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Abstract—In the field of network security, the task of process-
ing and analyzing huge amount of Packet CAPture (PCAP) data is
of utmost importance for developing and monitoring the behavior
of networks, having an intrusion detection and prevention system,
firewall etc. In recent times, Apache Spark in combination with
Hadoop Yet-Another-Resource-Negotiator (YARN) is evolving
as a generic Big Data processing platform. While processing
raw network packets, timely inference of network security is a
primitive requirement. However, to the best of our knowledge,
no prior work has focused on systematic study on fine-tuning
the resources, scalability and performance of distributed Apache
Spark cluster (while processing PCAP data). For obtaining best
performance, various cluster parameters like number of cluster
nodes, number of cores utilized from each node, total number
of executors run in the cluster, amount of main-memory used
from each node, executor memory overhead allotted for each
node to handle garbage collection issue, etc., have been fine-
tuned, which is the focus of the proposed work. Through the
proposed strategy, we could analyze 85GB of data (provided by
CSIR Fourth Paradigm Institute) in just 78 seconds, using 32
node (256 cores) Spark cluster. This would otherwise take around
30 minutes in traditional processing systems.
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I. INTRODUCTION

Big data could be defined as data with high variety,
volume, velocity and veracity information assets [1]]. It claims
optimal, cost effective and innovative techniques of processing
information. Which in turn provides better insight and much
better decision making. Such processing is difficult to con-
duct using centralized approaches in a highly scalable, high-
throughput and fault-tolerant way [2].

In the proposed work, the PCAP data analysis will be
implemented on top of a SPARK cluster which is deployed
over Hadoop YARN (Yet Another Resource Negotiator).

The proposed work analyzes large amount of network
capture data that has been collected for a period of four
months (which constitutes to Big data). The collected data
will be in .pcap format. The complex PCAP analysis includes
processing huge amount of data collected. The processing must
be performed on large stored datasets by an analyst to detect
security incidents or to perform security audits.
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A. Apache Hadoop versus Apache Spark

Apache Hadoop uses MapReduce processing
framework, by using YARN for cluster management
and Hadoop Distributed File System (HDFS) for distributed
storage. Hadoop MapReduce provides fault-tolerant and
distributed execution of ‘jobs’, which includes the following
processing steps:

1) Reading the input data from HDFS blocks and splitting
them to mappers.

2) Map: Applies an user-defined function and outputs one
file per mapper.

3) Combining output from the mappers (using user defined
functions), which is optional.

4) Partition, shuffle, sort and merge the data into the
reducers.

5) Reduce the data.

6) Output one file to each reducer and store data into HDFS.

Tasks where Hadoop MapReduce is chosen over
SPARK:

e  Processing huge data sets in a linear manner: MapRe-
duce allows processing huge amount of data parallelly,
where large chunk of data is broken into smaller
ones. They are processed separately on the data nodes.
The results are gathered automatically across multiple
nodes and then a single result is returned. If the dataset
is bigger than the available RAM, then MapReduce
may outperform SPARK.

o When immediate results are not expected: MapReduce
will be a good solution only if the processing speed
is not critical.

Tasks where Apache Spark is chosen over Mapreduce:

e  Faster data processing: In-memory data process-
ing makes Spark much faster than processing using
MapReduce. In essence, 10 times faster processing of
data in storage and 100 times faster using Random
Access Memory (RAM) [3] [4] [S].

e  [terative data processing: If the data is processed of-
ten, then SPARK can be chosen over Mapreduce. Mul-
tiple map operations can be done using Spark’s Re-
silient Distributed Datasets (RDDs), whereas MapRe-
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duce has to write intermediate results back to a disk,
which increases input/output (I/O) overhead.

e Near real-time data processing: If immediate insights
are needed, then Spark should be opted since it
performs in-memory processing.

e  Processing graphs: Computational model of Spark is
good to perform iterative computations since it has
GraphX, which is dedicated for graph computation.

e  Machine learning tasks: Spark has built-in machine
learning library - MLib which has out-of-the-box
algorithms that run in memory. Whereas, Hadoop
Mapreduce requires a third-party to provide a library
for machine learning. Also in SPARK, there is a
provision to tune and adjust the algorithms.

e Dataset joins: Spark can perform combinations much
faster, while Hadoop requires many shuffles and sorts
for joining datasets.

B. Motivation for the Work

In recent times, Apache Spark in combination with
Hadoop is evolving as a generic big data processing plat-
form. While processing raw network packets, timely inference
of network security is a primitive requirement. However,
to the best of our knowledge, no prior work has focused
on systematic study on fine-tuning the resources, scalability
and performance of Apache Spark cluster in a multi-node
environment (while processing PCAP data). For obtaining best
performance, various cluster parameters like number of nodes
in the cluster, number of cores utilized from each node, total
number of executors run in the cluster, amount of RAM used
from each node, YARN executor memory overhead allotted for
each node to handle garbage collection issue, etc. have been
fine-tuned, which is the focus of the proposed work.

II. BACKGROUND AND RELATED WORK

Apache spark is specially designed for handling big
data processing problems, which can analyze data in a very
less time. It is a cluster computing platform that is open
source and designed for processing big data. It provides an
user friendly application program interface (API) to write
queries and handle the jobs [6]. It has basic functionalities
such as memory management, task scheduling, interaction
with storage systems, fault recovery and RDDs, which are
the main programming abstraction. For parellel processing of
data, a set of functions are distributed across memory, which
involves transformations and actions. Transformations include
reduceByKey, distinct, map, intersection, join, union, filter,
aggregateByKey, sortByKey and so forth. Actions include
collect, saveAsTextFile, count, first, countByKey, takeSample,
foreach and so forth [7]].

Apache Spark elegantly handles iterations, memory
availability and is suitable for processing both stream and batch
jobs. Overall it outperforms Hadoop by orders-of-magnitude
for several applications.

As illustrated in Fig. [T} Spark has three major layers.
Spark Core - a generalized layer where all the basic functions
are defined and all the other extensions and functionalities are
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developed on top of Spark Core. Spark Ecosystem contains
additional libraries to operate on top of DataFrames and Spark
Core. These components give power in the fields of machine
learning, Structured Query Language (SQL) capabilities, real
time processing of big data etc.

Resource Management
B BT TR
Spark Ecosystems

Spark Core

BACK<TC BAZICS
Spark DataFrame API

D D D G

Fig. 1. Apache Spark Architecture and Ecosystem

A. Job Execution on a Spark Cluster

When a job is submitted by a driver process, first the
request is sent to the YARN Resource manager. YARN checks
for data locality and performs task scheduling by finding best
available slave nodes. Then the submitted job will split into
several stages. Each stage in-turn splits into multiple tasks,
based on available resources and data locality. Driver daemon
will send the necessary details related to the job to each node,
prior to execution of task. Currently executing tasks are tracked
by the driver and updates are sent to the master node. This
can be checked with Master Node’s user interface. Aggregate
values from all the nodes are shared with the master node,
once the job is completed. Hadoop and Spark coexist in the
same cluster as shown in Fig. [2]

Spark and
Hadoop can
coexist on the same
nodes in a cluster.

Node 1 Node 2 Node 3 Node n
sets in-memory

m
after loading from

HDFS. In-memory Spark resilient distributed data (RDD)

Spark relies on

HOFS or other file { Disk-based Hadoop distributed file system (HDFS)

systems for long-
term storage.

Fig. 2. Apache Spark and Apache hadoop co-existing on the same

cluster

Spark jobs can
cache RDD data

There exists an ApplicationMaster process for each
application instance in YARN. Application requests resources
from ResourceManager and informs NodeManagers to initiate
containers on its behalf, after allocating the resources. The
Spark driver will run in the ApplicationMaster on top of cluster
host, once the resources have been allocated. The process is
shown in Fig. [3] and [4]
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Fig. 3. Spark daemons running when deployed on top of YARN
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Fig. 4. Submitting Spark Application to YARN Cluster (aka Creating
SparkContext with yarn Master URL and client Deploy Mode)

Spark includes all the necessary transformations that are
pipe-lined in just a single stage for boosting the performance.
Then, the data must be shuffled among different stages [J]].
When a shuffle is done, in-memory output will be shuffled
from previous stage to the storage system. Extra data will be
stored to disk, if insufficient memory is allocated and interme-
diate data is transferred across the network. When employing
more machines, due to shuffling overhead, it will achieve
speed-ups much smaller than ‘m’, the number of machines
(nodes); In general, overhead incurred due to shuffling is
directly proportional to number of machine pairs, i.e.,

O(m?)

Bachupally [9] has analyzed the network trace data
and found anomalous connections made to the network by
using HDFS. Some features of PCAP data with size 131
Megabytes (MB) were extracted using Wireshark and stored
in HDFS as Comma Seperated Value (CSV) format. However,
Wireshark has been used and very small data has been handled.
Wireshark [[10] is an opensource software and one of the most
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famous analysis tools for network packets. But there are some
limitations.

In [11]], authors present four different network monitor-
ing tools that can monitor and analyze the network traffic. The
disadvantage of Wireshark has been discussed. According to
them, it will not detect malicious activities on the network and
it means that Wireshark may not be useful to study network
security. In addition, Wireshark cannot handle the large packet
data. If the user has a large capture file more than 100MB,
Wireshark will become slow while loading, filtering and alike
actions.

In [[12]], attention is paid on the benefits of Apache
Spark when compared to Hadoop MapReduce. In case of
MapReduce, data will be read from disk and results are written
to HDFS after a specific iteration. Then, the data will be read
from HDEFS for further iteration. The entire process utilizes
Iot of time and disk space. This results in the issue of lower
fault tolerance and high latency of the entire system. To
overcome these issues, Apache Spark is being used instead
of MapReduce. The authors also focused on time-series data
analysis using SPARK environment in real-time. Patterns were
generated out of analysis, which in-turn gave a clear glimpse of
characteristics and statistics of data. Thus, making MapReduce
less efficient compared to SPARK. But the dataset under
consideration is not related to packet capture data and the
dataset used in the proposed work requires resource allocation
to be tuned, which has not been explored.

In [13], SQL queries have been executed to analyze
about 85 Gigabyte (GB) of network packet dataset provided
by the University of New Brunswick. The way to analyze huge
size of PCAP files on Hadoop and visualize the analyzed re-
sults on web browser by using Hue (Hadoop User Experience)
has been discussed.The experiments were conducted using
MapReduce, whereas experiments in the proposed method are
done using SPARK. It has been set up on a standalone mode
in Hadoop and SQLs are executed on a local machine, and not
on a distributed cluster.

In [[14] and [[15]], a method is proposed where input data
is converted into RDDs. This allows in-memory computation
on huge clusters of Spark, in a fault-tolerant way. Lazy
transformations are applied to RDDs, which in-turn creates
new RDDs and store them into HDFS or onto the driver. This
method has been incorporated in the proposed work.

In [16], researchers integrate a network monitoring ar-
chitecture into Apache Spark. NetFlow data has been processed
as the way in traditional processing approaches. Moreover,
implementation using stream processing will find out novel
information which could not be found using traditional packet
monitoring approaches.

Prakasam [|17]] expresses that, due to shortage of options
in inter-stage communication facilities of processes, it makes
MapReduce unsuitable for interactive workloads (Interactive
Data mining, Stream data processing and Analysis) and itera-
tive (Machine Learning and Graph Processing) processing. He
dives into architecture of MapReduce and its disadvantages.
At the end, alternatives such as Apache Spark and Apache
Tez were used because of their suitability in interactive and
iterative processing.
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In [18]] and [[19]], authors conclude that execution time
of a particular job on Apache Spark platform can vary sig-
nificantly depending on the input data type and size, method
and implementation of the algorithm and computing capability
(e.g., number of nodes, memory size, Central Processing
Unit - CPU speed etc). This makes it extremely difficult to
predict job performance, which is often needed to optimize
resource allocation. Performance prediction can help to locate
execution stages with abnormal resource usage pattern [20].
Although these issues are considered, the nature of PCAP
data is different from their data and this requires different
resource allocation mechanisms based on the number of cores
to be allotted for data processing. This issue is resolved in the
proposed work.

In [21]], authors claim to propose a distributed Intrusion
Detection System (IDS) based architecture that is capable of
detecting anomalies in the network in real-time using Apache
Spark framework and Netmap. But, Center for Applied Internet
Data Analysis - CAIDA’s dataset [22] has been used to detect
Distributed Denail of Service (DDoS) attacks, which is an
offline dataset. Their setup takes more than 3 minutes to detect
an attack. In real scenarios, > 3 minutes of time to find an
attack is not an optimal solution. Proposed framework has a
greater performance speed and the cluster can handle 3 GB of
data in seconds, since it is possible to process 85 GB of data
in 78 seconds. Also, the query that has been posed doesn’t
execute the jobs in parallel, which is the reason that their jobs
take more time for processing.

In [23]], authors claim that the analysis is done on real
time data. But offline dataset “KDD 1999” has been used
and supervised ML technique is used for processing the data.
Also, the size of the dataset is not huge enough to fit into big
data, which could be processed using traditional systems itself,
without the need of Apache SPARK. The size of the dataset
is just 743MB. But dataset considered in the proposed work is
85GB. Moreover, there is no mention about the configurations
of SPARK cluster, regarding number of nodes in the cluster,
number of cores, size of RAM on each system, etc... This
makes it difficult to compare performance of the proposed
work with their results.

None of the above referenced papers concentrate on fine-
tuning the resource allocation of spark cluster, which enhances
the performance by controlling excess usage of resources or
limiting garbage collection.

The initial cluster startup takes around 12 seconds,
independent of size of the cluster. In real world, applications
run for dozens of minutes, which is an acceptable overhead.
During each execution of the job, intermediate data will be
produced which are stored on local disks and not on HDFS
(as in [24])). This helps to yield the best performance.

From these research reviews, it is found out that one
of the most challenging task is to handle the large packet
data and analyze it. Thus, in this study, the designed analysis
environment could handle the large packet data by using
Apache SPARK on top of Hadoop YARN cluster.
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III. THEORY FRAMEWORK AND MODELING
A. Cluster Setup and Spark Application Submission

Spark scripts read a configuration file, describing the
application and the Spark cluster configuration, provided by
the user. This submits one or more jobs to the workload
manager. Once a job is chosen by the job scheduler, a definite
number of nodes are reserved for HDFS (if requested) and
Spark cluster. Different services will be started after resource
allocation procedure. The HDFS namenode service will be
started if Distributed File System (DFS) is requested. Then
all the HDFS datanode services will be started and connected
to the NameNode. Spark cluster setup is done in a similar
manner (wait for master node to be ready and then start the
worker nodes). In Apache Spark, master node is the standalone
Spark manager and worker nodes are nothing but Spark worker
services, the place where the executors are launched.

B. Resource Allocation Schemes

Apache Spark doesn’t provide any storage (like HDFES)
or any Resource Management capabilities. It is just a unified
framework for processing large amount of data near to real
time [25]. It accesses Hadoop data store (HDFS) and runs on
top of existing Hadoop cluster. Spark allows applications in
Hadoop cluster to run up to 10x faster when running on disk
and 100x faster when running in memory. This is possible
by reducing the actual number of read/ write operations to
and from the disc. Spark also gives the feature to quickly
write applications in Scala, Java, or Python. This in return
helps developers to create and run their applications in the
programming languages they are more familiar with, thereby
making it easy to build parallel apps.

Worker nodes will have the available resources (mem-
ory, CPU cores and disk). Master node is responsible for
allocating the available resources to the required applications.
Each application create executor processes where the tasks run
in parallel. Resource allocation can be done using the following
three mechanisms:

e  Default: Here the applications are submitted without
specifying any details of resource allocation. All the
applications run in a First In First Out (FIFO) manner
and every application consume the resources from all
the worker nodes. Hence, when a single application is
running, it will utilize all the worker nodes and create
the executors.

e  Static: Here, the user will specify the number of cores,
executors, memory etc. that an application can have.
The resources are shared among multiple applications
submitted by one or more users.

e Dynamic: Here, applications may release executors
that are idle and give back some of the resources to
the Spark cluster. The free resources can be taken back
in future, if required.

However, each one of the resource allocation schemes
have some problems.

e  Firstly, when only one application is running with
default resource allocation scheme, it consumes all
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the resources. Hence, resources are not shared among
applications.

e  Secondly, in case of static resource allocation scheme,
user manually sets the resources that each application
will use.

e  Thirdly, with dynamic resource allocation scheme, the
initial amount of resources is still set by the user.
Hence, incorrect resource allocation will cause severe
performance issues.

Finally, if any production cluster demands user-
specific deadlines, then default allocation of resources
may not work because application having a strict dead-
line has to wait in FIFO queue. Also, inappropriate
allocation of resources in both dynamic and static
resource allocation schemes will affect the deadlines.

C. SPARK_CSV (Comma Separated Value) Library Package

In the proposed scheme, network trace files in PCAP
format are converted to CSV format to ease the purpose of
querying the data files on top of SPARK framework. This
package reads CSV files as Spark DataFrames. The API
accepts many different options when reading the files:

e path: Location of files are specified here.

e header: When this variable has been set true, the first
line in the file will be used for naming the columns
and will be excluded from the data. By default, it’s
value is false.

3

e delimiter: Columns will be delimited using °;
(comma) by default. But any character can be set as
delimiter.

2

e quote: The quote character is ” (double quote) by
default. But any character can be set. Delimiters inside
the quotes will be ignored.

e escape: Escape character is \ (backslash) by default.
One can set it to any other character.

e parserLib: It is “commons” by default and one can
set it to “univocity” for CSV parsing.

e mode: Determines the mode of parsing. It is PER-
MISSIVE by default. Possible values include:

PERMISSIVE: It parses all the lines. Missing to-
kens are inserted by null and extra tokens will be
ignored.

DROPMALFORMED: Drop the lines that have
more or fewer tokens than expected or contain tokens
that do not match with the schema

FAILFAST: If any malformed line is encountered,
it aborts with RuntimeException.

e  charset: It will be ‘UTF-8’ by default and can be set
to any other charset names.

e inferSchema: Column types are inferred automati-
cally and by default it is set to false.

e comment: Lines starting with a specific character are
ignored. “#” is the default. One can disable comments
by having value for the variable as null.
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e nullValue: A string is specified that indicates null
value. Any other fields that match this string are set
as nulls.

e dateFormat: Indicates format of the strings to use
while reading timestamps or dates.

D. Tuning Resource Allocation

There exist some situations where even-though a 100-
node cluster is setup and an application is run, only two tasks
are executing. These kind of situations are not unfair, when a
number of parameters influence resource utilization of Spark.
So, in the proposed work, for the best performance the target
is to make best use of the available resources from the cluster.

If resource allocation is not configured correctly, submit-
ted job may consume all of the cluster resources and in-turn
other applications will starve for resources.

The steps for a Spark job in a cluster mode include:

e  SparkContext will connect to YARN cluster manager
from the driver node.

e  Resources are allocated to the cluster manager across
other applications.

e  Spark will acquire executors on the nodes in a cluster
where each application will get it’s own executor
processes. Application code (python files/jar/python
egg files) will be sent to executors.

e  Tasks will be sent by SparkContext to these executors.

This has been shown in Fig. [5]

Worker Node

Executor | Cache

*

Driver Program

SparkContext ¢ ¥ Cluster Manager

Worker Node

Executor | Cache

Fig. 5. Steps involved in cluster mode for a Spark Job

From the above mentioned steps, it is very clear that the
total number of executors and their allocated memory setting
will play an important role in spark’s job performance. If
executors are run with too much memory, it results in delays
due to excessive garbage collection.

E. Utilized Dataset Description

In this paper, a collection of raw network packets
obtained from a “/24” darknet setup has been utilized. A
darknet is a set of globally routed and valid Internet Protocol
(IP) addresses, which are not assigned to any host or devices.
As the IP address space is not assigned to any hosts or devices,
under ideal condition, no genuine traffic is expected to reach
the darknet (Thus only malicious traffic has been captured,
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which constitutes to 85GB collected over a period of four
months). However, Internet measurement and analysis in the
past have shown that substantial amount of traffic arrives at
darknet IP address space, and they are typically triggered by
malicious activities like Internet wide port scanning, botnet
recruitment and expansion process, reflections from IP spoofed
Denail-of-Service (DoS) and DDoS attacks, etc. The darknet
packets were collected continually for a period of 122 days (4
months) from 01/06/2017 to 30/09/2017. It consists of about
500 million (0.5 billion) Transmission Control Protocol (TCP)
three-way handshake packets: Synchronize (SYN) request,
SYN/Acknowledgment (ACK) response and ACK confirma-
tion. The packets were originated from all over the world and
were subjected to source IP address spoofing by responding to
incoming SYN requests with appropriate SYN/ACK responses
and validating the third ACK packet suing the sequence and
acknowledgment number of these packets.

F. Utilized Testbed Description

The experiments were performed on a dedicated multi-
node network testbed. It consists of 60 rack-mountable servers
of 1U size and interconnected using 1 Gigabit per second
(Gbps) Ethernet switches. Each node consists of one Intel
Xeon E3-1230 v3 processor @ 3.30 GHz, with 8 MB cache.
The processor consists of 4 cores and hyper threading is
enabled on each core leading to an effective number of 8
CPUs available for concurrent job execution. Each node is
also equipped with 2 numbers of 3 terabyte SATA hard disk
drives at 7200 rotations per minute for storing the network
packets. The testbed is hosted in a self-contained data center
spread across three racks and equipped with inbuilt cooling,
uniterrupted power supply, fire detection and suppression,
water leakage detection, etc. As described under section 4, in
order to determine the performance and scalability, multiple
experiments are conducted with configurations of 1, 2, 4,
8, 16 and 32 nodes (leading up to 256 SPARK executors
concurrently) in the testbed, with turbo mode off. HDFS and
Apache SPARK are configured on the nodes. Each node runs
Linux Operating System and Java version 8.

IV. DESCRIPTION OF MODELS INVOLVED, WHILE
EVALUATING THE PERFORMANCE OF SPARK

A. Model to Estimate Execution Time

Since a job will be executed in several stages and each
stage will be containing several tasks, jobs and stages can be
represented as in equations [I]and 2] respectively.

Job = {Stage, |0 < a < X} (1)

Stage, = {Taskq,|0<b<Y} (2)

Where, the number of stages running within a job is X
and number of tasks running within a stage is Y.  Since
different stages inside the job are sequentially executed, one
can represent the time taken for executing a job as summation
of execution times at each stage, startup time for the job and
cleanup time for the job. This has been represented in equation
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SparkJobTime =
X

StartupTime + Z(Stage_Timek) + CleanupTime (3)
k=1

In each of the stages, one core of CPU will execute a
single task at a time. If a cluster has W worker nodes, one can
calculate P, the number of parallel tasks as per equation H]

w
W = Z(Num_Coresa) 4

a=1

Where, the number of cores in CPU of a slave (worker)
node a is Num_Cores, and W is number of slave nodes within
the cluster. Therefore, in each stage of execution, tasks will
execute in batches and each batch contains W parallel running
tasks. However, in a heterogeneous cluster, if the computing
capacity of each slave is different, there will be an inherent
uncertainty during execution which results in a significant
variation in the execution time of the submitted job.

Hence, the time that has been spent in each stage can
be calculated by doing a summation of the time taken for
execution of sequential tasks in each stage, startup time of
each stage and cleanup time of each stage, as represented in
equation [3

Stage_Time =
Sc
StartupTime + W Z(Task_Timec’a) + CleanupTime

&)

c=1a=1
Where total number of CPU cores (number of tasks running
in parallel) is W, number of tasks running sequentially on each
core is S..

Finally, since several tasks within a stage run with the
same execution pattern, the time taken for executing a task can
be calculated as per equation [6]

Task_Time =
Deserialize_Time + Run_Time + Serialize_Time (6)

Where, time taken for deserialization of input data is
DeserializeTime, time taken for serialization of input data
is SerializeTime and the actual amount of time spent to
perform several operations on input data like map, filter, etc.
is Run_Time.

B. Model to Estimate Memory Consumption

Since Spark performs in-memory computations, suffi-
cient memory must be allocated to avoid execution slowdown,
while creating the RDDs. Sometimes during configuration
settings, with a lack of memory will lead to unexpected
termination of the program execution. To avoid these adverse
effects, a model to calculate the minimum amount of memory
required for creating RDDs is proposed. Specifically, if Y tasks
are running, once can define the total amount of memory

www.ijacsa.thesai.org

639 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

required for execution of a job as summation of time required
for executing each task. This has been defined by equation

y
JobMemRDD = Z(TaskMemRDDa) @)

a=1

C. Model to Estimate 1/0 Cost

Within a stage, current RDDs are generated by making
use of previously generated RDDs using the transformation
operation, Shuffle_Map. The result data is generated by per-
forming Result operation. The cost of I/O operations involved
in the above tasks can be categorized into two types, namely:
ShuffleReadCost and ShuffleWriteCost. ShuffleWriteCost is the
cost incurred while storing the interim data onto the disk buffer
and ShuffleReadCost is the cost incurred while fetching interim
data from the slave nodes.

Shuffle stage is the most I/O intensive stage that involve
data transmission (reading data from the slaves) and fetching
(storing data onto the disk) in a frequent manner. Stage wise
I/O cost can be calculated by following equations [§and [

Y
Stage_10_Write, = Z(Task_IO_Writea’b) 8)
b=1
Y
Stage_IO_Read, = Z(Task_IO_Readmb) 9)
b=1

D. Model to Predict the Performance

At first, calculate the time taken for execution of a job.
For that, the actual number of tasks being executed is found
out by equation [I0]

_ Input_Size
" Block_Size

Where, Input_Size is nothing but total size of the dataset
and Block_size represents the actual one data block stored in
HDFS. As discussed, tasks will run batch wise within a job and
the total number of tasks running is each batch is computed as
per equation [4] If a cluster has nodes with different computing
capabilities, The average amount of time taken to execute a
task in a stage for a worker node w, can be calculated as per

equations [[1]and [12]

Task_Run_Time,, , =

10)

Deserialize_time,, +Run_Time,, ,+Serialize_Time,, 4

1)

Ny

1
Avg_Task_Time,, = —Z(Task_Run_Timew,a) (12)
n

w
a=1

Where, the number of tasks being run in the worker node
within a stage of the submitted job w is n,. During the
experimentation, there were slight differences in the execution
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time of different batches within a particular stage. This can be
calculated as per equation [I3]

RatioO fTimeDif ference, =

m ZZZWW 41 (Task_Timey, q)
WLZZ‘;wl (Task_Timey p)

w

13)

Where, the number of tasks that are running in a worker
node w is n, and the number of tasks running in a batch
is W,,.  Since tasks are executed on different worker nodes
in parallel, for predicting the time taken for execution of
a particular stage, the StartupTime and CleanupTime remain
constant. Then, time taken for execution of a stage and task
can be calculated as in equations [14]and [T3]

FEst_Stage_Time =StartupTime+
Sc
w Z(Avg_Task_Timeqa) (14)
c=1a=1

+ CleanupTime

) Avg_Task_Time, a=1

Est_Task_Time., = - - o
St< ask_Limee, {Avg_Later_Task_szec, a>1
(15)

Where, the total number of cores of CPU is W as per
equation [] The number of sequential tasks that are running
in each core is S..

Avg_Task_Time, gives us the average time to execute
batch of a CPU core within a worker node as in equation
The average time taken to execute following tasks
of batches, Avg_Later_Task_Time. can be calculated as in

equation [T6]

Avg_Later_Task_Time. =
RatioO fTimeDif ference, *x Avg_Task_Time, (16)

For predicting the I/O costs, the average of shuffle R/'W
costs incurred by a task is computed. Then, I/O cost incurred
for a particular stage b can be calculated as specified in

equations [I7 and [I8]

FEst_Stage_10_Write, =

w n
1 w
Y, * — Task_IO0_Writey, 4 (17)
w;( - ;( )

FEst_Stage_IO0_Read, =

w N
> (Vi 7TZ(Task_lo_Readw)) (18)
w=1 Wa=1

Where, the number of slaves (worker nodes) is W, Y,, is the
total number of tasks that are running on worker node w and
n,, is the number of tasks that are running on worker node w,
at stage b.

www.ijacsa.thesai.org

640 |[Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Finally, calculate average RDD memory footprint re-
quired for each stage as defined in equation [T9]

w n
Yw w
Est RDD Mem = E (—g Task_RDD_Memy,.q)
n

w=1 Wa=1

19)

E. Estimation and Evaluation of Spark Performance, with an
Example

Now, once could understand some basic analytics and
flow of execution of an application in Spark, with an example.

Spark will schedule an application for execution, in a
distributed cluster platform. RDDs generated within Spark will
be used to identify the way temporary data and inputs are
generating during computation phase. RDDs will be divided
into equal sized partitions that could be configured to store
on disk, in memory, or both. Multiple operations are pipelined
within every partition to execute several operations in parallel.
Since each partition will handle a task, the number of jobs
running will be equal to the number of partitions created.

As illustrated in Fig. [6] considering a join operation,
inputs are taken from multiple partitions. A stage will be
created for the input data, so that the execution of the tasks
are made to run in parallel manner. Considering the example
above, map operation executes in parallel taking the RDD from
Hadoop, on all the partitions, which will be aggregated to Stage
1 (grey part of the diagram). The filter operation also holds
the same logic (green part of the diagram). Then, the join
operation needs to wait for stages 1 and 2 to finish and after the
results are obtained from these stages, a separate stage 3 will
be scheduled. The intermediate results generated from mapped
and filtered RDDs are logical RDDs, representing intermediate
results.

Disk ==
HDFS 'ddrlite_“f"_elﬁh_‘”f/\/---")_rd_dijid‘_“_'m_af(“’ Memory [N
) .| Hadoop ' ,| Mapped
Split : RDD : : RDD ; Ir ——————— > HDFS
| . : ! Joined RDD
) ! Hadoop ' ! Mapped ! [
Split / RDD | | RDD /
E

— Filtered !
SSplit T Rpp . RDD |

J
rdd2=textFile(“hdfs://..") rdda=rdd2.filter(*...")

rdd5=rdd3.join(rdd4)
rdd5.saveAsTextFile(“hdfs://...”)

Fig. 6. Scheduling a Spark application for execution

If fewer machines are allocated, stages 1 and 2 cannot
run concurrently and will run sequentially, thus the execution
slows down. The end user of Spark application will have the
flexibility to configure the storage location of these RDDs and
also the size of them. If the RDDs stored in memory, care has
to be taken so that entire RDDs fit into the memory. Otherwise,
some partitions are spilled to the disk, or recomputed later, or
even discarded.

In the phase of Application Profiling, several times an
application is executed and entire dataset is divided into subsets
of input data with an increased size (In real scenarios, this
can be done using sampling), for evaluation of its dependency
upon the important tuning parameters. During evaluation of
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performance, an entire dataset will be considered to estimate
each stage’s execution time from the collected information
and then the entire application’s performance is evaluated by
considering the estimated time of execution for each stage.

The Application Profiling stage analyzes how tuning
parameters will affect the overall performance of a Spark
application in terms of storage and time taken to complete
the entire task.

Now, consider the parameter storage.memoryfraction to
analyze the parameters related to memory that affects the
performance of a Spark application. In essence, Spark will
divide available at every slave node into two important areas.
The first part will account to 60% of the memory available
by default, that will be allocated to caching of RDDs. The
second part will account to 20% of remaining memory to
the computations of shuffle stage. Remaining memory will be
used for the computations of functions defined by the user.
storage.memoryfraction parameter defines the memory being
allotted to cache RDDs. If in case, some parts of RDDs does
not fit in the main memory, those RDDs are spilled to the disk,
or recomputed later, or even discarded. This will definitely
affect the performance of the application.

To deeply understand the situation where entire RDDs
does not fit into the main memory and to understand the
effect of storage.memoryfraction parameter, some experiments
were conducted. The entire dataset used for the experiments
constituting to 85GB and minimal memory was considered,
where all the RDDs will not fit into the main memory. From the
results, it was observed that, the required time for completion
of processing task increased dramatically (as per Fig. [7/) when
the memory utilized for caching RDDs, exceeds some value
(i.e., 0.76).

3000

2500

1000

0 0.2 0.4 0.6 0.8
Storage Memory Fraction

Fig. 7. Tuning storage.memoryfraction parameter

This concludes that, there was insufficient memory for
shuffle operations and most of the memory was utilized for
caching RDDs. In these cases, RDDs are spilled to the disk
which incurs I/O overhead. Considering these cases, for the
experiments conducted in the proposed work, care is taken
that entire RDDs fit into the main memory to achieve the best
possible performance.

V. RESULTS AND DISCUSSION

In the proposed work, 4 months of network trace data
which contains 85GB of data has been analyzed. This data has
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been processed in stages of 1 month, 2 months and 4 months.
32 nodes have been used from the test bed, each having 8 cores
of CPU with 32GB of RAM. This data has been processed
using different use-cases considering 5 cores, 7 cores and 8
cores of CPU from each node. With these setups, 7 cores per
node achieved best results.

All Spark executors of an application will have same
number of cores that are fixed. The total number of cores could
be specified either with —executor-cores flag while invoking
spark-shell, spark-submit and pyspark from command line, or
by setting spark.executor.cores property in spark-defaults.conf
file or through a SparkConf object. The cores control the
number of tasks that an executor can concurrently run. For
example, “—executor-cores 7” implies that each executor will
run with a maximum number of seven tasks at the same time.

The spark.executor.instances configuration property or
—num-executors command-line flag controls the total num-
ber of executors requested. One can avoid setting of
this property by switching to dynamic allocation with
spark.dynamicAllocation.enabled property, which enables a
Spark application by requesting executors during backlog of
pending tasks. This frees up executors when idle.

It is also important to tune how the resources requested
by Spark could fit into what is available with YARN. The
relevant properties of YARN are:

e yarn.nodemanager.resource.memory-mb: This con-
trols maximum total memory that can be used by the
containers present on each node.

e yarn.nodemanager.resource.cpu-vcores: This controls
maximum total cores that can be used by the contain-
ers present on each node.

Fig. [§] shows a geographical distribution of the origin
of the darknet malicious packets mapped using IP2Location
mapping from the source IP address of the SYN requests.

Fig. 8. Total malicious connections for a period of four months: 449
million packets

To make all these a little more concrete, consider an
example of configuring a Spark application to utilize most of
the cluster resources; The proposed framework has a cluster
with 32 nodes running NodeManagers, each equipped with 8
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cores and 32GB of memory. To acheive the best performance,
the NodeManager capacities, yarn.nodemanager.resource.cpu-
vcores and yarn.nodemanager.resource.memory-mb should
probably be set to 7 (cores) and 31GB * 1024 = 31744
(megabytes), respectively.

Consider the case yarn.nodemanager.resource.cpu-
vcores with a value 8 and yarn.nodemanager.resource.memory-
mb with value 32768MB (32GB * 1024). One must always
avoid allocating 100% of the available resources to YARN
containers, since a node requires some of the resources to run
Hadoop and Operating System (OS) daemons. In this case, one
has to leave a core and a gigabyte for these system processes.
Hence, set the parameters yarn.nodemanager.resource.cpu-
vcores and yarn.nodemanager.resource.memory-mb to 7 and
31744 respectively.

Running yarn.nodemanager.resource.cpu-vcores with a
value 5 and having just enough memory required to run a
single task will throw away the benefits that could come from
running several tasks in a single Java Virtual Machine (JVM).

The results have been summarized in Tables [IHIXl The
same results have been visualized in Fig. [9)

Tables represent the time taken to process data in
batches of one month (24GB), two months (42GB) and four
months (85GB). This data has been analyzed by making use
of 7 CPU-cores per node in the first set of experiments, then
in the next set using 5 CPU-cores per node and finally all the
8 CPU-cores are used to process the data.

The difference in run-time between the number of CPU-
cores utilized is mainly observed when the experiments are
run on four months of data using a single node. Consider the
following 3 cases:

e If we use 5 cores of CPU from a node, it takes 1346
seconds to process 85GB of data.

e If we use 8 cores of CPU from a node, it takes 1090
seconds to process 85GB of data.

e If we use 7 cores of CPU from a node, it takes 971
seconds to process 85GB of data.

In the first case, since some of the CPU cores are not
at all utilized, it takes more time to process the data. Whereas
in the second case, we are not leaving any core of CPU for
Operating System and YARN daemons and all the resources
are utilized only for Spark process. Hence it takes a bit more
time to process the same 85GB of data (when compared to
last case). Finally, leaving one core of CPU for OS and YARN
daemons and utilizing the remaining cores to process the data
will yield the best run-time performance.

TABLE I. TIME TAKEN FOR PROCESSING ONE MONTH DATA (24GB),
USING 7 CPU-CORES PER NODE

[ No. of nodes (cores) | Time taken in seconds |

1 node (7 cores) 281

2 nodes (14 cores) 171
4 nodes (28 cores) 103
8 nodes (56 cores) 62
16 nodes (112 cores) 37
32 nodes (224 cores) 22
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TABLE II. TIME TAKEN FOR PROCESSING OF TWO MONTHS DATA

(42GB), USING 7 CPU-CORES PER NODE

No. of nodes (cores) | Time taken in seconds |

1 node (7 cores) 483

2 nodes (14 cores) 294
4 nodes (28 cores) 178
8 nodes (56 cores) 107
16 nodes (112 cores) 64
32 nodes (224 cores) 38

TABLE III. TIME TAKEN FOR PROCESSING OF FOUR MONTHS DATA

(85GB), USING 7 CPU-CORES PER NODE

No. of nodes (cores) | Time taken in seconds |

1 node (7 cores) 971

2 nodes (14 cores) 592
4 nodes (28 cores) 360
8 nodes (56 cores) 218
16 nodes (112 cores) 131
32 nodes (224 cores) 78

TABLE IV. TIME TAKEN FOR PROCESSING ONE MONTH DATA (24GB),
USING 5 CPU-CORES PER NODE

[ No. of nodes (cores) [ Time taken in seconds |

1 node (5 cores) 393

2 nodes (10 cores) 220

4 nodes (20 cores) 124

8 nodes (40 cores) 72

16 nodes (80 cores) 42
32 nodes (160 cores) 24

TABLE V. TIME TAKEN FOR PROCESSING OF TWO MONTHS DATA
(42GB), USING 5 CPU-CORES PER NODE
[ No. of nodes (cores) | Time taken in seconds |

1 node (5 cores) 670
2 nodes (10 cores) 380
4 nodes (20 cores) 221
8 nodes (40 cores) 127
16 nodes (80 cores) 73
32 nodes (160 cores) 41

TABLE VI. TIME TAKEN FOR PROCESSING OF FOUR MONTHS DATA

(85GB), USING 5 CPU-CORES PER NODE

No. of nodes (cores) | Time taken in seconds |

1 node (5 cores) 1346

2 nodes (10 cores) 768
4 nodes (20 cores) 452
8 nodes (40 cores) 257
16 nodes (80 cores) 148
32 nodes (160 cores) 83

TABLE VII. TIME TAKEN FOR PROCESSING ONE MONTH DATA (24GB),
USING 8 CPU-CORES PER NODE

[ No. of nodes (cores) [ Time taken in seconds |

1 node (8 cores) 310

2 nodes (16 cores) 183
4 nodes (32 cores) 108
8 nodes (64 cores) 64
16 nodes (128 cores) 38
32 nodes (256 cores) 22

When the same job was made to run on a traditional system
without SPARK, having configurations of Intel Xeon E3-1230
v3 processor @ 3.30 GHz, with 8 MB cache, it took 29 minutes
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TABLE VIII. TIME TAKEN FOR PROCESSING OF TWO MONTHS DATA
(42GB), USING 8 CPU-CORES PER NODE

[ No. of nodes (cores) [ Time taken in seconds |

1 node (8 cores) 531

2 nodes (16 cores) 315
4 nodes (32 cores) 186
8 nodes (64 cores) 110
16 nodes (128 cores) 65
32 nodes (256 cores) 38

TABLE IX. TIME TAKEN FOR PROCESSING OF FOUR MONTHS DATA
(85GB), USING 8 CPU-CORES PER NODE

[ No. of nodes (cores) [ Time taken in seconds |

1 node (8 cores) 1090

2 nodes (16 cores) 648
4 nodes (32 cores) 385
8 nodes (64 cores) 228
16 nodes (128 cores) 135
32 nodes (256 cores) 80

and 8 seconds to process 85 GB of data.

VI. CONCLUSIONS AND FUTURE WORK

The nature of processing PCAP data is different from
processing other data formats. This requires tuning resource
allocation based on the number of cores, number of executors
and the amount of memory to be allotted for faster data
processing. This issue has been addressed in the proposed
work.

In the literature, small amount of work is done in the
field of processing network trace data using SPARK technol-
ogy. 85GB of data has been analyzed in just 78 seconds using
32 node (256 cores) SPARK cluster, which would otherwise
take around 30 minutes in traditional processing systems. Best
results were achieved by allotting 7 (out of 8) cores of CPU per
node and 31744MB of memory (leaving one GB of memory
for OS and YARN daemons).

Spark avoids the file system to a greater extent. It retains
most of the data distributed in memory, across multiple phases
of the same job. RDDs hide the details of fault-tolerance and
distribution for huge collections of items. RDDs apply the
same operation of map, filter and join to many data items.
RDDs are computed lazily for the first time they are used, so
that it can later pipeline the transformations; In the proposed
work, the focus is on the cases where aggregate memory can
hold the entire input RDD within main memory, so that the
queries (job) submitted can be executed faster.

A. Future Work

In all experiments, enough memory resources has been
allocated so that RDDs can fit into the main memory. Thorough
investigation of storage alternatives, especially when RDDs
cannot fit in the main memory, are out of scope and left for
future work.

As a future work, one can utilize the techniques to
analyze the large network packet data in near real-time and
apply some machine learning algorithms to develop near real-
time automatic detection systems against network attacks.
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