
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 11, 2019 

507 | P a g e  

www.ijacsa.thesai.org 

Lizard Cipher for IoT Security on Constrained 

Devices 

Ari Kusyanti
1
, Rakhmadhany Primananda

2
, Kalbuadi Joyo Saputro

3 

Department of Information Technology 

Universitas Brawijaya 

Malang, Indonesia 

 

 

Abstract—Over the past decades, security become the most 

challenging task in Internet of Things. Therefore, a convenient 

hardware cryptographic module is required to provide 

accelerated cryptographic operations such as encryption. This 

study investigates the implementation of Lizard cipher on three 

Arduino platforms to determine its performance. This study is 

successful in implementing Lizard cipher on Arduino platform as 

a constrained devices and resulting 0.98 MB of memory 

utilization. The execution time of Lizard cipher is compared 

among Arduino variants, i.e Arduino Mega, Arduino Nano and 

Arduino Uno with ANOVA test. Tukey’s HSD post-hoc test 

reveales that the execution time is significantly slower in Arduino 

Mega compared to Arduino Nano and Arduino Uno. This result 

will help IoT security engineers in selecting a lightweight cipher 

that is suitable for constraints of the target device. 

Keywords—Lizard cipher; IoT security; Arduino; ANOVA 

I. INTRODUCTION 

In recent years, Internet of Things (IoT) gets its popularity 
due to its integrated architecture that connects ‗things‘ to share 
information between them. Microcontroller is one of the 
‗things‘ that is widely adopted for IoT considering its various 
functionalities. Since the increasing numbers of devices that 
connect to IoT, the possibility of security violation is also 
increasing [1] [2]. One of the solutions is by encrypting the 
data that can reduce the security risk. There is solution for the 
problem based on hardware which is called Hardware Security 
Modules (HSM). However HSM are expensive to be 
implemented in IoT. 

For this purpose, three widely used target microcontrollers 
in the Internet of Things context, i.e. Arduino Uno, Nano and 
Mega are selected. Arduino is an easy to use and low cost 
device and equipped with open source platform. Arduino 
utilizes a hardware known as the Arduino development board 
and software for programming the code known as the Arduino 
IDE (Integrated Development Environment). 

Apart from the targeted devices, the cipher itself has to be 
taken into consideration when implemented in Internet of 
Things environment. Lizard [3] is created with low-cost 
scenarios in mind. The design of Lizard is inspired from Grain 
v1 [4], but with the smaller inner state which is 121 bits and 
the larger key of 120 bits. It outperforms Grain v1 in memory 
area usage and power consumption; hence Lizard is suitable 
for power-constrained devices. 

The objective of this study is to investigate the 
implementation of Lizard cipher on three Arduino platforms to 
determine its performance i, i.e. Arduino Mega, Arduino Uno 
and Arduino Nano. To evaluate the performance, the memory 
utilization and execution time of Lizard is observed. To 
analyze the data, ANOVA test is used to examine the 
difference implementation of Lizard on three Arduino. 

II. RELATED STUDY 

Based on previous studies, a number of cryptographic 
algorithms had been implemented on microcontrollers, such as 
[5] which evaluates the performance of public key 
cryptography such as RSA and ECC with various libraries on 
Arduino. The work of [6] had evaluated 19 lightweight ciphers 
on three microcontroller platforms: 8-bit AVR, 16-bit 
MSP430, and 32-bit ARM. The ciphers are all block cipher 
namely AES [7], Chaskey [8], Fantomas [9], HIGHT [10], 
LBlock [11], LEA [12], LED [13], Piccolo [14], PRESENT 
[15], PRIDE [16], PRINCE [17], RC5 [18], RECTANGLE 
[19], RoadRunneR [20], Robin [21], Simon [22], SPARX 
[23], Speck [24], and TWINE [25]. According to [26] stream 
ciphers tend to perform faster and more efficient than block 
ciphers. Therefore in this study, Lizard cipher as one of stream 
cipher is evaluated so that it can help IoT security engineers 
when selecting a lightweight ciphers that suits the 
requirements of the constraints of the target device. 

III. LIZARD ARCHITECTURE AND ARDUINO 

This section will disscuss the overview of Lizard cipher 
[3] and the target devices i.e. Arduino Mega, Arduino Nano 
and Arduino Uno, also the test to analyze the data observed 
namely ANOVA test. 

A. Lizard Cipher 

In this section, the details of Lizard cipher are discussed. 
First, the components of the cipher in detail is described. 
Then, initialization state is specified and finally keystream 
generation process is described. 

Components of Lizard cipher: 

Lizard cipher has three main blocks, i.e NFSR (Non Linear 
Feedback Shift Register) i.e. NFSR1 and NFSR2, and output 
function a as depicted in Fig. 1. Lizard requires inputs of 120 
bits key and 64 bits IV (Initiation Vector) and produces one 
bit keystream at a time. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 11, 2019 

508 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. Lizard Architecture. 

NFSR (Non Linear Feedback Shift Register) 

The first component on Lizard is NFSR which consist of 
two blocks, i.e NFSR1 and NFSR2. The difference between 
these two is in the feedback function. NFSR1‘s content is 
denoted as                        , while NFSR2‘s is     
                   . As for NFSR1, the update relation of NFSR1 
is defined as 

   
         

      
      

      
       

       
       

       
 

      
      

      
      

      
     

      
 

      
      

       
      

       
      

 

     
      

      
      

      
      

      
      

      
 

     
      

      
      

      
      

       
      

      
 

      
      

      
      

     
      

      
 

     
      

      
      

      
      

      
      

 

     
     

      
     

      
    

     
     

 

     
      

      
      

      
      

      
      

 

     
      

      
     

       
      

      
    

  

Whilst update relation of NFSR2 is defined as 

   
      

    
     

     
     

     
    

    
     

    
 

    
    

     
    

     
    

     
    

 

    
    

     
    

    
     

    
    

 

     
    

    
    

  

Output Function 

The final block of output function is defined as 

                 

where 

      
     

     
     

     
     

     
  

      
    
    

    
     

    
     

    
  

      
    

    
     

    
    

    
    
    

    
 

    
    

    
    

    
    

    
    

    
    

    
 

   
    
    

    
    

    
    

  

        
    

    
    

    
    

     
    
    

    
  

Initiaization state 

The state initialization process can be divided into 4 
phases, namely 

a) Phase 1: Key and IV Loading 

b) Phase 2: Grain-like Mixing 

c) Phase 3: Second Key Addition 

d) Phase 4: Final Diffusion 

Prior to generating any keystream, there are four phases 
that has to be completed. Firstly, the cipher has to be 
initialized with the key and the IV. Let the bits of the key, k, 
denoted as ki, 0 ≤ i ≤ 119 and the bits of the IV denoted as IVi 
, 0 ≤ i ≤ 63. The initialization process is performed as follows.  

  
  {

                  {      } 

                 {       } 
 

  
  {

                    {      } 
                     

                  

 

Secondly, the Grain-mixing like process, the cipher is 
clocked 128 times without producing any running key. In this 
process, the output function is fed back and xored with the 
input, both to the NFSR1 and to the NFSR2 as shown in Fig. 
2. Similiarly for the phase 3, second key addition process is 
performed. After this initialization process is complete, 
keystream is generated in phase 4. 

Key Generation state: 

After completing all four stages, the first keystream bit that 
is used for plaintext encryption is     . The length of the 
keystream depends on the length of plaintext, since it will be 
encrypted bit by bit to produce ciphertext. 

B. Arduino 

Arduino is a microcontroller which can be easily used, 
low-cost and has capability of mini-computer [27]. Arduino 
builds upon a hardware known as the Arduino development 
board and software for developing the code known as the 
Arduino IDE (Integrated Development Environment). There 
are a variety of Arduino models with various features and 
enhancement in their latest versions that add more 
components. In this study, three types of Arduino are used, i.e. 
Arduino Mega, Arduino Uno, Arduino Nano. 

The main difference among these Arduino is the concern 
of this study which lies on the processor. Arduino Mega 2560 
features an ATmega2560 at its heart, while Arduino Nano is 
equipped with ATmega168 and Arduino Uno is based on 
ATmega328 MCU. 

Table I presents the main characteristics of the target 
devices used, while in the next paragraphs provide a brief 
description of each Arduino type. 

 

Fig. 2. Lizard State Iniziation. 

http://www.atmel.com/devices/atmega328.aspx


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 11, 2019 

509 | P a g e  

www.ijacsa.thesai.org 

TABLE. I. ARDUINO TYPE 

Parameter Nano Uno Mega 

Processor ATmega168 ATmega 328P ATmega2560 

Clock Speed  16 MHz 16 MHz 16 MHz 

Flash Memory 16 kB 32 kB 256 kB 

EEPROM 512 bytes 1 kB 4 kB 

SRAM 1 kB 2 kB 8 kB 

Voltage Level 5 V 5 V 5 V 

The first target, Arduino Nano with ATmega168 as the 
processor has a maximum frequency of 16 MHz and with 1kB 
SRAM and 16 KB flash memory. The second target is 
Arduino Uno with ATMega328P as its heart. The processor 
has 2kB SRAM and 32kB flash memory. Lastly, Arduino 
Mega with ATmega 2560 processor is equipped with 8 KB 
SRAM and 256 KB flash memory. All of these three operate 
at V = 5 V. 

C. A One-Way Analysis of Variance (ANOVA) 

In the process of examining the relationship between 
variables, ANOVA is used to compare the means of two or 
more groups on the dependent variable. ANOVA a 
hypothesis-testing technique compares the variance between 
samples to variation within each sample. When the value of 
between variation is bigger than the within variation, hence 
the means of different samples is not equal. On the other hand, 
when the between and within variations are the same, hence 
there is no significant difference between sample means. 

Before analyzing the data with ANOVA, the population 
has to follow a normal distribution, hence it is categorize as a 
parametric tests. On the contrary, an ANOVA test cannot be 
used to test the equality of the sample means. In this case, a 
non-parametric test is used since it does not rely on 
distributional assumptions. There are several assumptions that 
have to be met: 

a) Assumption of independence: The samples have to 

be selected randomly independent to one another. 

b) Assumption of normality: The population has to 

follow a normal distribution. 

c) Assumption of homogeneity of variance: The 

variance of population has to be equal. 

In ANOVA there are two hypotheses which are null 
hypothesis (H0) and alternative hypothesis (Ha). The null 
hypothesis for an ANOVA assumes the population means are 
equal, while alternative hypothesis assumes that at least one 
mean is not statistically equal. 

In summary, an ANOVA test is used to determine at least 
one mean is different. However, an additional test must be 
conducted to determine which mean(s) is/are different which 
is called post-hoc test. There are several techniques for testing 
the differences between means, Tukey‘s HSD is used as the 
post-hoc test that helps to describe further data analysis 
technique for this study. 

IV. IMPLEMENTATION 

Arduino is an open source microcontroller board [27] that 
can be used to program by using free development software. 
The Arduino uses a simplified version of C/C++ programming 
language. Integrated Development Environment (IDE) is used 
to program and configure the Arduino which can be 
downloaded from the official website of Arduino freely. 

The implementation of Lizard cipher can be an invaluable 
part of an overall security solution in IoT which provides 
accelerated cryptographic operations. Lizard cipher is 
successfully implemented in various Arduino by using 
Arduino IDE. It is able to generate keystream and is tested 
against test vectors. The experiment run 800 times for each 
Arduino with various combinations of Key and IV as inputs 
which generates keystream. 

Descriptive statistics is conducted to observe the 
distribution of the data. Table II displays the summary of the 
descriptive statistics. 

The average of execution time is 55813.4850 microsecond 
for Arduino Mega, 55596.5700 microsecond for Arduino Uno, 
and 55596.5700 microsecond for Arduino Nano as can be seen 
in Fig. 3. 

Meanwhile, memory utilization is 0.98 MB for each 
Arduino. With less than 1 MB of memory utilization indicated 
that with fewer resources for cryptography leaves more 
resources available to applications. The collected data then 
analyzed by using ANOVA to determine whether there is 
statistically significant difference of execution time among 
Arduino Mega, Arduino Uno and Arduino Nano. 

The null hypothesis for an ANOVA assumes the 
population means are equal. Hence, the null hypothesis as: 

Ho: The mean of execution time of Lizard cipher is 
statistically equal across the three types of Arduino. 

TABLE. II. DESCRIPTIVE STATISTIC 

Execution Time N Mean  Std. Deviation 

Arduino Mega 800 55813.4850 151.26459 

Arduino Nano 800 55596.5700 151.29735 

Arduino Uno 800 55596.5700 151.29735 

Total 2400 55668.8750 182.56201 

 

Fig. 3. Execution Time of Lizard. 

55,45,00,000
55,50,00,000
55,55,00,000
55,60,00,000
55,65,00,000
55,70,00,000
55,75,00,000
55,80,00,000
55,85,00,000

Arduino Mega Arduino Nano Arduino Uno

Execution time (in micro second) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 11, 2019 

510 | P a g e  

www.ijacsa.thesai.org 

The alternative hypothesis is: 

Ha: At least one mean of execution time of Lizard cipher 
is not statistically equal. 

There are several assumptions that has to be met before 
conducting ANOVA, i.e. assumption of independence, 
assumption of normality, and assumption of homogeneity of 
variance. As for assumption of independence, the sample has 
to be random and the value of one observation is not related to 
any other observation. This assumption is met since the data 
are taken from each Arduino individually without interfering 
one another. The second assumption is assumption of 
normality which indicates that the data are normally 
distributed. Based on the result of Kolmogorov-Smirnov test, 
the data is normal, so it can be proceed further. The last 
assumption is assumption of homogeneity of variance. By 
using Levene‘s F test the variances of the distributions in the 
data is equal. The result of ANOVA test is presented in 
Tables III to V. An Alpha level of .05 is used for all analyses. 
Based on Table III, the test for homogeneity of variance is not 
significant [LeveneF(2, 2397) = 0.00, p > .05] indicating that 
this assumption underlying the application of ANOVA is met. 

ANOVA is used to examine whether the execution time of 
Lizard cipher is a function of the three Arduino variant. The 
independent variable represented the three different types of 
Arduino: 1) Arduino Mega; 2) Arduino Uno; and 3) Arduino 
Nano. The dependent variable is the execution time of Lizard 
cipher. 

This study is successful in attaining main goal in 
determining whether Lizard cipher can be implemented in 
three variant of Arduino platform. It presents promising 
results that Lizard cipher occupies less than 0.98 MB of 
memory utilization for cryptography in Arduino which leaves 
enough memory available for other functionalities. The 
execution time of Lizard cipher is observed and compared 
among Arduino variants, i.e. Arduino Mega, Arduino Nano 
and Arduino Uno. There is a significant difference in 
execution time of Lizard cipher between Arduino Mega and 
Arduino Uno (p = 0.00), as well as between Arduino Mega 
and Arduino Nano (p = 0.00). However, there are no 
differences between Arduino Nano and Arduino Uno (p = 
1.00). 

TABLE. III. TEST OF HOMOGENEITY OF VARIANCES 

Levene Statistic df1 df2 Sig. 

.000 2 2397 1.000 

TABLE. IV. ANOVA EXECUTION TIME 

Source Sum of Square Df Mean Square F Sig. 

Between 

Groups 

25094462 

.520 
2 

12547231 

.260 

548 

.211 
.000 

Within 

Groups 

54861539 

.980 
2397 

22887 

.584 
  

Total 
79956002 

.500 
2399    

TABLE. V. POST-HOC TEST TUKEY‘S HSD 

(I) 

Arduino 
(J) Arduino Mean Difference (I-J) Std. Error Sig. 

Mega 
Nano 216.91500* 7.56432 .000 

Uno 216.91500* 7.56432 .000 

Nano 
Mega -216.91500* 7.56432 .000 

Uno .00000 7.56432 1.000 

Uno 
Mega -216.91500* 7.56432 .000 

Nano .00000 7.56432 1.000 

Tukey‘s HSD procedures are used to determine which 
pairs of the three group means differed. Tukey‘s HSD is used 
since the assumption of homogeneity is met. According to 
Table V, Tukey‘s HSD post hoc test reveales that the 
execution time is significantly slower in Arduino Mega 
(55813.4850 ± 151.26459, p = .000) and Arduino Nano 
(55596.5700 ± 151.29735, p = .000) compared to Arduino 
Uno (55596.5700 ± 151.29735). There is no significant 
difference in execution time of Lizard cipher between Arduino 
Uno and Arduino Nano (p = 1.00). 

V. CONCLUSION 

This study is successful in attaining main goal in 
determining whether Lizard cipher can be implemented in 
three variant of Arduino platform to perform a number of 
important security-related functions. The result presents 
promising results that Lizard occupy less than 1 MB of 
memory utilization for cryptography in Arduino which will be 
enough memory available for other functionalities. The 
execution time of Lizard cipher are observed and compared 
among Arduino variants, i.e. Arduino Mega, ArduinoNao and 
Arduino Uno. There is a significant difference in execution 
time between Arduino Mega and Arduino Uno (p = 0.00), as 
well as between Arduino Mega and Arduino Nano (p = 0.00). 
However, there are no differences between Arduino Nano and 
Arduino Uno (p = 1.00). This result will assist IoT security 
engineers in choosing a lightweight cipher that suitable for constraint 
device. 

REFERENCES 

[1] L. Atzori, A. Iera, and G. Morabito, ―The internet of things: A survey,‖ 
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010. 

[2] S. A. Kumar, T. Vealey, and H. Srivastava, ―Security in internet of 
things: Challenges, solutions and future directions,‖ in 2016 49th Hawaii 
International Conference on System Sciences (HICSS). IEEE, 2016, pp. 
5772–5781. 

[3] Hamann, M., Krause, M., & Meier, W., 2017. LIZARD – A Lightweight 
Stream Cipher for Power-constrained Devices. Germany: University of 
Mannheim. 

[4] Hell, M., Johansson, T., Meier, W.: Grain – A Stream Cipher for 
Constrained Environments. eSTREAM, ECRYPT Stream Cipher 
Project, Report 2005/010 (2005) http://www.ecrypt.eu.org/stream 
https://www.arduino.cc/en/main/boards [accessed on January 2019]. 

[5] A. D. Elbayoumy and Simon J. Shepherd. Stream or Block Cipher for 
Securing VoIP?. International Journal of Network Security, Vol.5, No.2, 
PP.128–133, Sept. 2007 128. 

[6] Daniel, D.; Le Corre, Y.; Khovratovich, D.; Perrin, L.; Grobschadl, J.; 
Biryukov, A. Triathlon of Lightweight Block Ciphers for the Internet of 
Things. 2015. Available online: http://orbilu.uni.lu/bitstream/10993/ 
25565/1/209.pdf. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 11, 2019 

511 | P a g e  

www.ijacsa.thesai.org 

[7] National Institute of Standards and Technology (NIST). Advanced 
Encryption Standard (AES). FIPS Publication 197, available for 
download at http://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf, 2001. 

[8] N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe, B. Preneel, 
and I. Verbauwhede. Chaskey: An efficient MAC algorithm for 32-bit 
microcontrollers. In A. Joux and A. M. Youssef, editors, Selected Areas 
in Cryptography — SAC 2014, volume 8781 of Lecture Notes in 
Computer Science, pages 306–323. Springer Verlag, 2014. 

[9] V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici. LS-designs: 
Bitslice encryption for efficient masked software implementations. In C. 
Cid and C. Rechberger, editors, Fast Software Encryption — FSE 2014, 
volume 8540 of Lecture Notes in Computer Science, pages 18–37. 
Springer Verlag, 2015. 

[10] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. 
Lee, K. Jeong, H. Kim, J. Kim, and S. Chee. HIGHT: A new block 
cipher suitable for low-resource device. In L. Goubin and M. Matsui, 
editors, Cryptographic Hardware and Embedded Systems — CHES 
2006, volume 4249 of Lecture Notes in Computer Science, pages 46–59. 
Springer Verlag, 2006. 

[11] W. Wu and L. Zhang. LBlock: A lightweight block cipher. In J. López 
and G. Tsudik, editors, Applied Cryptography and Network Security — 
ACNS 2011, volume 6715 of Lecture Notes in Computer Science, pages 
327–344. Springer Verlag, 2011. 

[12] D. Hong, J.-K. Lee, D.-C. Kim, D. Kwon, K. H. Ryu, and D. Lee. LEA: 
A 128-bit block cipher for fast encryption on common processors. In Y. 
Kim, H. Lee, and A. Perrig, editors, Information Security Applications 
— WISA 2013, volume 8267 of Lecture Notes in Computer Science, 
pages 3–27. Springer Verlag, 2013. 

[13] . J. Guo, T. Peyrin, A. Poschmann, and M. J. Robshaw. The LED block 
cipher. In Cryptographic Hardware and Embedded Systems — CHES 
2011, volume 6917 of Lecture Notes in Computer Science, pages 326–
341. Springer Verlag, 2011. 

[14] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. 
Shirai. Piccolo: An ultra-lightweight blockcipher. In B. Preneel and T. 
Takagi, editors, Cryptographic Hardware and Embedded Systems — 
CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 
342–357. Springer Verlag, 2011. 

[15] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. 
Robshaw, Y. Seurin, and C. H. Vikkelsoe. PRESENT: An ultra-
lightweight block cipher. In P. Paillier and I. Verbauwhede, editors, 
Cryptographic Hardware and Embedded Systems — CHES 2007, 
volume 4727 of Lecture Notes in Computer Science, pages 450–466. 
Springer Verlag, 2007. 

[16] M. R. Albrecht, B. Driessen, E. B. Kavun, G. Leander, C. Paar, and T. 
Yalçin. Block ciphers – Focus on the linear layer (feat. PRIDE). In J. A. 

Garay and R. Gennaro, editors, Advances in Cryptology — CRYPTO 
2014, volume 8616 of Lecture Notes in Computer Science, pages 57–76. 
Springer Verlag, 2014. 

[17] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. 
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, 
S. S. Thomsen, and T. Yalçin. PRINCE – A low-latency block cipher for 
pervasive computing applications. In X. Wang and K. Sako, editors, 
Advances in Cryptology — ASIACRYPT 2012, volume 7658 of Lecture 
Notes in Computer Science, pages 208–225. Springer Verlag, 2012. 

[18]  R. L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast 
Software Encryption — FSE ‘94, volume 1008 of Lecture Notes in 
Computer Science, pages 86–96. Springer Verlag, 1995. 

[19] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede. 
RECTANGLE: A bit-slice lightweight block cipher suitable for multiple 
platforms. Science China Information Sciences, 58(12):1–15, Dec. 2015. 

[20] A. Baysal and S. Sahin. RoadRunneR: A small and fast bitslice block 
cipher for low cost 8-bit processors. In T. Güneysu, G. Leander, and A. 
Moradi, editors, Lightweight Cryptography for Security and Privacy — 
LightSec 2015, volume 9542 of Lecture Notes in Computer Science, 
pages 58–76. Springer Verlag, 2016. 

[21] V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici. LS-designs: 
Bitslice encryption for efficient masked software implementations. In C. 
Cid and C. Rechberger, editors, Fast Software Encryption — FSE 2014, 
volume 8540 of Lecture Notes in Computer Science, pages 18–37. 
Springer Verlag, 2015. 

[22] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. 
Wingers. The SIMON and SPECK families of lightweight block ciphers. 
Cryptology ePrint Archive, Report 2013/404, 2013. 

[23] D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. Großschädl, and A. 
Biryukov. Design strategies for ARX with provable bounds: Sparx and 
LAX. In J. H. Cheon and T. Takagi, editors, Advances in Cryptology — 
ASIACRYPT 2016, volume 10031 of Lecture Notes in Computer 
Science, pages 484–513. Springer Verlag, 2016. 

[24] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. 
Wingers. The SIMON and SPECK families of lightweight block ciphers. 
Cryptology ePrint Archive, Report 2013/404, 2013. 

[25] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. TWINE: A 
lightweight, versatile block cipher. In G. Leander and F.-X. Standaert, 
editors, Proceedings of the 1st ECRYPT Workshop on Lightweight 
Cryptography (LC 2011), pages 146–169, 2011. 

[26] Arduino website http://www.arduino.cc. 

[27] Will G Hopkins. 2016. A New View of Statistics. 
http://sportsci.org/resource/stats/ [accessed on February 2019]  

 


