
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

408 | P a g e

www.ijacsa.thesai.org

A Mobile Agent Team Works based on

Load-Balancing Middleware for Distributed

Computing Systems

Fatéma Zahra Benchara
1
, Mohamed Youssfi

2

Department of Computer Science, Laboratory SSDIA

ENSET Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco

Abstract—The aim of this paper is to present a load balancing

middleware for parallel and distributed systems. The great

challenge is to balance the tasks between heterogeneous

distributed nodes for parallel and distributed computing models

based distributed systems, by the way to ensure HPC (High

performance computing) of these models. Accordingly, the

proposed middleware is based on mobile agent team work which

implements an efficient method with two strategies: (i) Load

balancing Strategy that determines the node tasks assignment

based on node performance, and (ii) Rebalancing Strategy that

detects the unbalanced nodes and enables tasks migration. The

paper focuses on the proposed middleware and its cooperative

mobile agent team work model strategies to dynamically balance

the nodes, and scale up distributed computing systems. Indeed,

some experimental results that highlight the performance and

efficiency of the proposed middleware are presented.

Keywords—Load balancing; middleware; parallel and

distributed systems; parallel and distributed computing models;

high performance computing; mobile agents; distributed computing

I. INTRODUCTION

Distributed systems play a great role by providing a
promising distributed computing environment for big data
applications, in order to meet their requirements, and ensure
the HPC. Therefore, distributed systems have been introduced
as a promising solution for HPC thanks to two main features:
interconnection network speed such as: Ethernet, 4G, 5G and,
their effective Middleware such as: CORBA, RMI, AMQP.
These make distributed systems as a cooperative parallel and
distributed environment able to implement parallel and
distributed computing models, and ensure the collaboration of
heterogeneous machines in order to achieve the processing
power required by big data [1] applications, and reduce the
computing time.

Consider the two principal distributed system challenges
that these applications have to deal with. Their scalability and
efficiency depends on their ability to manage the message
passing paradigm, and the heterogeneity of node performance.
For example, performing an application of big data
classification based parallel and distributed computing models.
It involves a wide number of heterogeneous distributed
computing system nodes to achieve the required processing
power. The heterogeneity of distributed system nodes
influences negatively the performance of these models if
unbalanced task assignment is performed between nodes.

Therefore, an effective task assignment strategy is required to
deal with the load balancing challenge.

In this paper, a new load balancing middleware is
proposed, which is based on mobile agents, and implements
effective method for task assignment and migration. Besides,
the proposed middleware integrates a cooperative mobile agent
team work model, which elaborates well defined load
balancing strategies to balance the distributed computing
system. Consider the great challenge of nodes performance
heterogeneity in parallel and distributed systems. We will
present a load balancing model that achieves these
requirements. This paper is organized as follows:

 The middleware and its innovative components for load
balancing process are presented in Section 3.

 The Section 4 is focused on presenting the method used
by the mobile agent team work in order to elaborate
load balancing strategies.

 The efficiency of proposed load balancing middleware
is demonstrated, by performing an SPMD application in
parallel and distributed computing system (Section 5).

II. BACKGROUND

To set the scene of this paper, we begin with a brief
overview of distributed computing systems [2], and their
ability to perform HPC application based on parallel and
distributed computing models. Consider this application is
composed by a set of NT tasks Tk{k=1,…, NT}, which is
executed in parallel and distributed computing system of n
nodes Ni{i=1,…, n}. In case of homogenous system, the same
number of tasks (load LB) is assigned for each node Ni with

LBi=

. Otherwise, the load LB depends on the node’s

performance index , by means that for each node Ni the
assigned load LBi is given by:

LBi=

  (1)

Therefore, a load balancing method for HPC applications
based distributed system is required. This method has to take
into account the node performance index , and grants the
same computation time for all nodes. Thus, the computation

time 
MIN

 of node
 (slowest node) is equal to 

MAX
 of

node
 (faster node) with i .

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

409 | P a g e

www.ijacsa.thesai.org

The Mobile agents [3],[4] have impressive skills, such as
asynchronous communication ability, autonomy, adaptability,
and mobility. They can move from overloaded nodes to under
loaded ones, and perform a balanced system. The agent’s
mobility can be an effective mechanism for dynamic load
balancing of the system. Additionally, the mobile agents
cooperate asynchronously by exchanging messages, which
significantly reduces the load balancing strategy time. Further,
their adaptability skill makes the proposed middleware flexible
with different distributed computing systems. Thus, the mobile
agents ensure effective features for scalable load balancing
middleware.

III. PROPOSED LOAD BALANCING MIDDLEWARE

A. Middleware Overview

The proposed middleware (Fig. 1) implements a load
balancing method, which behaves when an application is
deployed, and performed in the system. Once, it is deployed
this method defines the initial performance index by getting the
node’s performance capabilities. If the metadata of task is
known, the defined index is used to estimate the load
assignment LBi for each node Ni. Else, the initial performance
index will be used for running the application. For an iterative
application, before the next iteration, this method decides the
required load migration. Thus, the middleware can balance the
node’s load effectively.

B. Aspect based Load-balancing Middleware

The proposed middleware integrates the LoadBalancer
aspect to the system. This aspect is based on AOP (Aspect
Oriented Programming) approach [5],[6], which is useful for
separating the functional aspects from the technical ones in an
application, and allows to dynamically modify the program
behavior. To do so, the middleware adds two aspects
(behaviors) to the system, by the way that it can get metadata

and provide the results needed to balance the system. These
behaviors are described as follows:

 Load Assignment Aspect This aspect is performed
when an application is deployed in order to get the load
assignment of nodes.

 Rebalancing Aspect This aspect is executed when an
application is running in order to get the required load
migration, and rebalance the system before performing
the next iteration.

IV. EFFECTIVE LOAD BALANCING METHOD

The proposed middleware implements an effective load
balancing method (Fig. 2) for distributed computing system.
This is done according to three method’s main step; Initial
nodes performance Determination, Load Assignment
Prediction, Load Rebalancing. This method is implemented on
cooperative mobile agent team works composed by two
principal agents: Team Load Balancer Agent (TLBA agent),
and Team Node Performance Monitor Agents (TNPMA
agents) one per node. Main steps of this method are detailed as
follows:

Step 1. Initial nodes performance Determination

 Metadata MDT0 Determination

 Computing the initial performance index NPI
T0

 Computing the initial load LB
T0

Step 2. Load Assignment Prediction

 Metadata MDTk Determination

 Computing the Node Performance index NPI
Tk

 Computing the initial load LB
Tk

Fig. 1. Load Balancing Middleware Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

410 | P a g e

www.ijacsa.thesai.org

Fig. 2. Sequence Diagram of Mobile Agent Team Works Load-Balancing Method.

Step 3. Load Rebalancing

The load balancing method’s steps are detailed as follows:

Step 1. Initial nodes performance Determination

 Metadata MDT0 Determination

a) The TLBA agent deploys TNPMA(i) agent for each

node Ni, after its initialization by the task T0(initial

performance task with complexity C0) and the data D0(initial

data of size x0).

b) The TLBA agent executes the performance test of its

node N0.

c) The TLBA agent sends the data D0 for each

TNPMA(i) agent.

d) Each TNPMA(i) agent gets the data D0 and executes

the task T0 on data D0.

e) Each TNPMA(i) agent returns the results Ri (the size

of result y0, and the execution time
) to the TLBA agent.

f) The TLBA agent receives the result Ri from each

TNPMA(i) agent at t1(i), and computes the communication

latency

between the node Ni and N0 by:

 (2)

Where:
 computation time of the task T0 in the node Ni,

which is given by:

 () (3)

 Computing the initial performance index NPI
T0

The TLBA agent computes the initial performance
 of

each node Ni by:

 =

 (
)

 (4)

 Computing the initial load LB
T0

The TLBA agent determines the initial load LB
T0

 of each
node Ni by:

 = LBref

〈

 〉

 (5)

Where:

LBref The referenced load of each node Ni in homogeneous
distributed system, which is computed by (6), where NT is the
total number of tasks, and n the total number of nodes.

LBref =

 (6)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

411 | P a g e

www.ijacsa.thesai.org

〈
 〉 The average of node performance index NPIi that

is computed by.

〈
 〉=

∑

 (7)

Step 2. Load Assignment Prediction

 Metadata MDTk Determination

The TLBA agent predicts the execution time
 , and the

communication latency
 , and the computation time

 ,

respectively by:

 

 (8)

 =

 (9)

 (10)

 Computing the Node Performance index NPI
Tk

The TLBA agent gets the computed value of

i, and

computes the node performance index
 by:

 =

 (

)

 (11)

 Computing the initial load LB
Tk

The TLBA agent gets the node performance index
 ,

and computes the load assignment LBi by :

 =LBref

〈

 〉
 (12)

Where :

〈
 〉 The average of node performance index NPIi that

is computed by:

〈
 〉=

∑

 (13)

Step 3. Load Rebalancing

1) The TLBA agent computes the experimental

computation time
 by:

 ()

=

 ()

 ()
 (14)

2) The TLBA agent computes the new performance index

 by:

 (
 ())

 ()

 (15)

3) The TLBA agent computes the new load
 (t) by:

 ()

 ()

〈
 ()〉

 (16)

4) The TLBA agent tests the overload by:

 ()

 () (17)

{

 (18)

5) The TLBA agent determines the required load

migration by running the given algorithm (Agent migration

determination).

Algorithm Agent Migration Determination
1 : int overLNode;

2 : int underLNode;
3: for(int i=0;i<NO.size();i++){
4: overLNode=NO.get(i);

5: for(int j=0;j<NU.size();j++){

6: underLNode=NU.get(j);
7: if(deltaLB[underLNode]>0){

8: originMigration.add(overLNode);

9: destinationMigration.add(underLNode);

10: if(deltaLB[underLNode]>deltaLB[overLNode]){

11: nbAgentsMigration.add(deltaLB[overLNode]);

12: deltaLB[underLNode]=deltaLB[underLNode]-
deltaLB[overLNode];

13: deltaLB[overLNode]=0;
14: break;

15: }

16: else if(deltaLB[underLNode]<deltaLB[overLNode]){
17: nbAgentsMigration.add(deltaLB[underLNode]);

18: deltaLB[overLNode]=deltaLB[overLNode]-

deltaLB[underLNode];
19: deltaLB[underLNode]=0;

20: }

21: else{
22: nbAgentsMigration.add(deltaLB[overLNode]);

23: deltaLB[overLNode]=0;

24: deltaLB[underLNode]=0;

25: break;

26: }

27: }
28: }

29: }

The load deltaLB(overLNode) (line 3) which corresponds
to the overloaded node is compared with deltaLB(underLNode)
of the under loaded node. This is done, to decide the required
load migration with the node destination. When
deltaLB(underLNode) is greater than deltaLB(overLNode)
(line 10), the load will move to the under loaded node (line 11).
At the end, this algorithm provides the three output results:

1) originMigration list of nodes from where the load will

move.

2) destinationMigration list of nodes that will receive the

load.

3) nbAgentsMigration list of agents load that will move

from their origin node to the appropriate destination node.

V. RESULTS AND DISCUSSION

The proposed middleware is integrated in the parallel and
distributed virtual machine [7], which is constituted by
distributed computing system of 10 heterogeneous nodes. To
do so, an SPMD application is chosen in order to perform the

image processing of ne  me = (2050) elementary images of

size (1024768) pixels. Thus, NA=1000 of AVPU(Agent
Virtual Processing Units) agents have to execute the same task

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

412 | P a g e

www.ijacsa.thesai.org

Tk at the same time in the system. To illustrate the effectiveness
feature of this middleware two case studies are considered:

Case 1 Task assignment by initial performance test

In this case the task assignment is performed by using the
LB

T0
in Table I. The initial performance test is executed by

using task T0 of complexity C0(x)=O(x
3
) and data D0 (matrix

(80  80) where x0=6400 and y0=6401). For example in

Table III, the value of LB8 at the node N8 is equal to -5. This
means that the node is overloaded by 5 agents, which have to
move to under loaded nodes given in Table V.

Case 2 Task assignment by prediction using the metadata
MDTK.

The node task assignment is performed by using the LB
Tk

in Table II. The predicted LB

Tk
 is based on the metadata of task

Tk (complexity Ck(x)=O(x²), and data size (xk=786432,
yk=786433), and the metadata MDT0. In this case the load

LB8=LB8
EXP(t)

- LB8
EXP(t-1)

of node N8 is equal to -1 in Table
IV. This means that the node is overloaded by only one agent,
which has to move to under loaded nodes given in Table VI.

By comparing the two cases (Fig. 3), the system is balanced
from the first iteration in case 2. Therefore, in case 1 it
becomes balanced after the second iteration. This means that
case 2 grants effective load balancing strategy of the system at
the first iteration. The Fig. 4 presents that the system becomes
balanced after performing the load rebalancing.

TABLE. I. RESULTS OF LOAD ASSIGNMENT BY INITIAL PERFORMANCE TEST

 Ni
Metadata MDT0


 (

) (ms)

 ()

 ()
 ()

 0 7826,00 7818 8 0,811014567 94,66 740843,0833

 1 7658,00 7640 18 0,828806477 96,74 740843,0833

 2 8072,00 8050 22 0,786298315 91,78 740843,0833

 3 7673,00 7640 33 0,827186237 96,55 740843,0833

 4 7249,00 7230 19 0,875569044 102,20 740843,0833

 5 6998,00 6980 18 0,906973421 105,86 740843,0833

 6 7155,00 7133 22 0,887071978 103,54 740843,0833

 7 8011,00 7980 31 0,792285607 92,48 740843,0833

 8 6347,00 6322 25 1 116,72 740843,0833

 9 7449,00 7430 19 0,852060679 99,46 740843,0833

MIN(
) 6347,00 - - - - -

MAX(
) 8072,00 - - - - -

SUM(LBT0) - - - - 1000,00 -

AVG(NPIT0) - - - 0,85672663 - -

TABLE. II. RESULTS OF LOAD ASSIGNMENT BY PREDICTION

Ni
Metadata MDTk

 

 ()

 ()
 ()

0 19428,016 983,040 18444,976 0,925852089 103,22 2005359,82

1 20236,861 2211,840 18025,021 0,888846789 99,09 2005270,60

2 21695,693 2703,360 18992,333 0,829080199 92,43 2005332,89

3 22080,061 4055,040 18025,021 0,814647611 90,82 2005311,18

4 19392,430 2334,720 17057,710 0,927551072 103,41 2005371,19

5 18679,726 2211,840 16467,886 0,962940743 107,35 2005268,59

6 19532,218 2703,360 16828,858 0,92091277 102,67 2005372,86

7 22636,462 3809,280 18827,182 0,794623703 88,59 2005364,18

8 17987,469 3072,000 14915,469 1 111,48 2005243,08

9 19864,289 2334,720 17529,569 0,90551789 100,95 2005300,00

MIN(
) 17987,469 - - - - -

MAX(
) 22636,462 - - - - -

SUM(LBTk) - - - - 1000,00 -

AVG(NPITk) - - - 0,89699729 - -

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

413 | P a g e

www.ijacsa.thesai.org

TABLE. III. RESULTS OF LOAD REBALANCING (CASE 1)

Ni
 () 

 (t) (ms)
 (t) (ms)

 (t)
 ()  () State

0 95 1845662 19428,01613 0,92585209 103 8,00 Under

1 97 1962976 20236,86144 0,88884679 99 2,00 Under

2 92 1996004 21695,6928 0,8290802 92 0,00 Normal

3 97 2141766 22080,06144 0,81464761 91 -6,00 Over

4 101 1958635 19392,43008 0,92755107 103 2,00 Under

5 106 1980051 18679,72608 0,96294074 107 1,00 Under

6 104 2031351 19532,21837 0,92091277 103 -1,00 Over

7 94 2127827 22636,46208 0,7946237 90 -4,00 Over

8 116 2086546 17987,46931 1 111 -5,00 Over

9 98 1946700 19864,28928 0,90551789 101 3,00 Under

TABLE. IV. RESULTS OF LOAD REBALANCING (CASE 2)

Ni
 () 

 (t) (ms)
 (t) (ms)

 (t)
 ()  () State

0 103 2020514 19428,01613 0,92585209 104 1,00 Under

1 99 2043923 20236,86144 0,88884679 101 2,00 Under

2 92 1996004 21695,6928 0,8290802 92 0,00 Normal

3 91 2009286 22080,06144 0,81464761 91 0,00 Normal

4 103 1997420 19392,43008 0,92755107 103 0,00 Normal

5 107 1961371 18679,72608 0,96294074 105 -2,00 Over

6 103 2011818 19532,21837 0,92091277 103 0,00 Normal

7 90 2037282 22636,46208 0,7946237 90 0,00 Normal

8 111 1978622 17987,46931 1 110 -1,00 Over

9 101 2006293 19864,28928 0,90551789 101 0,00 Normal

TABLE. V. RESULTS OF AGENT’S MIGRATION (CASE 1)

 Origin Migration Ni Destination Migration Ni Nb Agents Migration Load Migration Percentage

 3 0 6 37,50%

SUM - - 6 37,50%

 6 0 1 6,25%

SUM - - 1 6,25%

 7 0 1 6,25%

 7 1 2 12,50%

 7 4 1 6,25%

SUM - - 4 25,00%

 8 4 1 6,25%

 8 5 1 6,25%

 8 9 3 18,75%

SUM - - 5 31,25%

TABLE. VI. RESULTS OF AGENT’S MIGRATION (CASE 2)

Origin Migration
Ni

Destination Migration Ni
Nb Agents
Migration

Load Migration Percentage

 5 0 1 33,33%

 5 1 1 33,33%

SUM - - 2 66,67%

 8 1 1 33,33%

SUM - - 1 33,33%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

414 | P a g e

www.ijacsa.thesai.org

Fig. 3. Comparison of Overload in Case 1 and Case 2 of Each node Ni.

Fig. 4. Execution Time of the Task Tk before and after Load Rebalancing.

By analyzing the execution time (Fig. 5) of both cases
compared with the case 3 (unbalanced system where each node

receives
 =100 agents), the following conclusions are

achieved:

 In case 1 (Table VII) the obtained unbalance DES is

DES1=
 (

) 
 (

) = 296,104s, and

for case 2 is DES2=
 (

) 
 (

) =

41,2778496 s. These present the efficiency of task
assignment based on prediction compared to the one
based on initial performance test.

 The gain of performance compared to case 3,
provides to the following results:

o In case 2 the gain of performance is


(
) 

 (
)


 (

) 
 (

)
 = 5,631 at the first

iteration.

o In case 1 the gain of performance is

 (

) 
 (

)


 (

) 

 (

)

 = 1,570 at the first

iteration, which is enhanced to = 5,631 after
de second iteration.

o The obtained gain of performance of case 2
is equal to , which illustrates the
effectiveness of the load rebalancing step based
on load migration.

Fig. 5. Execution Time Comparison between Theoretical Execution Time


 , and Experimental One of Case 1 

 (
) and Case 2


 (

) and Case 3 
 (

).

TABLE. VII. COMPARISON BASED EXECUTION TIME IN THREE CASES OF LOAD ASSIGNMENT

Ni 
 (ms)

CASE 1 CASE 2 CASE 3


 (

) (ms) i(
) 

 (
) (ms) i(

) 
 (

) (ms)

0 2005359,82 1845661,53 0,079635728 2020513,677 0,007556677 1942801,61

1 2005270,60 1962975,56 0,021091936 2043923,005 0,019275406 2023686,14

2 2005332,89 1996003,74 0,00465217 1996003,738 0,004652171 2169569,28

3 2005311,18 2141765,96 0,068046686 2009285,591 0,001981942 2208006,14

4 2005371,19 1958635,44 0,023305286 1997420,298 0,003964798 1939243,01

5 2005268,59 1980050,96 0,012575687 1961371,238 0,021891009 1867972,61

6 2005372,86 2031350,71 0,012954125 2011818,492 0,003214181 1953221,84

7 2005364,18 2127827,44 0,061067841 2037281,587 0,015916015 2263646,21

8 2005243,08 2086546,44 0,040545389 1978621,624 0,013275925 1798746,93

9 2005300,00 1946700,35 0,029222386 2006293,217 0,000495296 1986428,93

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

415 | P a g e

www.ijacsa.thesai.org

VI. RELATED WORK

There are several inspiring load balancing approaches
which have presented interesting results. Some of them are
proposed for distributed systems [8], grid [9],[10], P2P systems
[11],[12], and also for cloud computing systems [13],[14], and
heterogeneous computing systems [15],[16],[17]. The main
idea behind the considered challenge is the effective method
for task assignment. To do so, the approaches in [18],[19] are
based on the states of the nodes, which are grouped on
domains. In [20], it is based on an index of load that is defined
by the summation of the active services duration in the node;
without taking into account the communication latency. The
load prediction method is also investigated in load balancing
models; such as [21] for dynamic load balancing of HLA based
distributed simulations. However, system can further be
unbalanced when running an application. This leads authors to
propose dynamic load balancing algorithm based-load
migration [22] in order to move the load from the overloaded
nodes to the under loaded ones. It is performed by moving just
one unit per iteration [23],[24],[25],[26], or a fixed number
[27],[28]. Further, in [29] it’s achieved by exchanging the load
between neighbor nodes.

Multi-agent based load-balancing approach has been
investigated as a promising paradigm for this challenge. The
agent is used in [30] to represents the node for load balancing
process, and in [31] it is implemented to monitor and detect the
congestion in the nodes, and [32] to perform the load
assignment. Further, in [33] the agent is deployed to
encapsulate the tasks that will be executed.

Thereby, the mobile agents allow the load migration
between nodes even in [34] homogeneous distributed system,
or heterogeneous one based on node prediction algorithm.
Accordingly, the proposed middleware combines two methods;
task assignment according to node performance, and task
migration, by the way to assign a set of tasks Tk {k=1,…, NT}
to a set of Ni{i=1,…, n} nodes. Through, thanks to these
several interesting works, the proposed work develops their
foundation in the following ways. In this paper, a new load
balancing middleware for distributed computing systems is
proposed and implemented with three main focuses:

 Effective task assignment method using node
performance prediction based on communication
latency of each node, with integrated task migration
algorithm.

 Optimized load balancing time by using the
asynchronous communication mechanism between
agents.

 Scalable Load balancing middleware for SPMD
applications based parallel and distributed computing
systems.

VII. CONCLUSION

The proposed load balancing middleware based cooperative
mobile agents team work is a new paradigm, which is
implemented using the aspect oriented approach for separating
the load balancing aspect from distributed system. Through,
this middleware can be integrated with different distributed

computing systems for node task assignment problem. The
proposed middleware deploys the mobile agent for each node
in order to get the node performance. When the program is
deployed the mobile agents perform an initial performance test
based on referenced task in order to compute the appropriate
task assignment of each node. In the case when the application
tasks metadata; the complexity and the data size are known, the
proposed method can predict with precision the task
assignment for each node. When the application is running, if
the system becomes unbalanced, the middleware executes the
rebalancing algorithm to identify and decide the required load
migration and rebalance the system. The obtained results,
related to the execution time of each node and the gain of
performance, demonstrates that the proposed middleware can
ensure effective balanced distributed computing system and
enhance its performance. Further, it is interesting to have a load
balancing solution which handles the middleware failures. To
do so, an extended work is driven in order to propose and
implement a fault tolerance module for the proposed load
balancing middleware.

REFERENCES

[1] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto, and R.
Buyya, “Big Data computing and clouds: Trends and future directions,”
J. Parallel Distrib. Comput., vol. 79, pp. 3–15, 2015.

[2] A. Puder, K. Romer, and F. Pilhofer, “Distributed Systems
Architecture,” Morgan Kaufmann Publ., vol. 53, no. 9, pp. 1689–1699,
2006.

[3] W. R. Braun, P., & Rossak, Mobile agents: Basic concepts, mobility
models, and the tracy toolkit. 2005.

[4] F. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with JADE. 2007.

[5] E. Hilsdale and J. Hugunin, “Advice Weaving in AspectJ,” in
Proceedings of the 3rd International Conference on Aspect-oriented
Software Development, 2004, pp. 26–35.

[6] M. Lippert and C. V. Lopes, “A Study on Exception Detection and
Handling Using Aspect-oriented Programming,” in Proceedings of the
22Nd International Conference on Software Engineering, 2000, pp. 418–
427.

[7] F. Z. Benchara, M. Youssfi, O. Bouattane, H. Ouajji, and M. O.
Bensalah, “A New Distributed Computing Environment Based on
Mobile Agents for SPMD Applications BT-Proceedings of the
Mediterranean Conference on Information & Communication
Technologies 2015,” 2016, pp. 353–362.

[8] Y. Jiang, “A Survey of Task Allocation and Load Balancing in
Distributed Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2,
pp. 585–599, 2016.

[9] D. S. Acker and S. Kulkarni, “A dynamic load dispersion algorithm for
load-balancing in a heterogeneous grid system,” in 2007 IEEE Sarnoff
Symposium, 2007, pp. 1–5.

[10] M. Li, P. He, and L. Zhao, “Dynamic Load Balancing Applying Water-
Filling Approach in Smart Grid Systems,” IEEE Internet of Things
Journal, vol. 4, no. 1. pp. 247–257, 2017.

[11] D. R. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-peer Systems,” in Proceedings of the Sixteenth
Annual ACM Symposium on Parallelism in Algorithms and
Architectures, 2004, pp. 36–43.

[12] R. Bhardwaj, V. S. Dixit, and A. K. Upadhyay, “A propound method for
agent based dynamic load balancing algorithm for heterogeneous P2P
systems,” 2009 International Conference on Intelligent Agent & Multi-
Agent Systems. pp. 1–4, 2009.

[13] H. C. Hsiao, H. Y. Chung, H. Shen, and Y. C. Chao, “Load Rebalancing
for Distributed File Systems in Clouds,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 5, pp. 951–962, 2013.

[14] J. Zhao, K. Yang, X. Wei, Y. Ding, L. Hu, and G. Xu, “A Heuristic
Clustering-Based Task Deployment Approach for Load Balancing Using

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

416 | P a g e

www.ijacsa.thesai.org

Bayes Theorem in Cloud Environment,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 2. pp. 305–316, 2016.

[15] J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips, “Workload
Partitioning for Accelerating Applications on Heterogeneous Platforms,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 9.
pp. 2766–2780, 2016.

[16] E. Hwang, S. Kim, T. k. Yoo, J. S. Kim, S. Hwang, and Y. r. Choi,
“Resource Allocation Policies for Loosely Coupled Applications in
Heterogeneous Computing Systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 8. pp. 2349–2362, 2016.

[17] J. Y. Jang, H. Wang, E. Kwon, J. W. Lee, and N. S. Kim, “Workload-
Aware Optimal Power Allocation on Single-Chip Heterogeneous
Processors,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 6. pp. 1838–1851, 2016.

[18] F. auf der Meyer Heide, B. Oesterdiekhoff, and R. Wanka, “Strongly
adaptive token distribution,” Algorithmica, vol. 15, no. 5, pp. 413–427,
1996.

[19] P. Berenbrink, T. Friedetzky, and R. Martin, “Dynamic Diffusion Load
Balancing BT - Automata, Languages and Programming: 32nd
International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15,
2005. Proceedings,” L. Caires, G. F. Italiano, L. Monteiro, C.
Palamidessi, and M. Yung, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 1386–1398.

[20] Y. Qiao and G. v. Bochmann, “A Diffusive Load Balancing Scheme for
Clustered Peer-to-Peer Systems,” 2009 15th International Conference on
Parallel and Distributed Systems. pp. 842–847, 2009.

[21] R. E. De Grande, A. Boukerche, and R. Alkharboush, “Time Series-
Oriented Load Prediction Model and Migration Policies for Distributed
Simulation Systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1. pp. 215–229, 2017.

[22] G. Cybenko, “Dynamic load balancing for distributed memory
multiprocessors,” J. Parallel Distrib. Comput., vol. 7, no. 2, pp. 279–
301, 1989.

[23] A. Cortés, A. Ripoll, F. Cedó, M. A. Senar, and E. Luque, “An
asynchronous and iterative load balancing algorithm for discrete load
model,” J. Parallel Distrib. Comput., vol. 62, no. 12, pp. 1729–1746,
2002.

[24] Y. F. Hu and R. J. Blake, “An improved diffusion algorithm for dynamic
load balancing,” Parallel Comput., vol. 25, no. 4, pp. 417–444, 1999.

[25] E. Luque, A. Ripoll, A. Cortes, and T. Margalef, “A distributed
diffusion method for dynamic load balancing on parallel computers,”
Proceedings Euromicro Workshop on Parallel and Distributed
Processing. pp. 43–50, 1995.

[26] T. A. Murphy and J. G. Vaughan, “On the relative performance of
diffusion and dimension exchange load balancing in hypercubes,” in
PDP, 1997.

[27] P. Berenbrink, T. Friedetzky, and Z. Hu, “A new analytical method for
parallel, diffusion-type load balancing,” J. Parallel Distrib. Comput., vol.
69, no. 1, pp. 54–61, 2009.

[28] F. Cedo, A. Cortes, A. Ripoll, M. A. Senar, and E. Luque, “The
Convergence of Realistic Distributed Load-Balancing Algorithms,”
Theory Comput. Syst., vol. 41, no. 4, pp. 609–618, 2007.

[29] I. Konstantinou, D. Tsoumakos, and N. Koziris, “Fast and Cost-
Effective Online Load-Balancing in Distributed Range-Queriable
Systems,” IEEE Transactions on Parallel and Distributed Systems, vol.
22, no. 8. pp. 1350–1364, 2011.

[30] S. Banerjee and J. P. Hecker, “A Multi-agent System Approach to Load-
Balancing and Resource Allocation for Distributed Computing BT -
First Complex Systems Digital Campus World E-Conference 2015,” P.
Bourgine, P. Collet, and P. Parrend, Eds. Cham: Springer International
Publishing, 2017, pp. 41–54.

[31] X.-J. Shen et al., “Achieving dynamic load balancing through mobile
agents in small world P2P networks,” Comput. Networks, vol. 75, pp.
134–148, 2014.

[32] O. Rihawi, Y. Secq, and P. Mathieu, “Load-Balancing for Large Scale
Situated Agent-based Simulations,” Procedia Comput. Sci., vol. 51, pp.
90–99, 2015.

[33] S. Hunt, Q. Meng, C. Hinde, and T. Huang, “A Consensus-Based
Grouping Algorithm for Multi-agent Cooperative Task Allocation with
Complex Requirements,” Cognit. Comput., vol. 6, no. 3, pp. 338–350,
Sep. 2014.

[34] J. Liu, X. Jin, and Y. Wang, “Agent-based load balancing on
homogeneous minigrids: macroscopic modeling and characterization,”
IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 7, pp. 586–598, 2005.

