
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

BulkSort: System Design and Parallel Hardware
Implementation Considerations

Soukaina Ihirri1, Ahmed Errami2, Mohammed Khaldoun3, Essaid Sabir4

NEST Research Group, LRI Lab., ENSEM, Hassan II University of Casablanca, 20000, Morocco1,2,3,4

LPRI, EMSI, Casablanca, Morocco1.

Abstract—Algorithms are commonly perceived as difficult
subjects. Many applications today require complex algorithms.
However, the researchers look for ways to make them as simple
as possible. In high time demanding fields, the process of sorting
represents one of the foremost issues in the data structure for
searching and optimization algorithms. In parallel processing,
we divide program instructions among multiple processors by
breaking problems into modules that can be executed in parallel,
to reduce the execution time. In this paper, we proposed a novel
parallel, re-configurable and adaptive sorting network of the
BulkSort algorithm. Our architecture is based on simple and
elementary operations such as comparison and binary shifting.
The main strength of the proposed solution is the ability to sort
in parallel without memory usage. Experimental results show
that our proposed model is promising according to the required
resources and its ability to perform a high-speed sorting process.
In this study, we take into account the analysis result of the
Simulink design to establish the required hardware resources of
the proposed system.

Keywords—Sorting; FPGA; bulk-sort; parallel processing

I. INTRODUCTION

Sorting is taken as one of the most fundamental non-
numerical algorithms needed in a multitude of applications.
The operation of sorting data became an integral part of
many large scale scientific and commercial applications such
as data centers, database management or digital signal pro-
cessing.These applications require parallel processing. Thus,
the parallel version of sorting is one of the most required,
for which the transition is sophisticate because it demands
communication as well as computation. Many sorting algo-
rithms have been developed over the decades. Most important
are: Quick sort[1] [2]; Merge sort[3]; Parallel odd-even[4];
bubble sort[5]; Selection sort[6]. The quick sort is a divide-
and-conquer algorithm[7] that sorts a sequence by recursively
dividing it into smaller sub sequences. The limitation of its
parallel version is that it performs the partitioning step serially.
Its formulation makes it amenable for parallelization using
task parallelism but it impacts the algorithm’s scalability. The
complexity of the quick sort is O(n log n) where n is the size of
the array. Merge sort is a divide and conquer algorithm where
data is divided into two halves and assigned to processors until
individual numbers are obtained. After this, each two pair’s
numbers are merged into sorted list of 2 numbers. This sorted
list is again merged to make 4 sorted numbers. This continues
till the fully sorted one list is obtained. Merge sort is also
easily applied to lists, not only arrays because its worst-case

running time is (n log n). Parallel odd-even transposition is
an extension of bubble sort, operates in two alternate phases.
Even phase in which, values are exchanged between even
processors, while the odd processors exchange their values in
the odd phase. Its time complexity isO(n2). Selection sort is
an in-place comparison sort. The algorithm finds the minimum
value, swaps it with the value in the first position, and repeats
these steps for the remainder of the list. It has a hypothetical
complexity of O(n2). Although this algorithm is very slow for
sorting larger amount of data, yet is simple.

The difference between these sorting algorithms can be
seen in a view of measure of the amount of time and/or space
required by an algorithm for an input of a given size (n)[8].
Now-a-days, the amount of information grow rapidly [9] by
that a high speed computing to process this huge amount
of data[10] is required. So, High performance computing
involves parallel processing [11]. A number of research efforts
explore how data bases can use the potential of modern
hardware architecture. The majority of sorting architectures
implemented in hardware use batcher even odd & Bitonic
mergers because they are the fasted. Technical literature has
called a model frequently used to study sorting algorithms, the
sorting networks which have received much interest because
of their widespread use in many computations. They represent
an abstract machine which accesses the data only through
compare-exchange operations by the use of compactors, which
are wired together to implement the capability of general sort-
ing. But a various sorting architectures have been presented.
Bucket Sorter or FIFO as well as tree based merge sorter
which is considered as a target designs for implementation.
Bucket sorter follows divide and conquer strategy by dis-
tributing the elements of an array into a number of buckets.
Each bucket is then sorted individually. FIFO-Based Merge
Sorter[12] based on multiple FIFO merge sorters cascaded for
sorting on a continuous stream. It shows excellent hardware
resource utilization efficiency but requires high buffer memory
usage. Merge sorter trees used to merge long sequences from
external memory. Elements arranged in trees based structure
for sorting sorted sub-sequences to one combined sequences
that will be fully sorted. Sorting networks[13] which are
models based on algorithms that sort a fixed sequence of
numbers by using a fixed sequence of comparators and wires.
They require greater number of I/O throughput. Insertion sorter
Hardware[14] provides a shift register for storing the search
keys.

In view of circuit types, sorting architectures are classified

www.ijacsa.thesai.org 655 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

according to 3 categories[13]: combinational sorting circuit,
synchronous sorting circuit[15], and piplined circuit[16]. Com-
binational sorting circuit which is operated without clock
signal; signal goes through the sorting stage without following
a synchronization signal. The key characteristic of this type is
the absence of registers. In view of metrics, the path delay is
difficult to estimate, the max delay path depends on number of
stages and comparators. Synchronous sorting circuit is a set of
stages separated by registers. Signal in this category follows
a synchronization signal as a clock. While the pipeline’s
implementation of sorting network require a new input set
every clock cycle. Introducing only registers doesn’t make a
fully pipelined. Registers are required to buffer the value of
wires between stages. The basic element of sorting architecture
is the comparison element. It receives 2 numbers on its inputs
and presents their Min or Max.

Up to now, there is no easy way to make hardware
sorters run in parallel[17]. Research efforts now-a-days are
concentrated on network with minimal depth or number of
comparators. In parallel processing, program instructions are
divided among multiple processors by breaking problems into
modules that can be executed in parallel, with the goal of
less time execution. Every processor comprehends its piece of
general computational issue. But due to the limited number
of I/O ports, the existing parallel hardware sorters can sort up
to only hundreds of numbers. As sorting large datasets may
impose undesired performance degradation too, acceleration
units coupled to the embedded processor can be an interesting
solution for speeding-up the computations.

Sorting can be implemented in several ways using different
technologies. FPGA (Field-Programmable Gate Array)-based
systems with re-programmability [18] have become popular
for realizing sorting because of the ability to make a trade
of between energy and performance. Sorting networks require
greater I/O throughput as they consume more sort keys and
produce a huge amount of data at the same time. FPGA can be
used to almost sorting application. But, sorting a huge amount
of data means that it cannot fit into FPGA memory, because
of the lack of hardware resources. Despite the limitation in
amount of chip space to accommodation functions’ parallelism
or to sort a huge amount of data, this problem can be managed
and estimated. Therefore, FPGA can be added as additional
process unit in standard CPU sockets[19] [20]. In some cases,
an external memory is required to store intermediate values.
This make FPGA good candidates for multicore systems. La-
tency, throughput and Memory have been used as the metrics
for performance evaluation of sorting implementation.

In this context, we presented a novel Bucket sorter architec-
ture designed for the BulkSort algorithm[21]. After the mod-
eling of the BulkSort algorithm, by the use of mathematical
equations and the validation by the use of the C++ simulation,
we were able to present the system design of the proposed
algorithm. We use the Xilinx ISE for FPGA product in order to
synthesize our Simulink design to finally present the hardware
performance of the pipeline system. Our approach can at
best produce O(nlog2(n))-time parallel sorting algorithms.
Since a serial simulation that sorts by comparison requires
at least O(n) comparisons. The optimal speedup would be
achieved when; by using n processors; n elements are sorted
in O(log2(n)) parallel comparisons.

This paper is organized as follows. Section II briefly
introduces the general idea of the BulkSort. The approach
of the BulkSort is presented in Section III, and Section IV
provides details about the C++ simulation of the algorithm.
System design of our proposed model and its sub-blocks are
presented in Sections V and VI. Hardware implementation
consideration are presented in Section VII. Finally, Section
VIII presents some concluding remarks and perspectives.

II. GENERAL IDEA OF THE BULKSORT

BulkSort, is a novel sorting algorithm that has been
presented in [21]. It is an adaptive and parallel algorithm
; based on divide and conquer technique; designed to be
implemented in a parallel and re configurable machine for
sorting numbers. The concept is easy to understand, we
examine the first bit (Must Significant Bit (MSB)) of the
concerned unsorted set of elements. After each comparison,
each sub set is divided into 2 subsets, winners and losers,
each of which undergo the same roles. Fig. 1 illustrate the
concept of BulkSort. A set of 6 numbers (5, 2, 10, 4, 6,
8, 10) are firstly converted into binary sequence.Based on a
comparison,the whole set is divided into 2 subset representing
respectively winners and losers until we have one element
elected as the winner of the group.

5 2 10 4 6 8 14

0101 0010 1010 0100 0110 1000 1110

MSB

0101 0010 0100 0110 1010 1000 1110
update

settings

0010 0101 0100 0110 1010 1000 1110

1110101010000101 0100 01100010

11101010100001100010 0100 0101

Binary

representation

update

settings

update

settings

Ascending order from the smaller to the biggest number

Fig. 1. The Main idea of Bulk Sort [21]

In a binary representation, we have two cases, either 0
or 1.Element with 1 represent a winner, while 0 represent
the loser of a subset. The proposed process is based on an
iterative pipeline system. Sequence of iterations are executed
until a single element is elected as the group winner. Each
element in the group is characterized by certain parameters
which specify respectively its rank, position, the concerned bit
in the current iteration and finally its state (if it is going to be
compared or not with the set). We mention that the BulkSort
is an iterative algorithm where the iteration is a computation
instruction process which loops until stopped condition[21].

III. THE APPROACH OF THE BULK SORT

The approach of our algorithm is as follows: all the
elements will be compared in a pipe stage system (see Fig. 2).

www.ijacsa.thesai.org 656 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

Stage
1

Stage
1

Stage
2

Stage
1

Stage
2

Stage
3

Stage
1

Stage
2

Stage
3

Stage
4

Stage
1

Stage
2

Stage
3

Stage
4

Stage
R

Queue

Data
Output

Pipeline system of the
BulkSort

T=0

T=1

T=2

T=dT

sw
ap

 in

Data
Input

swap out
Update Parameters

Fig. 2. The approach of the Bulk Sort [21]

We assume that each stage of our system represent a compactor
that can compare from 2 to N elements at the same time. At the
beginning the set of MSBs of unsorted set will be compared in
the first stage. Once we have at least one loser, the whole will
be divided into two stages.Then we move to compare the next
bit of the 2 sub groups in each stage. And so on until all stages
are filled. In this case we are in a scenario where the set of
elements are going to be either in a processing or pending state.
Elements in the pending state will wait (in the queue) until the
concerned stage is emptied. We highlight that elements transit
from the pipe to the queue according to the availability of the
stages and this process is automatically managed away by a
system of mathematical equations.

At each iteration, the parameters of all unsorted elements
are updated; according to a specific equations as mentioned
below; depending on their state, either processing or pending
and if the element is winner or loser. The principal notation
used in the following equations are summarized:

• i refers to the current iteration of the sorting process,

• j represents the index of an element in the array,
starting in one.

• Pj refers to an element j of the set of the unsorted
elements,

• Zj
i represents the stage index in which the element Pj

is going to be processed,

• Xj
i represents the bit index of an element,

• Y j
i indicates the iteration the element with index j will

be processed,

• Rj
i refers to the rank of the element Pj ,

• SRk
i indicates the result of a comparison between ele-

ments of the same stage. The value of this parameters
is either 0 or 1, depending whether there is a loser or
not in the concerned stage k,

• R represents the total number of stages.

A For the processing elements:
Each element in the processing state updates its pa-
rameters automatically following the equation pre-
sented below:

1 For the rank (R):
The rank of the winner is computed as
follow:

Rj
i = Rj

i−1 −
Zj

i−1∑
k=0

SRk
i (1)

The rank of loser is:

Rj
i = Rj

i−1 −
Zj−1

i−1∑
k=0

SRk
i (2)

2 The stage (Z):
Zj
i+1 For winners:

Zj
i+1 = modulo(Zj

i +

Zj−1
i∑
k=0

SRk
i , R) (3)

www.ijacsa.thesai.org 657 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

Zj
i+1 For losers:

Zj
i+1 = modulo(Zj

i +

Zj
i∑

k=0

SRk
i , R) (4)

3 The iteration index (Y):
The parameter Y, which refers to the iteration
where the element will be processed depend
on the the result of the parameter Z as follow:

If Zj
i+1 = 0

Y j
i+1 = Y j

i +

∑Zj−1
i

k=0 SRk
i + Zj

i

R
+ 1 (5)

If Zj
i+1 >= 1

Y j
i+1 = Y j

i +

∑Zj−1
i

k=0 SRk
i + Zj

i − 1

R
+ 1

(6)
4 Bit Index (X):

This parameter is incremented automatically
by one, except the case where element is
pending

Xj
i+1 = Xj

i + 1 (7)

B For the pending elements:
The difference between calculation in the case of
pending elements and the processing ones lies in
the sum of SRk

i (indicates the result of a comparison
between elements of the same stage. The value of this
parameters is either 0 or 1, depending whether there
is a loser or not in the concerned stage k) which go
from 0 to the total number of stages(R). And also in
pending state, we don’t talk about loser and winner.
Both have the same mathematical equations.

1 The rank(R):

Rj
i = Rj

i−1 −
R∑

k=0

SRk
i (8)

2 The pipe stage (Z):

Zj
i+1 = modulo(Zj

i +

R∑
k=0

SRk
i , R) (9)

3 The iteration index (Y):
For the reason of dependency, we have to
check the value of Z each time we compute
the iteration index

If Zj
i+1 = 0

Y j
i+1 = Y j

i +

∑R
k=0 SR

k
i + Zj

i

S
+1 (10)

If Zj
i+1 >= 1

Y j
i+1 = Y j

i +

∑R
k=0 SR

k
i + Zj

i − 1

S
+ 1

(11)

4 Bit Index (X):
This parameter remains in standby until the
element goes to the processing state.

Xj
i+1 = Xj

i (12)

A numerous test has been done (A C++ simulation) to vali-
date the proposed sorting algorithm and examine the proposed
idea [21].

We should highlight that the BulkSort is a reconfigured
algorithm in view of number of stages. We have proved that
by increasing the number of stages, the system become faster.
It was also found that we recorded a minimum iteration for
very important data numbers.

IV. C++ SIMULATION

To validate and examine performance of the proposed
sorting algorithm; a program was developed in C++, and test
results are demonstrated using Intel(R) Core(TM) i5-2430M
CPU @ 2.40GHz/2394 MHz. Many experiments with different
size of data, different number of pipe stages(communication
links) were carried out. We should highlight that the proposed
algorithm is iterative and each iteration refers to a clock cycle;
in which several operation are executed in parallel.

Fig. 3. Illustrate the-number of iteration according to the number of pipe
stage.(a),(b),(c) and (d) represent how number of iterations change according

to number of stages in case of 5,6,7 and 8 bits [21].

The number of pipe stages is taken as input parameters.
By means of this point, our algorithm can be re-configurable.
It is found that the number of iterations becomes a constant as
the number of pipe stages increases after a while.As shown in
Fig. 3, increasing the number of pipe stages until we achieved
iteration equal to N (N refers to the total number of bits)with
2N

2 pipe stages. It is also found that even with a minimum
number of pipe stages (1 pipe stage), the number of iteration
is equal to the number of unsorted elements. Our results verify
that our algorithm is re-configurable in view of number of pipe
stages. More stages we have, the more the system gets faster.
A careful analysis reveals also that the number of iterations
can be reduced.

www.ijacsa.thesai.org 658 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

Fig. 4. Illustrate the-number of iteration according to the number of
elements.Figures (a),(b),(c) and (d) show the behaviour of number of

iterations for different number of stages, according to number of elements.
[21].

Based on our experiments (see Fig. 4), we reveal that our
algorithm recorded minimum sorting iteration for very large
data numbers. For example for N=10 bit, the max number
of elements is 1024=2N . With 1 pipe stage, the number of
iteration is 2N , while if we use for example 50 pipe stages,
we have just 28 iterations. while with 500 pipe stages, we can
reach 10 = log(1024) Iterations for 1024 elements. According
to more careful analysis, the complexity in view of number of
iteration to sort n elements is O(n logn) in the best case and
O (n) in its worst case. The main iteration based on a series
of computation of the element’s rank and parameters used in
the next iteration of the sorting process.

V. THE BULKSORT SYSTEM DESIGN

Now it is the time to learn the philosophies of the proposed
sorting architecture and the corresponding SIMULINK model.
We should mention that certain parameters in this section will
be presented otherwise. The clock cycle represents the iteration
and the bus is equivalent to the stage of pipeline system.

The BulkSort process relies on synchronous architecture;
based on parallel processing distributed among several identi-
cal units. Our system performs the process of sorting ; based
on a decentralized comparison between these bits; starting
from the most significant bits and ending after several clock
cycles by the least significant bits. We should emphasize that
in hardware, the choice of the data do not affect the sorting
network, it affects only the implementation of compactors.

The main strength of our system is the ability to compare a
set of elements simultaneously instead of going through them
one by one. In order to make the proposed model easy to
understand, we use Fig. 5 to illustrate the general model. The
BulkSort architecture is composed of n cells PEi with 1 ≤
i < n+1. These cells are interconnected via a communication
system distributed between 3 families of lines. Each of these
cells is made up of seven units (see Fig. 6).

The process of the bulk Sort system involves several data
elements classified into two families: A first family of data

Fig. 5. The external interface of the BulkSort Model.Each Process
Element(PE) represent an element to be sorted.It’s characterized by the set

of parameters.A,S,M represent the communications lines(Buses)

which are distributed among all the processing units(PEi)
(Xi, Yi, Zi and Ri of Fig. 5). The second family of data,
whose elements are shared between all PEi of our system (S,
M, A): Arbitrary(A), Status(S) and Masque lines(M); used in
the comparison process, to indicate the status of lines and the
computation of the basics parameters of the system

Line (A) of Fig. 5 represent a line where data input/output
is transmitted, (S) represent the status line used in the equation
(3), (4), (5), (6), (8) and (9) of the system. While (M) refers
to a set of lines used as a masque in the process.

Before describing the BulkSort blocks, we should define
the use of the data elements in our system.We highlight that
data is read from memory and sent to the input of each PEi

at every clock cycle. As a distributed data, we found in each
PEi a binary sequence to be compared. These numbers refers
to the ID of the PEi. The information of Clock cycle (Yi)
is one of the basis distributed data; used in order to indicate
when the element PEi will be transmitted to the comparison
process. (Zi) indicate the concerned shared line AL. At each
Clock cycle,PEi has a specific rank in a view of the other
PEs Ri . During each clock cycle the values of the elements
Xi, Yi,Zi and Ri are calculated within the processing and
calculation unit PEi by using competing functions which has
been described before.

A line is set to the logic state ’1’ if there is at least one cell
PEi transmitting on this line a binary element = ’1’, otherwise
this line is set to the logic state ’0’. Thus, the value of the
element and the state of the lines AL (’0’ or ’1’) will make it
possible to identify the status of cell (losing cell or winning

www.ijacsa.thesai.org 659 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

Fig. 6. PE’Sub-Blocks.

cell).

Instead of an iterative treatment, the steps performed by the
processors are determined by the clock cycle, which includes
reading, interpreting and executing the processes. Indeed, in
the hardware implementation, the concept of pending does not
exist. The queue refers to shifting in a view of clock cycle.

VI. DESCRIPTION OF THE BULKSORT SUB-BLOCKS

The BulkSort model is built using Matlab/Simulink in
order to be used in the Hardware implementation on FPGA.
For the sake of simplicity, the proposed Simulink design will
be limited to 7 cells. These cells are interconnected via a
communication system. Within each PEi, there is a system
of cooperating units to perform the sorting; each of which
has specific tasks (Fig. 6 and 7).

1) USBT (Bit Selection Unit): It generates the respective
bit for each PEi during the concerned clock cycle. The bit
generation takes into consideration the result of the combat,
either pending or processing state.If the PEi is in processing
state, the USBT unit generates the concerned bit according
to the Next Bit set point, otherwise no generation is performed.

2) USQC (Calculation, Selection and counting Unit): Is
the pivotal unit of the system, at which the parameters Xi, Yi,
Ziand Ri; are generated. USQC is the unit that communicates
with all other units.

Within the USQC unit there are 6 sub units, each of which
is dedicated to make a main task in the system (see Fig. 8):

• Sigma SL: The crucial sub-unit for the PE parameters
computation. Depends on the state of a PE if it is a
loser or a winner. The unit receives the signal (the
information) from the BLOCKS Sumi and next bus,
and chooses the sum concerned according to the next
bus.

• Bloc Cycle Number:A sub-unit which generates the
Next cycleYi and the current Cycle based on a math-
ematical equation (Equation 5,6,10 and 11)

• Bloc Process Bus Number:A sub-unit generating the
Next Bus and the current Bus according to a mathe-
matical equation (Equation 3,4 and 9)

• Bloc Process Rank Number: Allows to define the rank
of each PE at each iteration (Equation 1, 2 and 8)

• Process Bit Number:sub-unit which generates the next
bit and current bit as well as the indicator END
(Equation 7 and 12)

3) USGLE (Selection & Status Line management Unit):
Each PE is connected to the set of state lines. The generation
of the result provided by the USGLE unit is based on the
following indicators: Next Bit, Data, Bus and Combat, in order
to feed the Status Lines (S).

4) UGIE (State Indicator Management Unit): The main
reason of this unit is to generate the state indicators of a PE.
The different state that a PE can take are: WINNER, Combat
and loser. To define the state, each UGIE unit is based on the
following indicators to generate the State: num cycle, Next
Cycle, End and Masque Lines(ML).

www.ijacsa.thesai.org 660 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

USBT

USLA

UCCH

UGLE

UGIE

UGLM

USQC

Di

SL ML

Ri

Num_cycle

AL

Combat

no_spooler

Winner

Next_cycle

Next_bit

END

Next_bus

data

Fig. 7. Interconnection blocks.

5) USLA (Arbitration line selection unit): Responsible for
sending the data to the concerned arbitration. It takes into
consideration the data: next bit and data to define the concerned
arbitration line .

6) UCCH (clock cycle Competing unit): Unit that counts
the cycles of sorting processes, and allows us to define the
number of iteration at each execution of the system.

7) UGLM (Masque lines Management Unit): It indicates
whether there is combat on the bus or not. To carry out this
operation, we use Next bit, Next bus and the masks lines.

The interconnection between the different Sub-unit of a
PE is shown in Fig. 7. Each sub-unit generate and use as
an input several parameters in order to provide at least the
corresponding rank of the concerned PE.

To switch from the MATLAB / SIMULINK model to the
ISE design model, we proceed as follow: The Simulink model
was first checked for compatibility with HDL code generation.
We then generated the HDL code in order to synthesize and
analyze the timing of our design via the integration with ISE.
We finally make an estimation of the resources using ISE.

For the sack of compatibility, before we generate a design
report, we specify the characteristics of our FPGA(FPGA
Spartan 6 XC6SLX150 (184304 Slice register)) after
validating all stages of the HDL advisor. Then an ISE report;
providing the required hardware resources; will be generated.
The generated report gives as details the device utilization
and timing summery of the BulkSort Model.

VII. RESULTS AND DISCUSSION

A. Matlab / Simulink Simulation

In this section, we will provide the hardware simulation of
our algorithm to demonstrate the effectiveness of the theoreti-
cal results in this brief. The C++ Simulation was presented to
validate the proposed concept, while the Simulink modeling is
in order to have an idea about the required resources.

There has been a question to find an optimal sorting
architecture in view of size and depth. The implementation
of the majority of sorting algorithm is limited because of the
insufficient number of resources.

A number of research efforts are interested on sorting
with minimal number of comparators. When we talk about
comparators, we ought to think first about the basic devices
of an FPGA such as: Slice Registers Look up Tables (LUTs)
and others. In this paper, the results will be discussed in view
of these parameters.

To simulate, synthesize, and implement HDL code gener-
ated from the model, Xilinx ISE Design Suite Version 14.5
is used in this work.The ISE provides an environment to go
from design to an implementation of the proposed model by
a specification of the design needs.

A various number of models has been synthesized in view
of number of Process elements (PE). We should mention that
the PEs refer to the set of elements we want to sort. We want
to elaborate the variation of slice registers compared to the
number of PE for different bus values. The bus refers to the
communication link between process elements. Fig. 9 represent
the required resources of the BulkSort model in case of 8
and 16 Buses, for 8, 16, 32 and 64 PEs. We found that the
percentage do not exceed 21 percent of the available slice
LUTs of the used FPGA for the different cases, and remains
constant for the slice registers.

It is observed that the variation of LUTs is linear with
respect to the number of data to be sorted. We note that using
half of Buses we end up with a number of LUTs which is
equal to half the number of the beginning. The amount we
found is the same when we sort half of the data. The use of
LUTs can go up to 1 per cent of the available resources on
the platform. These results prove that our model is optimal in
view of resources.

For the second parameter which is the Slices registers, we
note that a variation of the number of buses for a given data
size do not have a very great effect on the slices registers. On
the other hand, when acting on the amount of data we are left
with the half-slice registers as shown on all tests we performed.
The utilization of slice registers did not exceed 1 per cent of
the available amount on the platform FPGA Spartan 6.

www.ijacsa.thesai.org 661 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

Fig. 8. The USQC subblocks: ProcesscycleNumber, ProcessBusNumber, ProcessRanknumber, ProcessBitNumber and ProcessSigmaSLi

Fig. 9. Required resources of the BulkSort Model in term of slice registers,
slice Luck up Tables and clock cycles

In view of clock cycles (see Fig. 10), we found that even if
we use half of the Buses to sort the same number of elements,
a small increase in clock cycles occurs. So, we can use this
point to say that by the use of this model we can sort a big
data on a specific clock cycles. We can act also on the number
of buses for a model optimization.

The numerical simulation makes it possible to calculate
on the computer the solutions of models and to simulate the

Fig. 10. Number of clock cycles in case of 8 and 16 Buses, for 8, 16, 32
and 64 PEs

physical reality in order to have an idea about the hardware
implementation. While designing the model of the parallel
hardware BulkSort, we focus especially on making an efficient
and optimal system. Our central concern is in dividing the
required work up into pieces to be processed by several blocks.
We proceeded by a partial parallelism (instead of sorting the
elements one by one, a single passage allows us to cross the
set of elements at each clock stroke).

We should highlight that this model is designed to be
implemented in FPGA SPARTAN 6 XC6SLX150 (184304
Slice register). Our system provide both the sorting and ranking
list as well as the number of clock cycles of the process.

www.ijacsa.thesai.org 662 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 12, 2019

VIII. CONCLUSION

In this article, we present a new divide-to-rule-like algo-
rithm, called “BulkSort”. We study and exhibit its parallel
hardware implementation feasibility. Yet, we implemented
it on Matlab-Simulink, and synthesized it using ISE suite
design tool. We highlight that our scheme is parallel and re-
configurable according to the number of buses and number of
processor elements. We also show that the proposed Simulink
design was checked for compatibility with the hardware.
Several tests have been conducted to show the applicability
and illustrate the performance of our algorithm. Next, we
evaluate the BulkSort behaviour in terms of slice registers,
slice LUTs and Clock cycles, while varying the number of
processor elements. Our proposal exhibits nice performance
both in terms of resource utilization as well as sorting time. In
view of perspectives, a high-performance, parallel architecture
for an FPGA-based accelerator implementing the Bulk-Sort
algorithm will be presented. The IP will be modeled using
Vivado HLS and an end-to-end system (ZynQ ZC706 board)
will be developed in order to assess the performance and
resource usage.

REFERENCES

[1] M. Aumüller and M. Dietzfelbinger, “Optimal partitioning for dual-
pivot quicksort,” ACM Transactions on Algorithms (TALG), vol. 12,
no. 2, p. 18, 2016.

[2] S. Wild, “Quicksort is optimal for many equal keys,” in 2018 Pro-
ceedings of the Fifteenth Workshop on Analytic Algorithmics and
Combinatorics (ANALCO). SIAM, 2018, pp. 8–22.

[3] D. P. Singh, I. Joshi, and J. Choudhary, “Survey of gpu based sorting
algorithms,” International Journal of Parallel Programming, vol. 46,
no. 6, pp. 1017–1034, 2018.

[4] H. Peng, L. Huang, and J. Chen, “An efficient fpga implementation for
odd-even sort based knn algorithm using opencl,” in 2016 International
SoC Design Conference (ISOCC). IEEE, 2016, pp. 207–208.

[5] A. Kazim, “A comparative study of well known sorting algorithms,”
International Journal of Advanced Research in Computer Science,
vol. 8, no. 1, 2017.

[6] D. R. Musser, “Introspective sorting and selection algorithms,” Soft-
ware: Practice and Experience, vol. 27, no. 8, pp. 983–993, 1997.

[7] S. Mishra, S. Saha, S. Mondal, and C. A. C. Coello, “A divide-and-
conquer based efficient non-dominated sorting approach,” Swarm and
evolutionary computation, vol. 44, pp. 748–773, 2019.

[8] R. M. Karp, “A survey of parallel algorithms for shared-memory
machines,” 1988.

[9] J. M. Liberti and M. A. Petersen, “Information: Hard and soft,” Review
of Corporate Finance Studies, vol. 8, no. 1, pp. 1–41, 2018.

[10] S. G. Akl, Parallel computation: models and methods. Prentice Hall
Upper Saddle River, 1997, vol. 4.

[11] Y. Zhang, T. Cao, S. Li, X. Tian, L. Yuan, H. Jia, and A. V. Vasilakos,
“Parallel processing systems for big data: a survey,” Proceedings of the
IEEE, vol. 104, no. 11, pp. 2114–2136, 2016.

[12] D. Koch and J. Torresen, “Fpgasort: A high performance sorting
architecture exploiting run-time reconfiguration on fpgas for large
problem sorting,” in Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays. ACM, 2011, pp. 45–
54.

[13] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on fpgas,” The
VLDB Journal—The International Journal on Very Large Data Bases,
vol. 21, no. 1, pp. 1–23, 2012.

[14] R. Perez-Andrade, R. Cumplido, C. Feregrino-Uribe, and F. M.
Del Campo, “A versatile linear insertion sorter based on an fifo scheme,”
Microelectronics Journal, vol. 40, no. 12, pp. 1705–1713, 2009.

[15] H.-T. Hu, J.-R. Chang, and S.-J. Lin, “Synchronous blind audio water-
marking via shape configuration of sorted lwt coefficient magnitudes,”
Signal Processing, vol. 147, pp. 190–202, 2018.

[16] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-cost
sorting network circuits using unary processing,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 8, pp.
1471–1480, 2018.

[17] W. Song, D. Koch, M. Luján, and J. Garside, “Parallel hardware merge
sorter,” in 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2016,
pp. 95–102.

[18] S. Hauck, “The roles of fpgas in reprogrammable systems,” Proceedings
of the IEEE, vol. 86, no. 4, pp. 615–638, 1998.

[19] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie,
J. Ortiz, E. Komp, and P. Ashenden, “Programming models for hybrid
fpga-cpu computational components: a missing link,” IEEE micro,
vol. 24, no. 4, pp. 42–53, 2004.

[20] N. Stekas and D. van den Heuvel, “Face recognition using local
binary patterns histograms (lbph) on an fpga-based system on chip
(soc),” in 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2016, pp. 300–304.

[21] S. Ihirri, A. Errami, and M. Khaldoun, “Bulk-sort: A novel adaptive
and parallel sorting algorithm,” in Third International Congress on
Information and Communication Technology. Springer, 2019, pp. 725–
736.

www.ijacsa.thesai.org 663 | P a g e

