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Abstract—The study presented in this paper aims to improve 

the accuracy of meteorological time series predictions made with 

the recurrent neural network known as Long Short-Term 

Memory (LSTM). To reach this, instead of just making 

adjustments to the architecture of LSTM as seen in different 

related works, it is proposed to adjust the LSTM results using the 

univariate time series imputation algorithm known as Local 

Average of Nearest Neighbors (LANN) and LANNc which is a 

variation of LANN, that allows to avoid the bias towards the left 

of the synthetic data generated by LANN. The results obtained 

show that both LANN and LANNc allow to improve the accuracy 

of the predictions generated by LSTM, with LANN being 

superior to LANNc. Likewise, on average the best LANN and 

LANNc configurations make it possible to outperform the 

predictions reached by another recurrent neural network known 

as Gated Recurrent Unit (GRU). 
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I. INTRODUCTION 

Forecasting is one of the most exciting subfields in the field 
of time series. Since the beginning, forecasting techniques have 
evolved greatly from simple linear regressions, passing for 
moving averages, autoregressive models, machine learning 
models, until reach Deep Learning [1] techniques. 

Within Deep learning, for forecasting activities, recurrent 
neural networks are very common, and within them Long 
Short-Term Memory [2] and the Gated Recurrent Unit [3]. 

Long Short-Term Memory in many forecasting works has 
been used successfully, and the changes implemented to 
improve or reduce the error rate mainly includes input 
adjustments, tunning of parameters, number of layers, training 
epochs, etc. 

After analyzing and evaluate the prediction results of an 
LSTM model in a 4-year meteorological time series 
corresponding to maximum temperatures, it was observed that 
various synthetic values could better approximate their real 
values through imputation processes. Fig. 1 shows in most 
cases how the imputation of a single value can improve the 
error rate of an estimated value with LSTM. 

Thus, in this paper, it is proposed to improve the error rate 
of LSTM predictions through univariate time series imputation 
algorithms, such as: Local Average of Nearest Neighbors 

(LANN) [4] and a variation of this that will be called LANNc. 
LANNc tries to solve the problem of bias to the left of the 
synthetic data generated by LANN, just as CBRm [5] does 
with CBRi “in press” [6]. 

For the experimentation of the proposals, gap-sizes in the 
range of 1 to 11 consecutive NA values are evaluated, also 
different amounts of predicted values 15, 30, 60, 90, 120 and 
150 days are considered. The results achieved show that the 
algorithms used allow to improve the error rate of LSTM. 

It is important to highlight that the study is limited to the 
prediction of highly seasonal meteorological time series as it is 
the case of maximum temperature time series. 

 

Fig. 1. How LANN can Improve LSTM Predictions. 
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The content of this paper is organized as follows: In 
Section II, a brief review of the state of the art in relation to 
forecasting techniques is shown; in Section III, some concepts 
and definitions are included that will allow a better 
understanding of the paper content; in Section IV, the 
implementation of the proposal is described; then, in 
Section V, the results achieved are described and analyzed; in 
Section VI, the results achieved are compared with other 
proposals of the state of the art; in Section VII, the conclusions 
reached at the end of this work are described; and finally it 
shows the future work that can be implemented to improve the 
results achieved. 

II. RELATED WORK 

A. Simple Linear Regression 

In the field of regression, one of the first models used for 
forecasting is known as linear regression. It consists in a 
statistical analysis to identify the relationship between the 
dependent and independent variables [7]. Simple Linear 
Regression is given by equation (1) 

 ( )                         (1) 

B. ARIMA 

ARIMA [8] (Autoregressive Integrated Moving Average) 
is a statistical model that uses variations and regressions of 
statistical data in order to find patterns for a prediction into the 
future. It is a dynamic time series model, that is, future 
estimates are explained by past data and not by independent 
variables. 

Some works that implement ARIMA for forecasting are 
briefly described below: 

In [9] the authors implement the ARIMA model and the 
NNT Back Propagation Neural Network to forecast wind speed 
time series. The results show a slight superiority of the ARIMA 
model relative to the model based on neural networks. 

In [10] the authors of the paper propose an ARIMA model 
to predict the number of epidemic disease for a center of 
disease control and prevention. The results achieved are 
compared with those of a model based on Simple Moving 
Average (SMA) showing the superiority of ARIMA over 
SMA. 

In [11] the authors implement ARIMA and Support Vector 
Machine models to forecast load time series. The results show 
that ARIMA is better for linear type of load, while SVM is 
better for non-linear type of load time series. 

C. Prophet 

Prophet [12] is a forecasting decomposable time series 
model with three main model components: trend, seasonality, 
and holidays. They are combined in equation (2). 

 ( )   ( )   ( )   ( )                (2) 

Where: g(t) is the trend function, s(t) represents periodic 
changes and h(t) represents the holidays,    represents the 
error. 

D. Gated Recurrent Unit (GRU) 

GRUs are a gating mechanism in recurrent neural networks 
[3]. The GRU is like a long-term memory with a forget gate 
and with fewer parameters than LSTM, since it lacks an output 
gate. GRUs have been shown to exhibit even better 
performance in certain smaller datasets. However, the LSTM is 
"strictly stronger" than the GRU, since it can easily perform an 
unlimited count, while the GRU cannot [13]. Fig. 2 shows the 
architecture of GRU. 

 

Fig. 2. Architecture of GRU. 

Some works that implement GRU are briefly described 
below: 

In [14], the authors propose the use of LSTM and GRU 
recurrent neural networks for electric load time series 
forecasting. The results achieved show the superiority of the 
GRU results over the results achieved by LSTM. 

In [15] the authors propose the use of LSTM and GRU for 
traffic flow prediction comparing the results achieved with 
ARIMA model, demonstrating the superiority of the recurrent 
neural networks in this type of time series. 

In [16] the authors propose the power load forecasting of 
residential community using Gated Recurrent Unit (GRU). The 
GRU results are compared with LSTM results in different 
configurations. GRU proved to be more efficient than LSTM 
for this type of time series. 

In [17] the authors propose the use of a multilayer recurrent 
neural network called MS-GRU to forecast load electricity 
time series. The results are compared with the traditional 
recurrent neural networks such as LSTM and GRU, showing 
greater precision in the proposal MS-GRU. 

III. BACKGROUND 

A. Recurrent Neural Networks (RNN) 

A recurrent neural network is a neural network model for 
modeling time series [2]. The structure of this type of network 
is very similar to that of a standard multilayer perceptron 
(MLP), with the difference that it allows connections between 
hidden units associated with a time delay. Through these 
connections, the model can retain information from the past 
[18], allowing it to discover temporal correlations between 
events that may be very far from each other. Fig. 3 shows the 
architecture of a recurrent neural network. 
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Fig. 3. Architecture of Recurrent Neural Network. 

Recurrent neural networks are difficult to train [2] due to 
the problems of vanishing and exploding gradients, these 
problems resulted in the creation of LSTM networks. 

B. Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) network was 
created with the goal of addressing the vanishing gradients 
problem, this is due to the unfold process of an RNN. LSTM 
networks use special hidden units, whose task is to remember 
entries for a long time [1]. LSTM networks have subsequently 
proved to be more effective than conventional RNNs [1], 
especially when they have several layers for each time step. 
Fig. 4 shows the LSTM architecture. 

 

Fig. 4. Architecture of LSTM Network. 

C. Local Average of Nearest Neighbors (LANN) 

Local Average of Nearest Neighbors (LANN) [4] is a very 
simple algorithm for univariate time series imputation that uses 
the mean of the prior and next value of a block of NAs to 
replace the missing or NA values according equation (3). 

             (3) 

LANN produces very good results in the imputation 
processes because, according to the analysis carried out in [4] 
the values closest to the missing values correspond to prior and 
next. 

IV. PROCESS 

A. Selection of Time Series 

The selected time series corresponds to maximum daily 
temperatures at the SENAMHI

1
 meteorological station known 

as Punta de Coles
2
 in the city of Ilo-Peru. The data that will be 

used for the training correspond to 4 years (2012-2015) and the 
data that will be used for testing correspond to the year 2016. 

B. LSTM Model 

The architecture that will be used to implement LSTM is 
shown in Fig. 5. 

                                                           
1 https://www.senamhi.gob.pe/ 
2 Lat.: 17°41'55.2"S Long.:71°22'25"W  Alt.: 25 msnm 

 

Fig. 5. Architecture for LSTM Model in Python. 

C. Inserting NAs 

Once the LSTM model is built and compiled predicting a 
certain number of days, NA values are inserted, which will be 
calculated in the next stage using the LANN and LANNc 
algorithms. The NA values blocks were inserted uniformly in 
the predicted time series as shown in Fig. 6. 

D. Applying LANN/LANNc 

LANN is the first algorithm that is used to impute the 
predicted time series adapted from [4] for gap-sizes over 2 NA 
values. 

LANNc: is an adaptation of LANN algorithm that solves 
the problem of bias to the left in imputation processes with 
gap-sizes over 1 NA value. 

Fig. 7 shows the difference between the LANN and 
LANNc imputation. 

The adapted LANN algorithm is shown in Table I. 

E. Evaluation 

The evaluation of the results is performed through Root 
Mean Squared Error (RMSE) that is calculated with the 
equation (4). 

     √
∑ (     )    
   

 
             (4) 

The results achieved are shown in the Results section. 

 

Fig. 6. Distribution of NA Values in Predicted Time Series. 
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Fig. 7. LANN vs LANNc. 

TABLE. I. ADAPTED LANN ALGORITHM 

function lann(tsna,pos) 
{ npos=pos.length; 

 for(i=0;i<npos;i++) 

 { res=getPriorNext(); 
  prior=res[0]; 

  next=res[1];  

  base=(prior+next)/2; 
  tsna[pos[i]]=base.toFixed(2); 

 } 

 return tsna; 
} 

V. RESULTS 

This section shows the results achieved after 
experimentation. The LANN and LANNc algorithms were 
implemented with different configurations of NA values 
between 1 and 11 as it shown in Table II and Table III with the 
respective RMSE values. 

According to Table II and Fig. 8, it is appreciated that on 
average, from the eleven (11) configurations experienced for 
LANN, all of them improve the RMSE of LSTM. The best 
configuration corresponds to six consecutive NA values 
(RMSE 0.6577). 

According to Table III and Fig. 9, it is appreciated that on 
average, from the eleven (11) configurations experienced for 
LANNc seven (7) allow to improve the RMSE of LSTM, so 
the best configuration corresponds to two consecutive NA 
values (RMSE 0.6606). 

 

Fig. 8. LSTM vs Top 3 LANN. 

 

Fig. 9. LSTM vs Top 3 LANN. 
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TABLE. II. LSTM VS LANN 

Technique 
RMSE of Predicted Days 

Avg 
15 30 60 90 120 150 180 

LSTM 0.6334 0.6637 0.6702 0.7175 0.7649 0.7537 0.7562 0.7085 

LANN 

1 0.6515 0.6523 0.6428 0.7003 0.7575 0.7421 0.7384 0.6978 

2 0.5265 0.5730 0.6096 0.6527 0.6990 0.8695 0.6929 0.6604 

3 0.6377 0.6352 0.6328 0.6686 0.6961 0.6858 0.6877 0.6634 

4 0.6572 0.6616 0.6383 0.6636 0.6776 0.6606 0.6622 0.6601 

5 0.6389 0.6550 0.6636 0.6691 0.6880 0.6697 0.6553 0.6628 

6 0.6296 0.6111 0.6097 0.6730 0.7059 0.6910 0.6838 0.6577 

7 0.6649 0.7564 0.7054 0.7045 0.7258 0.7011 0.6954 0.7076 

8 0.5896 0.6610 0.6706 0.7122 0.7059 0.6813 0.6723 0.6704 

9 0.5831 0.6612 0.7201 0.7373 0.7294 0.7046 0.6749 0.6872 

10 0.6396 0.6810 0.7189 0.7131 0.7457 0.7234 0.7149 0.7052 

11 0.6185 0.6484 0.7180 0.7050 0.6992 0.6837 0.6735 0.6780 

TABLE. III. LSTM VS LANNC 

Technique 
RMSE of Predicted Days 

Avg 
15 30 60 90 120 150 180 

LSTM 0.6334 0.6637 0.6702 0.7175 0.7649 0.7537 0.7562 0.7085 

LANNc 

1 0.6515 0.6523 0.6428 0.7003 0.7575 0.7421 0.7384 0.6978 

2 0.5452 0.5918 0.6377 0.6813 0.7302 0.7166 0.7216 0.6606 

3 0.6586 0.6360 0.6753 0.7143 0.7435 0.7294 0.7357 0.6989 

4 0.6374 0.6422 0.6663 0.7084 0.7282 0.7113 0.7154 0.6870 

5 0.6186 0.6430 0.7073 0.7164 0.7673 0.7475 0.7362 0.7051 

6 0.6388 0.6414 0.7101 0.7352 0.8015 0.7833 0.7681 0.7254 

7 0.6197 0.7018 0.6638 0.7424 0.7949 0.7815 0.7840 0.7268 

8 0.5876 0.6081 0.7546 0.7708 0.7935 0.7621 0.7552 0.7188 

9 0.5831 0.6430 0.6559 0.6989 0.7513 0.7273 0.7388 0.6854 

10 0.6090 0.6617 0.7010 0.7351 0.7623 0.7322 0.7226 0.7034 

11 0.5926 0.6531 0.7653 0.7616 0.8357 0.7914 0.7681 0.7382 

VI. DISCUSSION 

According to Table IV and Fig. 10, it can be seen that, on 
average, the best configuration of the proposed LANN and 
LANNc algorithms allowed to overcome the techniques 
mentioned in the Related Work section. It should be noted that 

GRU in forecasting of time series, in general, in most cases 
outperforms LSTM, it can be seen in [15] [14] [19] [20]. 
However, by applying any of the two imputation techniques 
mentioned in this work, on average it was possible to improve 
LSTM predictions and overcome the results achieved by GRU. 

TABLE. IV. COMPARISON WITH ANOTHER TECHNIQUES 

Technique 
RMSE of Predicted Days 

Avg 
15 30 60 90 120 150 180 

LSTM 0.6334 0.6637 0.6702 0.7175 0.7649 0.7537 0.7562 0.7085 

LANN* 0.6296 0.6111 0.6097 0.6730 0.7059 0.6910 0.6838 0.6577 

LANNc** 0.5452 0.5918 0.6377 0.6813 0.7302 0.7166 0.7216 0.6606 

PROPHET 0.5512 0.7054 1.0516 1.1637 1.1274 1.1274 1.0403 1.0279 

GRU 0.5953 0.6917 0.6678 0.6689 0.7076 0.6751 0.6727 0.6684 

ARIMA 0.6134 1.2988 2.2932 2.5240 2.2320 2.2320 2.0440 2.1639 

* 6 NAs ** 2 NAs 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 11, 2019 

397 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 10. Comparison of LSTM, LANN, LANNc and GRU. 

VII. CONCLUSIONS 

The use of Imputation techniques based on Local Average 
of Nearest Neighbors allowed to improve the prediction results 
of LSTM by exceeding on average the prediction results of 
GRU and other state of the art techniques. 

Despite the risk of inserting bias to the left of the gap of 
NA values, LANN obtained a better performance than LANNc 
and in all NA cases it outperformed or improved LSTM 
predictions. 

VIII. FUTURE WORK 

The use of imputation techniques on the results of 
prediction techniques to improve their accuracy, opens a new 
research line that will improve current techniques. At this 
point, it is possible to experiment with other imputation 
techniques such as SMA [21], LWMA [21], EWMA [21], 
ARIMA-Kalman [22] [23], CBRi [6], CBRm [5], HSV [24], 
LANNf [24], etc. 

In this work the results of LSTM were improved, it would 
be important to analyze how much the results of GRU or other 
prediction techniques can be improved through imputation 
techniques. 
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