
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

417 | P a g e

www.ijacsa.thesai.org

An Efficient Method for Speeding up Large-Scale

Data Transfer Process to Database: A Case Study

Ginanjar Wiro Sasmito
1
, M. Nishom

2

Informatics Engineering

Polytechnic of Harapan Bersama

Tegal, Indonesia

Abstract—Among the of characteristics of Large Data

complexity comprising of volume, velocity, variety, and veracity

(4Vs), this paper focuses on the volume to ensure a better

performance of data extract, transform, and load processes in the

context of data migration from one server to the other due to the

necessity of update to the population data of Tegal City. An

approach often used by most programmers in the Department of

Population and Civil Registration of Tegal City is conducting the

transfer process by transferring all available data (in specific file

format) to the database server regardless of the file size. It is

prone to errors that may disrupt the data transfer process like

timeout, oversized data package, or even lengthy execution time

due to large data size. The research compares several approaches

to extract, transform, and load/transfer large data to a new

server database using a command line and native-PHP

programming language (object-oriented and procedural style)

with different file format targets, namely SQL, XML, and CSV.

The performance analysis that we conducted showed that the big

scale data transfer method using LOAD DATA INFILE

statement with comma-separated value (CSV) data source

extension is the fastest and effective, therefore recommendable.

Keywords—Big data; speeds up; data processing; data transfer

I. INTRODUCTION

The existence of an information system in an organization
can help improve different aspects, namely improving the
organization’s efficiency and effectiveness of the business
process, decision making, productivity, and competitive
advantages[1]. In an organization, data are processed on a daily
basis and stored in the server, therefore the volume is always
increasing every year [2]. Indonesia, as the fourth biggest
country in terms of population [3], has utilized information
system to manage its population data. The volume size of
population data is increasing every year, and it requires new
server upgrade as well as database migration to server. In
practice, there are several methods that can be used in the
database migration, namely data import to database server
using default (built-in) import feature, third party application
suite like phpmyadmin [4] and navicat [5], and using
standalone application developed by the programmer itself
using Extract, Transform, Load (ETL) Procedures. The
Procedures are performed by collecting the data from different
sources as needed, modifying it according to the needs, and
uploading it to specific database server to be processed or
displayed as needed [6]. The most frequently used tools for
ETL process are spreadsheet, relational database, non-SQL
database, and many more [7].

During the ETL process, selecting correct file format to
import or transfer large data is a challenge for the programmer
and database administrator, because as the size getting bigger,
it affects the execution or transfer time. In the MySQL
database server, the data loading process can be performed
using different file formats, namely SQL, XML, CSV format,
or Excel spreadsheet [5]. Some authors chose different file
format to import the data, like [8] chose CSV file format
because it is accessible through excel spreadsheet application
and data is presented in tabular form, therefore it is easier to
access and modify according to the specific needs, and chose
SQL format or text file by using mysqldump and mysql to
export and import the data [9][10][11], while delisle (in his
book) used phpmyadmin to import the data [12]. Other than
file format, selecting the appropriate method in the transfer
process also need to be considered, such as whether the data is
transferred using single-row INSERT statement method, or
using INSERT statement with multiple VALUES lists (or
generally referred to as extended INSERT) to include all data
simultaneously, or using LOAD DATA statement. LOAD
DATA Statement is the most appropriate method to transfer
large data [13].

One of the issues frequently faced by a database
administrator even the programmer is the allowed limit of
package size per connection (packet too large). In server
MySQL terminology, a package is a request sent to the server
and processed by the server in a chunk or batch,
simultaneously the server allocates the temporary memory to
sore each package and ensures that the memory of servers is
still sufficient to prevent a server from running out the memory
[14]. The default value for a package allowed in MySQL 8.0
server is 64 MB, but we can set a bigger value for this system
variable as the size of package will depend on the availability
of memory in the server [15]. The rule of thumb for this is that
buffer_pool must be set to 75% or 80% of the server’s
memory. However, the ratio does not have sufficient basis,
therefore only works intermittently, but no guarantee whether it
will be working better in a specific case [16]. Hence, in a big
size data transfer, an appropriate approach or selection of
statement used and file format are required to ensure smooth
data transfer.

For that reason, this research aims to achieve the above
objectives by comparing the ETL process using different file
formats with different statements to find the most appropriate
and efficient method to transfer large data into the database
server.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

418 | P a g e

www.ijacsa.thesai.org

II. METHODS

In general, the data transfer process into the server is
performed regardless of the file size or amount of data to be
transferred, while the database server usually has certain
limitations to process the data transfer, such as the maximum
file size for transfer, the limit of allowed package size on each
statement and transaction, and the net buffer size limit. Despite
in practice it is possible to change the value of these limits;
such changes may affect the execution time, which may
relatively need a longer time and the possibility of transfer
failure due to timeout as the result of processing significant
amount of data. The approach proposed in the research is
Extract-Transform-Load (ETL) approach using appropriate file
format and statement. The concept of this approach is
performing data source extraction process, transforming data to
SQL, XML, and CSV file format, increase buffering and
decrease durability in the server configuration, and transferring
the data and test the speed of its execution time.

III. RESULTS AND DISCUSSION

A. Extraction and Transformation of Data Source to the

Expected Format File

The file or data source used in the research is the
population data of Tegal City obtained from the Depatment of
Population and Civil Registration of Tegal City. The file is an
Excel spreadsheet sized 106MB containing 284917 data rows
consisting of 55 fields/columns. The Excel spreadsheet was
chosen because data source can be presented in tabular format
and enables the stakeholders to customize the data according to
their needs. First, data source is extracted using PHP language
program to determine the value of data to be transferred to the
new database server. Second, the result of the extraction then
converted into different file formats, namely SQL, XML, and
CSV. Table I shows the conversion of data source to the file
format to be used in the data transfer tests, and each file has a
different size.

Table I explains the conversion scenario to obtain SQL
format file using two approaches, i.e. using single-insert
statement (one-row insert per statement) and extended-insert
(multiple-row insert per statement) in a transaction.

TABLE. I. RESULT OF DATA SOURCE CONVERSION TO FILE FORMATS TO

BE TRANSFERRED

Data Source
Output

Format
Statement Transaction

Output

File Size

Excel
Spreadsheet

(106MB)

SQL
Single-insert
(one-row per

statement)

1 136 MB

SQL

Extended-insert

(multiple-row per

statement)

1 126 MB

XML
LOAD XML

INFILE
1 704.2 MB

CSV
LOAD DATA

INFILE
1 120.2 MB

B. Methods used for Data Transfer

This research used MySQL as the database. The
configuration is applied to speed up processing, shown in
Table III. There are two ways to transfer the data into the
database server online. First, data sources (*.sql, *.csv, and
*.xml extension files) are uploaded to the directory of the root
server using FTP or cPanel. Second, data is imported or
transferred using specified approaches. The import/transfer of
data to database server can be performed using several
methods. First, database is imported using mysql command
using command line (Windows, Linux, or Unix); the file
format used was SQL (single-row insert and multiple-row
insert per statement). However, this method of data import
sometimes takes time especially if the size of the file being
imported is large or extensive. Secondly, using LOAD DATA
INFILE statement, the file format used is CSV. The third,
using LOAD XML INFILE statement to transfer the data using
XML file format. Since the server used is an online server, the
command line is executed using SSH network protocol using
the third-party application. From all three methods, the result
of the test showed that the data transfer process using LOAD
DATA INFILE statement is the fastest compared to other
statements, as shown in Table II. The average of total data
transferred per second is shown in Fig. 1.

TABLE. II. COMPARISON OF DATA TRANSFER TIME USING SEVERAL

APPROACHES

File

Format
Statement Transaction Rows

Transfer

Time

Command Line Way

SQL
Single-insert 1 284917 21.6 sec

Extended insert 1 284917 18.6 sec

XML LOAD XML INFILE 1 30000
7 min 34

sec

CSV LOAD DATA INFILE 1 284917 6.05 sec

Native-PHP: Prosedural Way

SQL
Single-insert 1 284917 18.73 sec

Extended insert 1 284917 13.74 sec

XML LOAD XML INFILE 1 30000
8 min 2.3

sec

CSV LOAD DATA INFILE 1 284917 6.56 sec

Native-PHP: Object Oriented Way (MySQLi)

SQL
Single-insert 1 284917 18.65 sec

Extended insert 1 284917 13.35 sec

 XML LOAD XML INFILE 1 30000
8 min 2.2

sec

CSV LOAD DATA INFILE 1 284917 6.68 sec

Native-PHP: Object Oriented Way (PDO)

SQL
Single-insert 1 284917 18.55 sec

Extended insert 1 284917 13.7 sec

XML LOAD XML INFILE 1 30000
8 min 2.6

sec

CSV LOAD DATA INFILE 1 284917 6.7 sec

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

419 | P a g e

www.ijacsa.thesai.org

Fig. 1. The Average of Total Data Transferred Per Second using Several

Approaches.

TABLE. III. INCREASE PACKET AND BUFFERING, AND DECREASE

DURABILITY FOR SPEEDS UP PROCESSING

Name Value Description

max_allowed_packet 2048M
Adjust size for handling

big queries

key_buffer 64M Speeds up of index reads

innodb_buffer_pool_size 4096M
25% of physical memory

(tested using 16G)

innodb_log_file_size 1024M 25% of buffer pool size

innodb_log_buffer_size 256M 25% of log file size

C. Recommendation and Challenge of Data Transfer Methods

Fig. 1 present the result of the tests using several methods
related to the number of transferable data rows to server per
second. This transfer method using single-row insert statement
is deemed to be less effective in data transfer process (of big
size), as it takes a longer time, therefore not recommended.
Different from single-row insert statement, the extended-insert
statement has slightly better performance. Unfortunately, there
is no comprehensive approach to determine the number of ideal
data rows in each per package data transfer process. Since the
data transfer using extended-insert statements relies heavily on

the maximum configuration of maximum allowed packet),
therefore the probability of timeout even error is high. For that
reason, a database administrator or programmer must be able to
determine the number of maximum packets allowed according
to the specifications of the server’s hardware products. The
specification of hardware used (ideally must be more
significant than the size of the data source to be transferred).
The better the server specification to be used and the bigger the
configuration size or value will prevent the issues from
occurring during the transfer data process using this statement.
Nevertheless, using this statement is recommended as it is
faster than the single-row insert statement. To speed up the
processing, it is better to increase the Buffer Pool size by 20-
50% from the physical memory size, and increase the Log File
size to 25% from the Buffer Pool size.

Different from the previous two statements, the data
transfer method using LOAD XML statement has poor time
performance. The bigger the file size, the longer the execution
process or data transfer. The LOAD DATA statement is
inversely proportional to extended-insert statement and does
not rely on the server configuration (the maximum size of
allowed packet size per statement); therefore, this method is the
most suitable for large data transfer process. Moreover, the
statement has excellent data transfer speed as described in
Fig. 1, that data transfer using LOAD DATA statement is the
best way as it is the fastest in processing data transfer.

IV. CONCLUSION

The objective of the research is to determine the most
efficient method to transfer the data in large size to database
server. The testing of the methods was performed by using
extract-transform-load approach using single-insert statement,
multiple-insert (extended-insert) statement, LOAD XML
statement, and LOAD DATA statement. The result of the tests
showed that the data transfer data method with single-insert
statement is not recommended due to low-speed transfer.
Multiple-insert statement to transfer large data is also not
recommended because the possibility of timeout or errors if the
packet delivered per statement exceeds the allowed packet
value in the server configuration. The data transfer method
using LOAD XML statement is the worst choice and suggested
not to be used for large scale data transfer. Instead, data
transfer method using LOAD DATA is the most recommended
method to transfer large data. However, a database
administrator or programmer must consider the appropriate
server configuration to avoid problems during large scale data
process.

ACKNOWLEDGEMENT

The author would like to thank the Depatment of
Population and Civil Registration and Statistics Agency of
Tegal City for sharing the data source and Ministry of
Technology Research and Higher Education of the Republic of
Indonesia for funding this research.

REFERENCES

[1] R. M. Stair and G. W. Reynolds, Fundamentals of Information Systems,
8 ed., Boston: Cengage Learning, 2014.

[2] K. A. I. Hammad, M. A. I. Fakharaldien, J. M. Zain and M. A. Majid,
"Big Data Analysis and Storage," in International Conference on
Operations Excellence and Service Engineering, Florida, 2015.

66

10192

20843

47094

61

15207

20727

43403

61

15275

21340

42613

60

15359

20787

42499

0 10000 20000 30000 40000 50000

LOAD XML INFILE

Single Insert

Extended Insert

LOAD DATA INFILE

Rows per Second

Native PHP (PDO) Native PHP (MySQLi)

Native PHP (Prosedural) Command Line

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

420 | P a g e

www.ijacsa.thesai.org

[3] CIA, The World Factbook, Langley: Central Intelligence Agency, 2019.

[4] P. McFedries, Web Coding & Development All-in-One For Dummies,
Hoboken: Wiley, 2018.

[5] G. Ozar, "MySQL Management and Administration with Navicat,"
Birmingham, 2012.

[6] L. Baldacci, M. Golfarelli, S. Graziani and S. Rizzi, "QETL: An
approach to on-demand ETL from non-owned data sources," Data &
Knowledge Engineering, vol. 112, pp. 17-37, 2017.

[7] S. Challawala, J. Lakhatariya, C. Mehta and K. Patel, MySQL 8 for Big
Data: Effective data processing with MySQL 8, Hadoop, NoSQL APIs,
and other Big Data tools, Birmingham: Packt publishing, 2017.

[8] R. J. Dyer, Learning MySQL and MariaDB: Heading in the Right
Direction with MySQL and MariaDB, Sebastopol: O'Reilly Media,
2015.

[9] S. K. Cabral and K. Murphy, MySQL Administrator's Bible, Hoboken:
Wiley, 2009.

[10] P. DuBois, MySQL Cookbook, 3 ed., Sebastopol: O’Reilly Media, 2014.

[11] P. Zhang, Practical Guide to Large Database Migration, Boca Raton:
CRC Press, 2019.

[12] M. Delisle, Mastering Phpmyadmin 3.4 for Effective MySQL
Management, Birmingham: Packt Publishing, 2012.

[13] P. Scobey and P. Lingras, Web Programming and Internet Technologies:
An E-commerce Approach, Burlington: Jones & Bartlett, 2012.

[14] S. Pachev, Understanding MySQL Internals: Discovering and Improving
a Great Database, Sebastopol: O'Reilly Media, 2007.

[15] C. Mehta, A. K. Bhavsar, H. Oza and S. Shah, MySQL 8
Administrator’s Guide: Effective guide to administering high-
performance MySQL 8 solutions, Birmingham: Packt Publishing, 2018.

[16] B. Schwartz, P. Zaitsev and V. Tkachenko, High Performance MySQL:
Optimization, Backups, and Replication, Sebastopol: O'Reilly Media,
2012.

