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Abstract—Detection and classification of vulnerable road users
(VRUEs) is one of the most crucial blocks in vision based navigation
systems used in Advanced Driver Assistance Systems. This
paper seeks to evaluate the performance of object classification
algorithm, You Only Look Once i.e. YOLO v3 algorithm for the
purpose of detection of a major subclass of VRU:s i.e. cyclists and
pedestrians using the Tsinghua — Daimler dataset. The YOLO v3
algorithm used here requires less computational resources and
hence promises a real time performance when compared to its
predecessors. The model has been trained using the training
images in the mentioned benchmark and have been tested for
the test images available for the same. The average IoU for all
the truth objects is calculated and the precision recall graph for
different thresholds was plotted.
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I. INTRODUCTION

The past decade has witnessed significant acceleration in
the pace of development of automotive technologies which aim
at making driving and commutation safe and facile. Deploy-
ment of autonomous driving vehicles and building Advanced
Driver Assistance Systems (ADAS) to be used in hybrid
vehicles are major steps in realizing this. Of the many fields
related to these, systems related to improving the driving safety
such as pre collision systems, crash imminent braking systems
play a very crucial role. However, extensive research has been
undertaken over the past few years to protect vulnerable road
users (VRUs), including pedestrians, cyclists, motorcyclists.
Nearly half of the world traffic deaths occur among vulnerable
road users, and road traffic injuries are the eighth leading
cause of death for all age groups, according to statistical data
provided by WHO [1]. Among the many VRU categories,
cyclists and pedestrians are the weakest and fall prey to most
accidents because of the lack of protection devices. Hence the
development of systems for the detection and identification of
VRUs becomes an essential need of the hour, to make their
commutes safer and for the ADAS to be practically and widely
deployable.

Many approaches based on different sensors are employed
in vehicle environment perception systems. The vision based
sensors especially monocular cameras, are the most preferred
as a standalone or in combination with other sensors when
it comes to detection of VRUs, due to the availability of
high resolution perception views. Vision based cyclist and
pedestrian detection face several challenges due to the diversity
in shape, posture, viewpoints, crowded backgrounds, etc. and
several algorithms and methodologies have been implemented
for the same keeping these considerations in account.
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II. BACKGROUND

Algorithms that are used for the purpose of feature ex-
traction and classification can predominantly be handcrafted
or Deep Learning based. The Haar-like feature detector which
uses variations in intensities for the detection of the object
[2], [3], the Viola and Jones (VJ) detector designed by Viola
et al. [4] which uses a detection approach based on cascaded
Haar-like features, which also considers the rapid pixel inten-
sity changes ,and the Histogram of Gradients(HOG) detector,
suggested by Dalal and Triggs which uses a linear Support
Vector Machine for classification [5-8] to find an object’s
characteristics based on the intensities of the local gradients
[2], [6] are some of the common hand-crafted features based
methods used in general for pedestrian detection. However,
hand-crafted methods which rely on low-level features which
are manually designed to find the ROI's [9] are not very
efficient as features which complex are arduous to handcraft.
Au contraire, Deep Learning (DL) based techniques are highly
autonomous by allowing the network to determine features.

Since the advent of DL, several approaches have been
designed for pedestrian or cyclist detection. In the method de-
scribed by Wei Tian [10] cyclists in different views and angles
are located using cascade detectors. Together with trajectory
planning, this model employs an ROI extraction derived based
on geometry but achieves only 11 fps when employed in real
time. Ren [11] realized an accuracy of 76.47% for an IoU
threshold of 0.7 using a Recurrent Rolling Convolution (RRC)
architecture employed on multiscale feature maps. Saleh in
[12] use a Faster RCNN based network on synthetic image
datasets to perform better than the HOG- SVM classifier
by 21% in average precision. Felzenswalb [25] designed the
Deformable Part Model (DPM) on the basis of HOG detector
to undermine the distortions caused due to non-rigid objects.
To ensure swift and accurate detection, Yang in [13] used
convolutionary object detector with Scale based pooling and
CRCs. The scale-dependent pooling allows the identification
of tiny objects to be improved, and the CRCs help to enhance
detection speed by rapidly removing false detections.

While all the previously cited works either concentrate on
the detection of either the pedestrians or the cyclists, very
less literature is available for the simultaneous detection of
pedestrians and cyclists [19]. In [5] X. Li propose a unified
framework for both cyclist and pedestrian detection using a
UB-MPR based detection combined with Fast RCNN and Fu
in [26], propose a system based on symmetry of objects to
recognize the features of cyclists and pedestrians that appear
in an image. However, this method still does not reach the real
time speed requirements due to the complex isolated stages that
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required for the detection and classification.

As emphasized by Huang Ji [16] networks like YOLO
which uses a relatively simpler framework for object detection
and classification have a slight reduction in accuracy when
set against methods like Fast RCNN [14] but expiate for it
with real time performance [17] .With optimization, methods
like YOLO and its modifications like, YOLO9000, fast YOLO,
etc. [18] one can achieve better real time object detection and
also makes proper use of the capabilities of the Graphical
Processing Unit (GPU) [27].

This paper aims to present and examine the performance
of the V3 variant of YOLO for the unified detection of cyclists
and pedestrians using the Tsinghua- Daimler Benchmark [15]
dataset. The work performed focused on analyzing the per-
formance of the above model on the above dataset in order
to establish its efficiency and reliability for the identification
of cyclists and pedestrians in real time. A NVidia GTX 1080
Ti GPU was used for training the YOLO V3 network and
the detection was run on a Intel Core i7 eighth generation
processor CPU system.

The organization of the paper is as follows: Section 2
discusses the methodology elucidating about the dataset, the
YOLOV3 network architecture and the procedure followed for
training. This is followed by Section 3 and Section 4 which
present results and conclusion respectively.

III. METHODOLOGY
A. Dataset

The Tsinghua-Daimler Cyclist Benchmark used consists of
four subsets namely train, valid, test and non VRU (Fig. 2).
Train subset consists of 9741 images and only cyclist objects
are annotated. This subset includes cyclists which are fully
visible with an occlusion rate of lesser than 10% and greater
than 60 pixels. Valid subset contains 1019 images and the
objects annotated are pedestrian, cyclist, tri cyclist, moped
rider, wheel chair user and motorcyclist. The objects that are
labeled have more than 20 pixels. The test set has 2914 images
and the same list objects annotated as the valid set. Like
the valid set, the objects labeled here also have more than
20 pixels. Non VRU has 1000 images which do not contain
any objects of interest such as pedestrian, cyclist, motorcyclist,
tricyclist, wheel chair user, moped rider.

Fig. 1. YOLO V3 architecture

B. Network Architecture

YOLO V3 [20] (Fig. 1) uses dimension clusters as anchor
boxes for the prediction of bounding boxes [17]. The network
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Fig. 2. Sample images from the subsets of Tsinghua-Daimler Cyclist
Benchmark: (a)Train (b)Valid (c)Non-VRU (d)Test

predicts 4 coordinates for each bounding box, I, Iy, [, and
In. If (Og, Oy) is the offset of the cell from the top left corner
of the image and pr,, and pr;, are the the width and height of
the previous bounding box respectively, then the predictions
correspond to:

by = o(ly) + Oy €))
by = prye’” )
by, = prye!” (3)

Here (b, by) is the coordinate of the center of the bounding
box relative to the location of filter application using a sigmoid
function. b,, and b;, are width and height of the bounding box
respectively.

The class that the bounding box may contain is predicted
using multi label classification. This uses a combination of
independent logistic classifier and binary cross entropy loss
for class predictions during the training.

Yolov3 uses a feature extractor network called Darknet 53
whose architecture is shown in (Fig. 3) which is a hybrid
variant of the network used in YOLOvV2 , Darknet-19 [17].
This network has 53 convolution layers. The filters consist of
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Type Filters Size Qutput
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128

Convolutional 32 1x1

1x| Convolutional 64 3x3
Residual 128 x 128
Convolutional 128 3x3/2 64x64
Convolutional 64 1x1

2x| Convolutional 128 3x3
Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1x1

8x| Convolutional 256 3 x3
Residual 32 x 32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x1

8x| Convolutional 512 3x3
Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1x1

4x| Convolutional 1024 3 x 3
Residual 8x8
Avgpool Global
Connected 1000
Softmax

Fig. 3. Darknet 53-network architecture [20]

successive 1x1 and 3x3 filters with shortcut connections. In
YOLOV3, features are extracted from the 3 scales congruous
to feature pyramid networks [21]. This majorly helps to
identify small objects. The last layer predicts the bounding
box, probability of box containing object and class predictions.
The dimensions of the final prediction vector is

LxLx[3x(4+1+ No.ofclasses)] 4)

Where three denotes the number of scales, four the number of
bounding box offsets and one is the probability that an object is
present is the bounding box. Here, the number of classes is two
as this paper concentrates only on the detection of cyclists and
pedestrians. L x L is the splitting of the picture into segments.

C. Training

The training was carried out using the parameters given in
Table I with keras implementation of YOLOV3, running tensor
flow as the backend [22]. For training the first subset labeled
as train and a part of the pedestrian subset of the Tsinghua-
Daimler benchmark was used. The validation dataset is ob-
tained from a random subset of the above set, which is 10%
of the total set. Thus 90% of the above set is used for training
and 10% for validation. According to the model’s architecture,
the training images were divided into batches of 8, enabling the
GPU to process 8 images at a time followed by the updation
of the corresponding gradients and the related weights.

Initial weights for training were acquired from the weights
of a YOLOv3-608 model.
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TABLE I. TRAINING PARAMETERS FOR THE NETWORK

Dataset used
No. of Train samples 8767

Tsinghua-Daimler Cyclist Benchmark

No. of Validation samples 974

0.001 for 1-60 epochs
0.0001for 61-126 epochs

Initial learning rate

Beta 1 0.9

Beta 2 0.999

Pre-trained weights YOLOV3-608

No. of Batches 8

No. of Epochs 126

Train size (height X width) | 416 X 416

GPU Nvidia GTX 1080 Ti

The adam optimizer [23] which has an initial learning rate
of 0.001 was used. Learning rate reduction on plateau with a
factor of reduction of 0.1 was implemented and validation loss
was monitored with early stopping. The beta rates of 0.9 and
0.999 were used.

IV. RESULTS

The results obtained after training 126 epochs (7able II) at
a rate of 45fps for different scenarios are shown in (Fig. 5).
The performance was assessed using Intersection over Union
i.e. IoU, Precision recall Graph, and F1 score as metrics (7able
III). The prediction was considered for account only when it
had at least 0.5 confidence.

TABLE II. TEST PARAMETERS FOR THE NETWORK

Dataset used Tsinghua-Daimler Cyclist Benchmark
No. of Samples used 2914

Detection :0.5 (50% confidence)

IoU :50%

1024 x 2048 (height X width in pixels)

Threshold used

Size specs of test image

A. Intersection over Union (IoU)

Intersection Over Union (IoU), a measure based on Jaccard
Index, that evaluates the overlap between the ground truth
bounding box BB, and the predicted bounding box BB, was
used to identify the accuracy of detection.

ol = area(BB, N BB,y)  areaof overlap )
~ area(BB,UBB,)  areaof union

The predicted objects with an IoU of more than 50% are
considered as true objects and the average IoU of all the true
objects detected is 73.17%.

B. Precision-Recall Graph

The Precision-Recall graph [24] as shown in the (Fig. 4)
has been plotted over different threshold values. Here the
precision which denotes a model’s ability to identify only
relevant objects is given by

T Tp
Tp + Fp  All detections

Precision =

(6)

And recall which is the percentage of true positive detected
amongst all relevant ground truths and is given by
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Fig. 4. The precision-recall graph over multiple thresholds.

TABLE III. CONSOLIDATED RESULTS
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V. CONCLUSION

The implemented model shows good performance with
regards to accuracy and efficiency with a real time performance
at a rate of 45 fps for the scenarios found in the Tsinghua-
Daimler benchmark. The deficiencies in the performance can
mainly be attributed to situations where the objects of interest
are very small or show high degree of occlusion or are limited
by the characteristics of the camera used to capture images
leading to reduced range of vision causing blind spots and
limited field of view. Further studies can be carried out on the
above-mentioned difficulties to improve the performance.
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Fig. 5. (a) Multiple object detection and slightly occluded pedestrian detection (b) Multiple object detection and far object detection (c) Multiple cyclist in
different angles (d) Cyclist side view detection (e) Cyclist front view (f) Pedestrian side view detection (note: multiple pedestrian present but others are almost
fully occluded)
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Fig. 5. (contd.) (g) Multiple pedestrian detection (h) Multiple pedestrians-side view- occluded (i) Multiple pedestrians-back view (j) Cyclist back view (k)
Multiple cyclists side view detection
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