kf) 

From this expression it follows that the maximum value of 
the mantissa for the scalar product (12) is 

k⋅q^(2⋅nf)⋅q^(4⋅kf)  

Then to represent the mantissa of the result of the scalar 
product in RNS the moduli should be chosen so that the 
following inequality holds: 

P/2≥k⋅q^(2⋅nf)⋅q^(4⋅kf)           (14) 

To answer the second question regarding the conversion of 
numbers from RNS to a positional numeral system, an 
auxiliary method for determining the rank of a number that is 
used in the conversion process is considered. 

VI. AUXILIARY METHOD TO DETERMINE THE RANK OF A 

NUMBER 

Any integer A∈[0,P–1] can be represented as: 

            (15) 

Where Bi are orthogonal bases, rank is the largest positive 
integer such that A<P. 

Orthogonal bases Bi are constants for RNS with given 
moduli and are determined by the formulas: 

Bi=mi⋅P/pi,            (16) 

 

Maximum possible value of rank is determined by the 
following equations: 

 

 

 

This shows that 

 

Consider an auxiliary method to determine the rank of a 
number. 

An additional module is introduced 

 

From (15) follows: 

 

then: 

         (17) 

In (17) all calculations are performed modulo pn+1. 

The diagram for quick rank calculation is shown in Fig. 2. 

𝐴 =  𝐵𝑖 ⋅

𝑛

𝑖=1

𝛾𝑖  -𝑟𝑎𝑛𝑘 ⋅ 𝑃 

𝑚𝑖 =  
𝑃

𝑝𝑖
 
р𝑖

−1

 

 𝐵𝑖 ⋅

𝑛

𝑖=1

𝛽𝑖  ≤  𝐵𝑖 ⋅

𝑛

𝑖=1

(𝑝𝑖 − 1) < 

<  𝐵𝑖 ⋅

𝑛

𝑖=1

𝑝𝑖 =  𝑚𝑖 ⋅
𝑃

𝑝𝑖
⋅

𝑛

𝑖=1

𝑝𝑖 =  𝑚𝑖 ⋅ 𝑃 =

𝑛

𝑖=1

 

= 𝑃 ⋅ ( р𝑖 − 𝑛)

𝑛

𝑖=1

 

𝑟𝑎𝑛𝑘 < ( 𝑝𝑖

𝑛

𝑖=1

− 𝑛) 

𝑝𝑛+1 >  𝑝𝑖

𝑛

𝑖=1

− 𝑛 

𝑟𝑎𝑛𝑘 =   𝐵𝑖 ⋅

𝑛

𝑖=1

𝛾𝑖  -𝐴 ⋅ 𝑃−1 

𝑟𝑎𝑛𝑘 =    𝐵𝑖 𝑝𝑛+1
⋅

𝑛

𝑖=1

 𝛾𝑖 𝑝𝑛+1
−  𝐴 𝑝𝑛 +1

 ⋅  𝑃−1 𝑝𝑛+1
 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 11, 2019 

12 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. Diagram for quick rank calculation. 

According to the above diagram, the rank value can be 
calculated by the formula (17) using ⌈log2n⌉+2 modular 
operations of addition and multiplication. 

Next, a method of converting numbers from RNS to a 
positional numeral system is considered. 

VII. CONVERTING NUMBERS FROM RNS TO A POSITIONAL 

NUMERAL SYSTEM 

Let A be a number in the format (8) to be converted to a 
positional numeral system in the floating-point format with the 
mantissa length nf 

A=[(γ1,γ2,...,γi,...,γn), t] 

A method for accelerated calculation of the value of 
expression (15) in a signed-digit numeral system with numbers 
in the range [-6, ..., 6] is considered. 

Let Bi, P be constants in the floating-point format with the 
mantissa length nf. 

The expressions 

j⋅Bi,j=1..pi–1,            (18) 

 

Are constants and can be stored in computer memory, then 
the conversion process can be represented in the form of the 
following diagram (Fig. 3). 

According to the diagram, the result of the conversion can 
be calculated by the formula (15) in ⌈log2n⌉+1 steps for a 
known value of rank. The adjustment block shown in Fig. 3 
normalizes the mantissa of the result. If the mantissa contains 
more than nf digits, then the order of the result should be 
reduced by the number of discarded digits. 

 

Fig. 3. Diagram for Conversion from RNS to a Positional Numeral System. 

VIII. EXAMPLE 

Given: 

nf=2, kf=2, q=10 

Two vectors X=(1⋅ 102,5⋅ 10-1,3⋅ 102), Y=(1,2,3) 

Then according to (14) 

P/2≥3⋅ 104⋅ 108=3⋅ 1012 

The chosen moduli are: 

p1=2269, p2=2437, p3=2791, p4=3169 

P=48907121298487 

B1=35737332354734 

B2=32129791218251 

B3=42756494435080 

B4=36097745887397 

The result of the scalar product in RNS is 

(X,Y)=[(1736,1586,1214,836), –1] 

After conversion from RNS to the floating-point format 
with a given length of the mantissa the following can be 
obtained: 

(X,Y)=40⋅10
1
 

IX. CONCLUSION 

This article proposes an approach to speeding up high-
precision computing with the following limitations:  

1) It should be used for tasks with a predetermined number 

of operations for which the order of the result can be estimated. 

2) Three modular arithmetic operations are considered: 

addition, subtraction and multiplication (as well as division by 

a constant, which can be replaced by multiplication). 

𝑗 ⋅ 𝑃, 𝑗 = 1. . ( 𝑝𝑖

𝑛

𝑖=1

− 𝑛) 
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3) The remaining non-modular operations such as 

rounding and comparison are difficult to implement in RNS. 

Therefore, the proposed approach will be effective for the tasks 

that contain a small number of non-modular operations. In 

addition to the scalar product, such tasks include, for example, 

the discrete Fourier transform, iterative solution of linear 

equation systems by Jacoby, Gaussa-Zeidel methods, solution 

of the Cauchy problem by Euler method, etc. 

4) Possible direction of further research is the software 

implementation of high-precision calculations in RNS 

arithmetic on GPU. 
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