
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

502 | P a g e
www.ijacsa.thesai.org

HCAHF: A New Family of CA-based Hash Functions
Anas Sadak

1
, Fatima Ezzahra Ziani

2
, Bouchra Echandouri

3
, Charifa Hanin

4
, Fouzia Omary

5

Faculty of Science, Mohammed V University

Rabat, Morocco

Abstract—Cryptographic hash functions (CHF) represent a

core cryptographic primitive. They have application in digital

signature and message authentication protocols. Their main

building block are Boolean functions. Those functions provide

pseudo-randomness and sensitivity to the input. They also help

prevent and lower the risk of attacks targeted at CHF. Cellular

automata (CA) are a class of Boolean functions that exhibit good

cryptographic properties and display a chaotic behavior. In this

article, a new hash function based on CA is proposed. A

description of the algorithm and the security measures to

increase the robustness of the construction are presented. A

security analysis against generic and dedicated attacks is

included. It shows that the hashing algorithm has good security

features and meet the security requirements of a good hashing

scheme. The results of the tests and the properties of the CA used

demonstrate the good statistical and cryptographic properties of

the hash function.

Keywords—Hash function; boolean function; cellular

automata; cryptography; information security; avalanche; nist

statistical suite; DIEHARDER battery of tests; generic attacks;

dedicated attacks

I. INTRODUCTION

Cryptographic hash functions are of great importance in
cryptography and have a major role in modern communication.
Most security applications and cryptographic protocols rely on
them. They can be used within other schemes (digital signature
or message authentication codes (MAC)) or as standalone
primitives (password or key generation). They are generally
used to ensure data integrity and to provide user authentication.
The principle behind a hashing scheme is to compute a digest
or hash value of fixed length starting from an arbitrary length
message. The digest is considered as a compact identifier of the
message [1].

Hashing schemes can be classified according to the nature
of the compression function used. Three main categories of
hash functions emerge from that classification: hash functions
based on block ciphers, hash functions based on modular
arithmetic and dedicated hash functions [2]. The hash function
proposed in this article falls in this last category. It uses cellular
automata in the process of producing the digest. Cellular
automata are a class of dynamic systems that are simple in
principle but produce chaotic and complex behaviors.

In this article, a new hash function based on cellular
automata is presented. It was designed with security in mind.
The algorithm described in this paper comprises three phases: a
preprocessing phase, a processing phase and a transformation
phase. Each of these phases contains elements that provide the
algorithm with security measures that help prevent or lower the
risk of cryptanalytic attacks against cryptographic hash
functions.

The article is organized as follows: in Section 2, a
background on cellular automata and hash functions is
included. In Section 3, some related works are presented.
Section 4 details the hashing scheme proposed. In Section 5,
the result of the different statistical tests and the cryptographic
properties of cellular automata are provided. Next, in Section 6
a security analysis is performed. Finally, Section 7 summarizes
the article.

II. BACKGROUND

A. Cryptographic Hash Functions (CHF)

Cryptographic hash functions with good security properties
represent a significant part of cryptography. They are the basis
of other cryptographic primitives and protocols. Their major
tasks are to ensure data integrity and message authentication.
Their major use is hence in digital signature schemes and
message authentication protocols [3].

A hash function is a one-way function that maps an
arbitrary finite length m-bits input to a fixed length n-bits
output, called a hash value or a digest (m>n). The digest is
thought of as the unique identifier of the input string.

In general, hash functions are built by iterating a
compression function [4]. Depending on the nature of its
internal compression function, the hash function can be
categorized as either a hash function based on a block cipher, a
hash function based on an arithmetic primitive or a dedicated
hash function. In this article, the authors are interested in the
latter category as the hash function described is based on
cellular automata [5].

A hash function must ensure data compression and be
easily computable. In addition, to be labeled as
―cryptographic‖ it should guarantee the following basic
security criteria [3]:

 Preimage: Given the hash value y = h(x), it is hard to
find the message x‘ such that h(x‘) = y

 Second preimage: Given x, it is hard to find x‘ such that
h(x‘) = h(x)

 Collision resistance: It is hard to find x and x‘ such that
h(x) = h(x‘)

B. Cellular Automata (CA)

Cellular automata are dynamic mathematical models used
for modeling physical and real-life phenomena. A cellular
automaton is an array of cells arranged as a network that
evolves in discrete time and space. Depending on the nature of
the network arrangement, the cellular automaton can be one-
dimensional or n-dimensional. Each cell assumes a state and
evolves in time according to some local rule f and the states of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

503 | P a g e
www.ijacsa.thesai.org

its neighbors. The states of all the cells at a given time
represent the configuration of the CA. In an m-state, k-
neighborhood cellular automaton, each cell can assume m

states, the local rule depends on up to k neighbors and m2k
rules are possible [6].

They were first studied by von Neumann [7] in the 1960s
for self-reproducing systems. They were first used in
cryptography by Wolfram [8]. He used elementary cellular
automata (ECAs) which are one-dimensional, two-state, three-
neighborhood CAs. In this article, the authors are only
considering ECAs.

A cellular automaton is said to be uniform if the same rule f
is applied to all the cells. Otherwise, if two or more rules are
used alternately, then the cellular automaton is called non-
uniform or hybrid.

The rules can be represented either by a Boolean function
or by a truth table. Table I gives the Boolean expression and

the truth table of elementary rule 30. In Table I, s
i

t+1
is the next

state of cell i and s
i-1

t , s
i

t and s
i+1

t
are the states of cells i-1, i

and i+1 at time t respectively.

If the Boolean expression of the local rule(s) involves only
the operation, the cellular automaton is called to be linear.
Otherwise, it is called non-linear.

How the states of the leftmost and rightmost cells are
chosen determines the boundary configuration of the CA.
Cellular automata can have a fixed or periodic boundary
configuration. In fixed boundary CAs, some fixed states are
assigned. An example of fixed boundary is null boundary. In
periodic boundary CAs, the boundary cells are neighbors of
other boundary cells. For example, in the case of one-
dimensional cellular automata, the rightmost and leftmost cells
are neighbors [6].

Cellular automata attractiveness lies on their ability to
display a complex global behavior from simple local
computations and interaction and the possibility of parallel
update of the states of the cells.

TABLE. I. RULE 30 BOOLEAN EXPRESSION AND TRUTH TABLE

Algebraic Normal Form

s
i

t+1 = s
i-1

t Å (s
i

t + s
i+1

t)

Truth Table

111 110 101 100 011 010 001 000

0 0 0 1 1 1 1 0

III. RELATED WORK

Damgård [9] introduced a method for constructing a hash
function that is collision resistant and provided three examples
of possible use of his construction, one of which is based on
cellular automata. Daemen, Govaerts, and Vandewalle [10]
showed the vulnerabilities of the construction proposed by
Damgård [9] and presented a framework for constructing
practical hash functions. Along with their framework, a newly
developed CA-based hash function was introduced: CellHash.

The same authors proposed an enhanced version of CellHash
called SubHash [11]. Both those constructions were broken by
Chang [12]. Mihaljevic, Zheng, & Imai [13] presented a
family of fast CA-based hash function over GF(q) without
specifying the rules used and the neighborhood configuration
used. A hash function based on a cellular automaton using both
linear and non-linear rules is proposed by Jeon [14]. Kuila,
Saha, Pal, and Chowdhury [15] promoted a hash construction
based on cellular automata and inspired by the sponge
construction. This construction proved to be as efficient and as
secure against known attacks as other well-known hash
functions [16] such as SPONGENT [17], GLUON [18],
QUARK [19], PHOTON [20] and SHA-3 [21]. In this article,
the construction used by the authors is inspired by the wide
pipe Merkle-Damgård construction. Therefore, it is an
alternative to the work proposed by Kuila et al. [15]. More
recently, Hanin, Echandouri, Omary and El Bernoussi [22]
proposed a CA-based hash function that uses the MD-
construction. The hash algorithm proposed by Hanin et al. [22]
lacks however security measures such as a strong padding
scheme and the use of hybrid cellular automata and therefore
do not have good cryptographic properties and a good
pseudorandom behavior. The use of two-dimensional cellular
automata for constructing a hash function was explored by
Hirose and Yoshida [23]. However, the rule space for two-
dimensional cellular automata and the complexity of this kind
of cellular automata are beyond the scope of this article.

IV. DESCRIPTION OF HCAHF-256

In this section, the proposed hashing scheme is described. It
takes inspiration from the wide pipe hash construction [24],
which is a modified Merkle-Damgård construction. The
general version with a digest size of m bits is named HCAHF
while HCAHF-256 designates the 256-bit version.

The algorithm is made of three phases. First, the message is
pre-processed. The pre-processed message is then compressed
using cellular automata evolutions and the XOR function
during the compression phase. Finally, a final transformation is
applied before generating the output of HCAHF.

The three phases of HCAHF-256 are detailed in the
following subsections. The pseudo-code for the padding
scheme and for the digest generation mechanism is also
presented.

A. Preprocessing Phase

1) Padding scheme: The first step in the preprocessing of a

message M of arbitrary length consists of applying a padding

scheme. Padding is always applied even in the case |M| is a

multiple of 256.

The padding scheme used in HCAHF-256 is the technique
known as Merkle-Damgård strengthening [25]. A single ‗1‘ bit
is appended to M. It is followed by ‗0‘ bits and the size of M
(before padding is applied) encoded in 64 bits. The necessary
number of ‗0‘ bits must make the padded message size a
multiple of 256.

Padding is used as a mean to avoid attacks such as the
length-extension attack [3].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

504 | P a g e
www.ijacsa.thesai.org

2) Message splitting: After the message M is padded, it is

split into blocks of size 256 bits.

3) Salt: In the last step of the preprocessing phase, a salt

value salt is computed using a pseudorandom number

generator. It is then prepended to the padded message.

Using a salt value is a security measure that reduces the risk
of collisions and prevents pre-computation attacks such as the
dictionary attack as hashing the same message with different
salt values salt1 and salt2 yields two different hash values [3].

The salt value is generated using the class
ThreadedSeedGenerator of the Bouncy Castle Java library.

B. Compression Phase

During the compression phase, a compression function f is
repeatedly used to produce a pre-digest value. f takes as inputs
a chaining variable hi from the previous step and message
block Mi [16]. The initial chaining variable IV is a 256-bit
block also generated using the class ThreadedSeedGenerator of
the Bouncy Castle Java library. The final chaining variable
Mcompressed is the pre-digest value.

Starting from (n+1) 256-bit blocks at the beginning of the
compression phase, a single 256-bit block is obtained; hence
the use of the compression term.

f combines a cellular automaton and the XOR function. The
cellular automaton is designated as the function E and the XOR

function asÅ .

1) The Function E: The function E is a 3-neighborhood

cellular automaton with periodic boundary conditions.

Each block Mi is evolved 128 times using a rule Ri as
follows:

e
0

= E(salt,R
0
)

e
1
= E(M

1
,R

1
)

e
n

= E(M
n
,R

n
)

The rule Ri used is obtained from the first 8 bits of each
block Mi. For example, if the first 8 bits of a block are
00011110, then the rule to be used is rule 30 (000111102 =
3010). However, if Ri does not belong to the Wolfram classes 3
and 4 as classified in [26], it is discarded and a rule with good
cryptographic properties (non-linearity, algebraic degree,
balancedness, resiliency…) is selected at random from the set
Rprocess. This set has been selected according to the
recommendations and cryptographic properties found in [27]
and [28]. For a detail of the rules included in this set and their
cryptographic properties, the Appendix can be consulted.

2) The XOR Function: At each step, the result of the

previous steps is XORed with the evolution of the block Mi.

3) The Function f: The compression function f of this

construction can be expressed as:

h
0

= IV

h
1
= f (e

0
,h

0
)

h
i
= f (e

i-1
,h
i-1

)

h
n+1

= f (e
n
,h
n
)

C. Transformation Phase

During the transformation phase, a function T is applied to
Mcompressed, the 256-bit output of the previous phase.

The function T is a 3-neighborhood hybrid cellular
automaton with periodic boundary conditions. It evolves
Mcompressed for 128 evolutions using the ruleset Rdigest = {30, 90,
150, 30, 135, 30, 90, 150}. This ruleset has been chosen using
the recommendation found in [27] and a detail of the selection
process can be found in the Appendix.

The digest obtained can be expressed as:

digest = T (M
compressed

,R
digest

)

Fig. 1 summarizes the different steps of HCAHF.

Fig. 1. HCAHF Design.

D. HCAHF-256 Algorithm

1) Pseudo-Code for The Padding Scheme of HCAHF-256
Algorithm 1 details the padding scheme used for HCAHF-

256.

Algorithm 1. Pseudo-code of the padding scheme of
HCAHF-256

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

505 | P a g e
www.ijacsa.thesai.org

Input: M the message to pad

Output: paddedM

begin

 m ← sizeOf(M) mod 256

 x ← 256 - m

 if sizeOf(M) is multiple of 256 then

 NbZero ← 191

 else if sizeOf(M) is not a multiple of 256 then

 if x < 65 then

 y ← x + 256

 NbZero ← y - 65

 else
 NbZero ← x - 65

 end if

 end if

 paddedM ← M || 1 || 0NbZero||sizeOf(M) in {0,1}64

 return paddedM

end

2) Pseudo-Code for The Generation Mechanism of

HCAHF-256

Algorithm 2 shows the different steps by which a 256-bit
digest is generated by HCAHF-256.

ALGORITHM 2. PSEUDO-CODE OF HCAHF-256

Input: M the message to hash

Output: digest

begin

 Let IV ← randomSequence(256)

 Let salt ← randomSequence(256)

 Let ruleSet← {30, 90, 150, 30, 135, 30, 90, 150}

 paddedM ← padding(M)

 splittedM ← split(paddedM, 256)

saltedM ← insert (salt, splittedM)

 Xor ← IV

 For each block b in saltedM do

If IntegerValue(8firstBits(b)) is in S the set of class

3 and 4 rules then

 rulesi ←IntegerValue(8firstBits(b))

Else
 rulesi ← randomRule(S)

End if
E←evolv(b, rulesi, 128, periodicBoundaries)

Xor ← Xor ⊕ E

 End for
 s←Xor

 For it from 1 to 128

For i from 1 to 256

 k ← i - 1 modulo sizeOf(ruleSet)

 If ((k == 0) || (k == 3) || (k == 5)) then

evolution[i]←s[i-1] ⊕ (s[i]+s[i+1])

 Else if ((k == 1) ||(k == 6)) then

evolution[i]←s[i-1] ⊕ s[i+1]

 Else if ((k == 2) || (k == 7)) then

evolution[i] ← s[i-1] ⊕ s[i] ⊕ s[i+1]

 Else

evolution[i] ←1⊕ s[i-1] ⊕ (s[i].s[i+1])

 End if

End for

 End for

 digest ← evolution

 return digest

End

In this article, the authors chose to use
n

2
 or 128 evolutions

in the case of HCAHF-256 for the number of evolutions when
cellular automata are used. This is a general rule for
guaranteeing a greater period of the cellular automaton [26].

V. RESULTS

In this section, the results of some statistical tests
performed on the proposed hash algorithm are presented.
Passing those tests does not guarantee the resistance of
HCAHF to attacks targeted at hash functions. However,
passing those tests is a good indicator of the good security level
of a hash function. Pseudorandom behavior and statistical
independence between the input and the output are some of the
properties desired in cryptographic hash functions. In addition,
the complexity of the algorithm is estimated to show the easy
computation and implementation of the algorithm proposed.

A. Avalanche Test

The first test performed on HCAHF is the avalanche test.
The avalanche effect was first used in cryptography by Feistel
[29]. It was introduced as a property of S-boxes and
Substitution-Permutation Networks (SPNs). It states that a very
small difference in the input, generally a single bit change,
produces a substantial difference on the output. More formally,
if a function f exhibits the avalanche effect, then the Hamming
distance between the outputs obtained from M and M‘, that
differ by a single bit, is on average half the digest size. This
definition is closely related to the concept of nonlinearity. A
function displaying the avalanche effect can be considered as
highly non-linear. Mathematically, this concept can be
described as follows:

f :{0,1}m®{0,1}nhas the avalanche effect if:

"M ,M ' Î{0,1}m :Hamming(M ,M ') =1

Þ average(Hamming(f (M), f (M ')) =
n

2

In order to conduct the avalanche test on HCAHF, 100
1024-bit messages were generated. For each message Mi, the
hash value of the original message and the hash values of its
one-bit change replicas

(Hamming(M
i
,M

i,1£ j£1024

') = 1) are generated by

HCAHF. Then, the hamming distances between the hash

values are calculated (Hamming(f (M
i
), f (M

i,1£ j£1024

'))).

The results of the test are presented in Fig. 2. Here the
average values for each bit position j were taken for the 100
messages and expressed as percentages. The figure shows that
the avalanche values are concentrated around 50. This indicates
that HCAHF has the avalanche effect and thus its outputs are
statistically independent from its inputs.

B. Statistical Tests

In practice, cryptographic hash functions should behave
like a random oracle to prevent statistical attacks. Thus, to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

506 | P a g e
www.ijacsa.thesai.org

check this pseudorandom behavior, standard statistical tests are
commonly applied. The NIST Statistical Test Suite (STS) and
the DIEHARDER battery of tests were used.

1) NIST Statistical Test Suite (STS): The National Institute

of Standards and Technology developed a set of tests called the

NIST Statistical Test Suite (STS). This test suite is useful to

check the randomness property of some cryptographic

primitives like hash functions. p-values are computed and

evaluated for the generated sequences to verify if the sequences

are random. A more detailed description can be found in NIST

special publication 800-22 [30].

Fig. 2. Avalanche Test Results.

A 10 MB sequence is obtained by concatenating the hash
values generated by HCAHF-256. This sequence is used as an
input to the test suite. The results of the different tests are
presented in Table II. A test is passed if the p-value is between
0.001 and 0.999. Some tests cannot be applied because the size
of the output (256 bits) is too short compared to the test
requirements (e.g. The Binary Matrix Rank Test requires a

sequence of 1000000 bits). HCAHF-256 passes all the
applicable tests.

2) Dieharder battery of tests: DIEHARDER is a stronger

test battery developed by Brown, Eddelbuettel and Bauer [31]

to test all types of random number generators as well as other

cryptographic primitives (block ciphers, stream ciphers, hash

functions, …). It is a collection of tests that include tests from

the DIEHARD battery of tests and from the NIST STS as well

as other tests designed by Brown, Bauer, Marsaglia and Tsang.

It is an extensible test suite that includes more and more tests

with each update. The p-values must be in the range [α ,1- α] to

pass a test, α being the significance level. Table III shows the

results of the DIEHARDER tests. The significance level used

here is α = 0.005. HCAHF-256 passes all the tests.

The results of these two batteries of statistical tests show
that HCAHF-256 has a good pseudorandom behavior, which is
one of the essential characteristics of a secure hash function.
The output generated by HCAHF-256 can then be considered
as indistinguishable from the output of a true random number
generator.

TABLE. II. NIST STS RESULTS

Test name p-value Interpretation

The Frequency (Monobit) Test 0.4963 PASS

Frequency Test within a Block 0.4888 PASS

The Runs Test 0.4927 PASS

Tests for the Longest-Run-of-Ones in

a Block
0.4954 PASS

The Binary Matrix Rank Test - NOT APPLICABLE

The Discrete Fourier Transform
(Spectral) Test

0.4815 PASS

The Non-Overlapping Template

Matching Test
0.6973 PASS

The Overlapping Template Matching

Test
- NOT APPLICABLE

Maurer‘s ―Universal Statistical‖ Test - NOT APPLICABLE

The Linear Complexity Test 0.5644 PASS

The Serial p-value1 Test 0.4915 PASS

The Serial p-value2 Test 0.4993 PASS

The Approximate Entropy Test 0.4914 PASS

The Cumulative Sums (Cusums)

Forward Test
0.5140 PASS

The Cumulative Sums (Cusums)

Reverse Test
0.5132 PASS

The Random Excursions Test - NOT APPLICABLE

The Random Excursions Variant Test - NOT APPLICABLE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

507 | P a g e
www.ijacsa.thesai.org

TABLE. III. DIEHARDER TEST SUITE RESULTS

Test name p-value Interpretation

Diehard birthdays 0.8559 PASS

Diehard OPERM5 0.9309 PASS

Diehard 32x32 Binary Rank 0.3301 PASS

Diehard 6x8 Binary Rank 0.8151 PASS

Diehard_bitstream 0.7112 PASS

Diehard OPSO 0.9008 PASS

Diehard OQSO 0.1161 PASS

Diehard DNA 0.6635 PASS

Diehard Count the 1s (stream) 0.0808 PASS

Diehard Count the 1s (byte) 0.0082 PASS

Diehard Parking Lot 0.7936 PASS

Diehard Minimum Distance (2d Circle) 0.0254 PASS

Diehard 3d Sphere (Minimum Distance) 0.8868 PASS

Diehard Squeeze 0.9114 PASS

Diehard Sums 0.0138 PASS

Diehard Runs 0.4253 PASS

Diehard Craps 0.5868 PASS

Marsaglia and Tsang GCD 0.3477 PASS

STS Monobit 0.7161 PASS

STS Runs 0.2438 PASS

STS Serial Test (Generalized) 0.5342 PASS

RGB Bit Distribution 0.5511 PASS

RGB Generalized Minimum Distance 0.7152 PASS

RGB Permutations 0.5 PASS

RGB Lagged Sum 0.5330 PASS

RGB Kolmogorov-Smirnov 0.5784 PASS

DAB Byte Distribution 0.5964 PASS

DAB DCT (Frequency Analysis) 0.0541 PASS

DAB Fill Tree 0.7417 PASS

DAB Fill Tree 2 0.4559 PASS

DAB Monobit 2 0.0432 PASS

C. Cryptographic Properties of the Rules used in Function T

In addition to the avalanche effect displayed by HCAHF-
256 and the good statistical features of HCAHF-256 proven by
the results of the NIST STS and the DIEHARDER statistical
tests, the cryptographic properties of the hybrid ruleset used in
the transformation phase are presented here. The Appendix
provides more clarifications about the selection process of this
ruleset and the meaning of each property.

The following tables (Tables IV to VIII) present the
cryptographic properties of the hybrid ruleset Rdigest = {30, 90,
150, 30, 135, 30, 90, 150} for eight cells, assumed to be
unknown Boolean values xi, and up to three clock cycles.

From these tables, it can be noted that with the exception of
correlation immunity and resiliency, all the other cryptographic
properties (algebraic degree, nonlinearity and balancedness)
increase with each iteration (algebraic degree, nonlinearity) or
remain true (balancedness). The decrease of the values of
correlation immunity and resiliency can be explained by the
increase in the values of the algebraic degree and the
nonlinearity, as some cryptographic properties are self-
contradicting [27]. Therefore, a compromise should be found.
For a cryptographic hash function, the algebraic degree and the
nonlinearity can be judged as more important properties to
achieve than the correlation immunity and resiliency
properties.

D. Complexity

As stated before, basic requirements for a hash function is
the ease of computation and the simplicity of implementation.
In this subsection, the complexity of HCAHF is estimated in
order to establish those two requirements.

TABLE. IV. ALGEBRAIC DEGREE

Iteration x0 x1 x2 x3 x4 x5 x6 x7

1 2 1 1 2 2 2 1 1

2 3 2 2 3 3 3 2 2

3 4 3 3 4 5 4 3 3

TABLE. V. NONLINEARITY

Iteration x0 x1 x2 x3 x4 x5 x6 x7

1 2 0 0 2 2 2 0 0

2 8 8 8 8 4 8 8 8

3 32 48 48 48 16 36 48 48

TABLE. VI. CORRELATION IMMUNITY

Iteration x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 2 0 0 0 1 2

2 0 2 2 0 0 0 2 2

3 0 0 0 0 0 0 1 1

TABLE. VII. RESILIENCY

Iteration x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 2 0 0 0 1 2

2 0 2 2 0 0 0 2 2

3 0 0 0 0 0 0 1 1

TABLE. VIII. BALANCEDNESS

Iteration x0 x1 x2 x3 x4 x5 x6 x7

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

508 | P a g e
www.ijacsa.thesai.org

The padding requires at most n+64 steps, where n is the

block size. Splitting the message requires

 steps, where L

is the message size after padding. The complexity of
generating the salt and the IV is O(n). Applying the function E

to blocks involves (m+1) n

 steps. The compression phase

requires (m+1) n mod 2 additions. The last transformation T

requires n

 steps. The overall complexity of HCAHF is then

O(m n
2
), n being the digest size and m the number of blocks.

VI. SECURITY ANALYSIS

In this section, a security analysis of the proposed hash
algorithm HCAHF is performed. Formally proving the
resistance of a given cryptographic primitive to attacks targeted
against it is not an easy task. However, since the HCAHF is a
wide-pipe MD construction, it can be assumed that its security
can be reduced to that of its compression (E and XOR) and
transformation (T) functions.

A. Brute Force Attacks against Hash Functions

Brute force attacks targeted at hash functions are attacks
that depend only on the length of the hash value and not on the
hash algorithm itself. In the case of keyless hash functions,
three brute force attacks are possible: the preimage attack, the
second preimage attack and the collision attack.

1) Preimage and second preimage attack: The number of

trials required for an adversary to find the original message M

from a given hash value h (preimage attack) or to find a second

message M’ given a pair (M,h) (second preimage attack) is 2
n

[16], where n is the digest size in bits. In the case of HCAHF-

256, the minimum amount of work required for such attacks to

be successful is 2
256

 operations. Therefore, HCAHF-256 can be

considered as robust against those two attacks.

2) Collision attack: The number of trials required for an

adversary to find two messages M and M’ that produce the

same hash value h (collision attack) is

 [16]. In the case of

HCAHF-256, the minimum amount of work required for an

attacker to find a collision is 2
128

 operations. Thus, HCAHF-

256 can be considered as robust against the collision attack.

B. Cryptanalytic Attacks

Cryptanalytic attacks are attacks targeted at the hash
algorithm itself. The goal of these attacks is to reduce the
complexity of the algorithm and thus reduce the complexity of
the brute force attacks. Many different types of cryptanalytic
attacks exist. Some examples of cryptanalytic attacks are the
length-extension attack [32], the fixed-point attacks by Dean
[33] and Kelsey and Schneier [34] and the herding attack [35].

As it is not possible to prevent all kinds of cryptanalytic
attacks, the authors chose different techniques to prevent or
lower the risk of these attacks. The following paragraphs detail
those tools.

The first measure to prevent cryptanalytic attacks is the
adoption of MD-strengthening as a padding scheme when
preprocessing the message. MD-strengthening was used in
HCAHF as a measure to prevent length-extension attacks.

Another measure adopted to avoid cryptanalytic attacks is
the use of a salt value. The use of a generated salt value
prepended to the message after applying padding helps in
preventing attacks [3] such as the length-extension attack [32],
the multi-collision attack, the fix point attacks by Dean [33]
and by Kelsey and Schneier [34] and the herding attack [35].

The use of cellular automata with linear and non-linear
rules (E function), of the bit-by-bit addition modulo 2 (XOR
function) and of a non-linear cellular automaton (T function)
during the compression and transformation phases of HCAHF
also help in preventing cryptanalytic attacks. Differential and
linear attacks are avoided by the use of cellular automata. The
diffusion property is provided by the XOR operation and the
use of cellular automata and was proved by the good avalanche
effect of HCAHF. The confusion property is provided by the
use of the non-linear cellular automaton (T function) and the
non-linear rules cellular automata (E function). It was proved
by the good results of the statistical tests performed on
HCAHF. Moreover, the cryptographic properties of cellular
automata presented in the Appendix point also in that direction.

VII. CONCLUSION

In this paper, a new family of CA-based hash functions is
proposed. The hash algorithm described in the article consists
of three phases: a preprocessing phase, a processing phase and
a transformation phase. In the preprocessing phase, the input is
padded using the MD-strengthening padding scheme, split into
blocks of the same size n and prepended with a salt value.
Applying a padding scheme and prepending a salt value to the
input are measures used to prevent some cryptanalytic attacks
targeted at cryptographic hash functions. During the processing
phase, each block is first evolved using a cellular automaton
then XORed with a chaining variable from a previous step. The
first chaining variable is a precomputed n-bit block called IV.
The use of cellular automata and the XOR operator during this
phase provide the confusion and diffusion properties. The last
phase consists of a final transformation by means of a hybrid
cellular automaton with a ruleset carefully chosen. The use of
the hybrid cellular automaton provides the confusion property
and the pseudorandom behavior. In addition to the description
of the algorithm and the security measures adopted in design of
HCAHF, several statistical tests were performed. The result of
these tests proves that HCAHF has good statistical features.
These tests show that HCAHF displays the pseudorandom
behavior, the statistical independence between the input and
the output as well as the sensitivity of the algorithm to changes
in the input. Finally, it can be noted that HCAHF has been
implemented in software and that it can be presumed to
perform better if implemented in hardware due to the
simplicity of implementing cellular automata in hardware.
Also, two additional properties, the hiding property and the
puzzle friendliness property [36], can be verified if HCAHF is
to be used in the blockchain technology in a future work.
Finally, the number of evolutions used for cellular automata
can be the subject of another study in order to maximize the
period of the cellular automata used [26].

REFERENCES

[1] D. R. Stinson and M. B. Paterson, Cryptography: theory and practice.
Boca Raton: CRC Press, 2019.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

509 | P a g e
www.ijacsa.thesai.org

[2] H. C. A. van Tilborg and S. Jajodia, Encyclopedia of cryptography and
security. New York: Springer, 2011.

[3] E. Biham and O. Dunkelman, ―A framework for iterative hash functions
— HAIFA,‖ IACR Cryptology ePrint Archive 2007: 278, 2007.

[4] B. Preneel, "MACs and hash functions: State of the art," Information
Security Technical Report, vol. 2, no. 2, pp. 33-43, 1997.

[5] B. Preneel, ―The first 30 years of cryptographic hash functions and the
NIST SHA-3 competition,‖ Topics in Cryptology - CT-RSA 2010
Lecture Notes in Computer Science, pp. 1–14, 2010.

[6] K. Bhattacharjee, N. Naskar, S. Roy, and S. Das, ―A survey of cellular
automata: types, dynamics, non-uniformity and applications,‖ Natural
Computing, 2018.

[7] J. V. Neumann, Theory of self-reproducing automata. Urbana (U.S.A.):
University of Illinois Press, 1966.

[8] S. Wolfram, ―Cryptography with cellular automata,‖ Lecture Notes in
Computer Science Advances in Cryptology — CRYPTO ‘85
Proceedings, pp. 429–432, 1985.

[9] I. B. Damgård, ―A design principle for hash functions,‖ Advances in
Cryptology — CRYPTO‘ 89 Proceedings Lecture Notes in Computer
Science, pp. 416–427, 1989.

[10] J. Daemen, R. Govaerts, and J. Vandewalle, ―A framework for the
design of one-way hash functions including cryptanalysis of Damgård‘s
one-way function based on a cellular automaton,‖ Advances in
Cryptology — ASIACRYPT 91 Lecture Notes in Computer Science, pp.
82–96, 1991.

[11] J. Daemen, R. Govaerts, and J. Vandewalle, ―A hardware design model
for cryptographic algorithms,‖ Computer Security — ESORICS 92
Lecture Notes in Computer Science, pp. 419–434, 1992.

[12] D. Chang, ―Preimage attacks on CellHash, SubHash and strengthened
versions of CellHash and SubHash,‖ IACR Cryptology ePrint Archive
2006: 412, 2006.

[13] M. Mihaljević, Y. Zheng, and H. Imai, ―A cellular automaton based fast
one-way hash function suitable for hardware implementation,‖ Public
Key Cryptography Lecture Notes in Computer Science, pp. 217–233,
1998.

[14] J.-C. Jeon, ―One-way hash function based on cellular automata,‖ IT
Convergence and Security 2012 Lecture Notes in Electrical Engineering,
pp. 21–28, Nov. 2012.

[15] S. Kuila, D. Saha, M. Pal, and D. R. Chowdhury, ―CASH: Cellular
automata based parameterized hash,‖ Security, Privacy, and Applied
Cryptography Engineering Lecture Notes in Computer Science, pp. 59–
75, 2014.

[16] W. Stallings, Cryptography and network security: principles and
practice. Hoboken, NJ: Pearson Education, Inc., 2019.

[17] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı, and I.
Verbauwhede, ―SPONGENT: A lightweight hash function,‖
Cryptographic Hardware and Embedded Systems – CHES 2011 Lecture
Notes in Computer Science, pp. 312–325, 2011.

[18] T. P. Berger, J. D‘Hayer, K. Marquet, M. Minier, and G. Thomas, ―The
GLUON Family: A lightweight hash function family based on FCSRs,‖
Progress in Cryptology - AFRICACRYPT 2012 Lecture Notes in
Computer Science, pp. 306–323, 2012.

[19] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, ―Quark:
A lightweight hash,‖ Cryptographic Hardware and Embedded Systems,
CHES 2010 Lecture Notes in Computer Science, pp. 1–15, 2010.

[20] J. Guo, T. Peyrin, and A. Poschmann, ―The PHOTON family of
lightweight hash functions,‖ Advances in Cryptology – CRYPTO 2011
Lecture Notes in Computer Science, pp. 222–239, 2011.

[21] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, ―The making of
KECCAK,‖ Cryptologia, vol. 38, no. 1, pp. 26–60, Feb. 2014.

[22] C. Hanin, B. Echandouri, F. Omary, and S. E. Bernoussi, ―L-CAHASH:
A novel lightweight hash function based on cellular automata for
RFID,‖ Ubiquitous Networking Lecture Notes in Computer Science, pp.
287–298, 2017.

[23] S. Hirose and S.Yoshida, ―A one-way hash function based on a two-
dimensional cellular automaton,‖ The 20th Symposium on Information
Theory and Its Applications (SITA97), pp. 213–216, 1997.

[24] S. Lucks, ―A failure-friendly design principle for hash functions,‖
Lecture Notes in Computer Science Advances in Cryptology -
ASIACRYPT 2005, pp. 474–494, 2005.

[25] X. Lai and J. L. Massey, ―Hash functions based on block ciphers,‖
Advances in Cryptology — EUROCRYPT‘ 92 Lecture Notes in
Computer Science, pp. 55–70, 1992.

[26] S. Wolfram, A new kind of science. USA: Wolfram Media, 2002.

[27] K. Chakraborty and D. R. Chowdhury, ―CSHR: Selection of
cryptographically suitable hybrid cellular automata rule,‖ Lecture Notes
in Computer Science Cellular Automata, pp. 591–600, 2012.

[28] S. Karmakar, D. Mukhopadhyay, and D. R. Chowdhury, ―D-monomial
tests of nonlinear cellular automata for cryptographic design,‖ Lecture
Notes in Computer Science Cellular Automata, pp. 261–270, 2010.

[29] H. Feistel, ―Cryptography and computer privacy,‖ Scientific American,
vol. 228, no. 5, pp. 15–23, 1973.

[30] A. Rukhin, J. Sota, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M.
Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, ―A
statistical test suite for random and pseudorandom number generators
for cryptographic applications,‖ Gaithersburg, MD: U.S. Dept. of
Commerce, Technology Administration, National Institute of Standards
and Technology, 2000.

[31] R. Brown, D. Eddelbuettel, and D. Bauer, ―Dieharder: A random
number test suite,‖ webhome.phy.duke.edu. [Online]. Available:
https://webhome.phy.duke.edu/~rgb/General/dieharder/dieharder.abs.
[Accessed: Nov-2019].

[32] D. Gligoroski, ―Length Extension Attack on Narrow-Pipe SHA-3
Candidates,‖ Communications in Computer and Information Science
ICT Innovations 2010, pp. 5–10, 2011.

[33] R. D. Dean, ―Formal aspects of mobile code security,‖ (Unpublished
doctoral dissertation). Princeton University, Princeton, NJ., 1999.

[34] J. Kelsey and B. Schneier, ―Second preimages on n-bit hash functions
for much less than 2 n work,‖ Lecture Notes in Computer Science
Advances in Cryptology – EUROCRYPT 2005, pp. 474–490, 2005.

[35] J. Kelsey and T. Kohno, ―Herding hash functions and the nostradamus
attack,‖ Advances in Cryptology - EUROCRYPT 2006 Lecture Notes in
Computer Science, pp. 183–200, 2006.

[36] M. Wang, M. Duan, and J. Zhu, ―Research on the security criteria of
hash functions in the blockchain,‖ Proceedings of the 2nd ACM
Workshop on Blockchains, Cryptocurrencies, and Contracts - BCC 18,
2018.

[37] C. Carlet, ―Boolean functions for cryptography and error-correcting
codes,‖ Boolean Models and Methods in Mathematics, Computer
Science, and Engineering, pp. 257–397, 2010.

APPENDIX

Cellular automata were used for the generation mechanism of HCAHF in
both the processing phase (function E) and the transformation phase (function
T) as they provide some interesting features desired in cryptographic
primitives. The randomness property, the maximum period and the high
nonlinearity are properties are among the properties provided by cellular
automata that ate well suited for cryptographic hash functions.

In this Appendix, some definitions of cryptographic properties are given.
In addition, the properties of some of the rules from Wolfram class 3 and 4
used for the function E are presented. Finally, the selection process of the rules
of the ruleset Rdigest, used for the function T of the transformation phase, is
detailed.

A. Definitions

Before reporting on the properties of the rules used in the function E and
describing the selection process of the ruleset Rdigest, cryptographic properties
are first defined [37].

1) Affine function: An affine function is a Boolean function where only

the XOR operator is allowed.

2) Hamming weight: The Hamming weight of a Boolean function

corresponds to the number of 1‘s in a Boolean function‘s truth table.

3) Balancedness (BAL): An n variables Boolean function f is said to be

balanced if its Hamming weight is 2
n-1

.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

510 | P a g e
www.ijacsa.thesai.org

4) Hamming distance: The Hamming distance between two functions

f
1

 and

f

2
 is defined as the Hamming weight of f

1
Å f

2
.

5) Nonlinearity (NL): The nonlinearity of an n variables Boolean

function f is defined as the minimum Hamming distance between f and all n

variables affine functions.

6) Algebraic Degree (AD): The number of variables of the highest order

term of a Boolean function determines its algebraic degree.

7) Correlation Immunity (CI): An n variables function f has correlation

immunity of order k if its values are statistically independent of any subset of k

input variables.

8) Resiliency (RES): A Boolean function that is both balanced and has a

correlation immunity of order k is said to be a k-resilient function.

B. Cryptographic Properties of Class 3 and 4 ECAs

In [25], Wolfram defined four classes of elementary cellular automata.
Within these four classes, rules from classes 3 and 4 are assumed to display
chaotic and complex behaviors. These behaviors are well suited for
cryptographic primitives and thus for cryptographic hash functions. However,
some of these rules can be discarded according to their cryptographic
properties. Table IX shows all the rules from class 3 and 4 along with their
cryptographic properties.

TABLE. IX. CRYPTOGRAPHIC PROPERTIES OF CLASS 3 AND CLASS 4 ECAS

Rule NL CI AD RES BAL

18 2 0 2 -1 F

22 1 0 3 -1 F

30 2 0 2 0 T

41 1 0 3 -1 F

45 2 0 2 0 T

60 0 1 1 1 T

75 2 0 2 0 T

86 2 0 2 0 T

89 2 0 2 0 T

90 0 1 1 1 T

101 2 0 2 0 T

102 0 1 1 1 T

105 0 2 1 2 T

106 2 0 2 0 T

110 1 0 3 0 F

120 2 0 2 0 T

121 1 0 3 0 F

122 1 0 3 0 F

124 1 0 3 0 F

126 2 1 2 1 F

128 1 0 3 0 F

135 2 0 2 0 T

137 1 0 3 0 F

146 1 0 3 0 F

147 2 0 2 0 T

149 2 0 2 0 T

150 0 2 1 2 T

151 1 0 3 0 F

161 1 0 3 0 F

165 0 1 1 1 T

169 2 0 2 0 T

182 1 0 3 0 F

183 1 0 2 0 F

193 1 0 3 0 F

195 0 1 1 1 T

225 2 0 2 0 T

From Table IX, the following set has been selected to be used within the
processing phase in function E:

Rprocess = {18, 22, 30, 41, 45, 60, 75, 86, 89, 90, 101, 102, 105, 106, 110, 120,

121, 122, 124, 126, 128, 135, 146, 147, 149, 150, 151, 161, 165, 169, 182, 183,

193, 195, 225}

C. Selection Process of Rdigest

A selection procedure for choosing the right ruleset to construct a strong
hybrid cellular automaton is presented in [27]. Some linear and nonlinear rules
that have good cryptographic properties are shown in Table X. The rules
preselected in this table were taken from a preselection process mentioned in
[27]. The selection procedure guidelines are summarized in Table XI. This
guideline has been proposed in [27].

TABLE. X. CRYPTOGRAPHIC PROPERTIES OF RULES

Rule AD NL BAL CI

22 7 45 No 1

30 5 40 Yes 1

37 7 49 No 0

41 7 44 No 1

43 5 44 Yes 0

45 4 40 Yes 1

60 1 0 Yes 3

90 1 0 Yes 3

91 7 49 No 0

102 1 0 Yes 3

105 1 0 Yes 4

110 6 38 No 1

120 5 48 Yes 0

135 5 48 Yes 2

150 1 0 Yes 4

165 1 0 Yes 3

180 4 32 Yes 1

195 1 0 Yes 3

210 4 32 Yes 0

TABLE. XI. SELECTION PROCESS FOR THE RULESET

Input: Set L = {60,90,102,105,150,165,195} of linear rules and

set NL = {22,30,37,41,43,45,91,110,120,135,180,210} of nonlinear rules

Principle Choice

For the first cell, pick a nonlinear
rule with good cryptographic
properties.

Rule 30 selected
[30]

An equal number of linear and
nonlinear rules should be selected
for the remaining cells to find a
compromise between the
algebraic degree and the
correlation immunity.

Rules 60, 90 and 135 selected
[30,60, 135,90]

Two or three nonlinear rules
should appear consecutively to
increase the algebraic degree.

Rule 30 followed by rule 135
[30,60,30,135,90]

One nonlinear rule should be
followed by more than one linear
rule to increase the order of
correlation immunity.

Rule 30 followed by rules 60 and 90
[30,60,90,30,135,30,60,90]

Rules with larger period should
be chosen to increase the period
of the hybrid CA.

Rules 90 and 150 selected
[30,90,150,30,135,30,90,150]

OUTPUT: A RULESET WITH RULES HAVING GOOD CRYPTOGRAPHIC PROPERTIES

[30,90,150,30,135,30,90,150].

