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Abstract—Peripheral vision loss is the lack of ability to
recognise objects and shapes in the outer area of the visual field.
This condition can affect people’s daily activities and reduces
their quality of life. In this work, a smart technology that
implements computer vision algorithms in real-time to detect
and track moving hazards around people with peripheral vision
loss is presented. Using smart glasses, the system processes
real-time captured video and produces warning notifications
based on predefined hazard danger levels. Unlike other obstacle
avoidance systems, this system can track moving objects in real-
time and classify them based on their motion features (such as
speed, direction, and size) to display early warning notification.
A moving camera motion compensation method was used to
overcome artificial motions caused by camera movement before
an object detection phase. The detected moving objects were
tracked to extract motion features which were used to check
if the moving object is a hazard or not. A detection system
for camera motion states was implemented and tested on real
street videos as the first step before an object detection phase.
This system shows promising results in motion detection, motion
tracking, and camera motion detection phases. Initial tests have
been carried out on Epson’s smart glasses to evaluate the real-
time performance for this system. The proposed system will be
implemented as an assistive technology that can be used in daily
life.

Keywords—Peripheral vision loss; vision impairment; computer
vision; assistive technology; motion compensation; optical flow;
smart glasses

I. INTRODUCTION

Age-related macular degeneration (AMD), cataract and
glaucoma are the leading causes of blindness worldwide [1].
Central vision loss is caused by AMD and cataract while glau-
coma affects mainly the peripheral vision [1]. Vision problems
can involve visual acuity, visual field, and colour impairments
[2]. Visual acuity problems due to central causes such as
refractive errors and cataract can be corrected. Visual field loss
caused by brain injury or other diseases such as glaucoma is
typically irreversible and non-corrected by traditional solutions
as eyeglasses and lenses[3].

The human field of vision consists of different areas which
are used to see varying degrees of details and accuracy about
the surrounding environment. Central vision is where objects
are clearly and sharply seen and used to perform most of
the daily activities. This vision comprises around 13 degrees.
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Fig. 1. Human field of view (FOV) for both eyes showing different levels
of peripheral vision

The second type is the peripheral vision used to detect larger
contrasts, colours and motion and extends up to 60 degrees
nasally, 107 degrees temporally, 70 degrees down and 80
degrees up for each eye [3]. The human visual field of view
for both eyes showing different types of peripheral vision is
shown in Fig. 1. It is important to mention that human beings
don’t see in full resolution. Instead, we see fine details using
the central vision only, whereas in the peripheral vision we see
only significant contrasts, colours and recognise motion.

Peripheral vision loss is the absence of outer vision (in-
ward, outward, upward or downward) to varying degrees while
the central vision is preserved. Tunnel vision is considered to
be the extreme case of peripheral vision loss, where the only
part that the person can see is a small (less than 10 degrees)
circle in the middle of the central vision as shown in Fig. 2.
Core routines such as driving, crossing the road, reading, social
activities and other daily actions may become very hard if not
impossible for some people [4], [5].

Visual field tests (Perimetry) are examinations that measure
visual functions for both eyes to clearly define the blind and
seeing areas for each person [6]. Eye specialists interpret
perimetry results manually to have an idea about a person’s
medical condition.

Since many people with peripheral vision loss retain some
seeing areas in their visual field, a system that helps them to
maximise the residual vision in daily life would be useful.
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Fig. 2. Normal Vs. Tunnel vision example. The top picture shows a healthy
vision, and the bottom image shows how a tunnel vision person could see the
same scene.

This solution should differentiate between a person’s blind
and healthy areas using personal perimetry results. Further-
more, it will generate notifications if there are any potential
hazards (moving or stationary) in a person’s blind area.

Developing smart technology to help in healthcare sys-
tems is becoming increasingly important. Different types of
wearable assistive technologies have been implemented to help
people who have vision problems including devices to be worn
on several body parts such as the head, chest, fingers, feet, and
ears.

Information captured by head-mounted sensors such as
cameras can provide a trusted input resource for processing
units to define the potential hazards or threats in a person’s
surroundings. The considerable growth in data processing
functionalities in terms of speed, power and data storage can
allow people to wear assistive technology in daily life to help
cope with their disabilities and defects.

In the case of vision problems, video cameras can be used
to capture the surrounding environment information and send
this to a processing unit where it generates feedback that
enhances the awareness of surroundings. Many smart tech-
nologies have been designed to help with navigation, motion
detection, quality enhancement and other visual improvements

[7].

Computer vision algorithms and techniques have been
developed that can recognise, track and classify different types
of objects in real-time. A wide diversity of daily applications
use these technologies such as video surveillance, augmented
reality, video compression and robotic design and implemen-
tation. Due to the fast growth in smart mobile development,
computer vision algorithms are now available on small, cheap
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and high technology devices.

It is essential to mention the difference between virtual
and augmented reality. Virtual Reality (VR) is the technology
of creating virtual worlds that the user can interact with [8].
VR systems generally require a helmet or goggles. Famous
examples are the Oculus Rift by Oculus [9] and HTC Re Vive
by HTC [10].

Augmented Reality (AR) is the technology of superim-
posing computer-generated information, images or animations
over a real-world images or video [11], [12]. Current AR
implementations are mostly based on mobile applications.
Some interesting examples of AR systems are Sony’s Smart
Eyeglass and the Microsoft Hololens. For more details about
these examples, the reader is advised to refer to Al-Ataby et
al. [13]

Both VR and AR technologies are similar in the goal
of enhancing the user’s cognitive knowledge but follow a
completely different approach. AR systems tend to keep the
user in the real world while letting them interact with virtual
objects whereas a VR user is immersed in a completely
virtual world. The significant difference between augmented
reality systems and other systems that provide superimposition
is the user’s ability to interact with the computer-generated
information [12].

In this work, the main aim is to develop a computer vision
system to help people with peripheral vision loss. Using smart
glasses and computer vision algorithms, we designed a system
that recognises any moving object and classifies it to determine
its danger level. Notifications appear in a person’s residual field
of vision in which the output is projected to. The main aim
is to generate meaningful warning messages that are reliable
and in the best visual position to warn the person about any
possible obstacle/hazard.

This paper is structured as follows: In Section 1, we report
a review of the related literature. A description of the proposed
system is presented in Section 2. Exploratory evaluation ex-
periments are presented and analysed in Section 3. Finally,
research findings and conclusions and recommendations for
future work are provided in Section 4.

II. LITERATURE REVIEW

Since 2001, a group at Harvard Medical School devel-
oped a device that produced an augmented reality vision
for people with severe peripheral vision loss (tunnel vision)
[14]. The device comprises a wide-angle camera and one
display unit that projects a processed image (cartoon style)
from the camera on the regular (healthy) vision. The device
was tested on healthy and vision impaired people and results
showed improvements of self-navigation and object finding for
both cases. The authors also noted that some problems were
reported by patients regarding gaze speed reduction.

In 2010 and based on the simultaneous localisation and
mapping (SLAM) algorithms, a stereo vision based naviga-
tional assistive device that helps visually impaired people to
scan the surrounding scene was developed in the University of
Southern California, Los Angeles. Data captured by the stereo
camera was processed to create tactile cues that alerted the
user via microvibration motors to help avoid possible obstacles
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and provide a safe route to reach the destination. This work
was tested on people with vision loss and the results showed
that the presented device could lead vision impaired people to
avoid obstacles in their path with the minimal cognitive load.
However, this device is very basic in terms of detection angle
[15].

A real-time head-mounted display system with a depth
camera and software to detect the distance to nearby objects
was developed by a group of researchers at Oxford University
[16]. The display unit was made of 24x 68 colour light emitting
diodes comprised of three 60 mm LED matrices and attached
to the front of a pair of ski goggles. The distance between
the user and objects was captured by a depth camera. The
system used an algorithm that created a depth map and then
converted it to an image that the user could see after increasing
the brightness of the closer objects. The system could detect
objects between 0.5-8 meters. The research group performed
two types of experiments; one for sighted people and the
second for severely sight-impaired individuals to test their
ability to walk and avoid obstacles while wearing these glasses.
The authors reported that all the participants could receive
response to objects in their visual field [16].

Between these project periods, many previous studies were
conducted to apply computer vision concepts and techniques
to help people who suffer from vision problems [17] [18] [19].
These solutions were designed to help patients to find a safe
path and avoid obstacles using different types of algorithms
and adequate hardware. The main objective for most computer
vision systems is to highlight different types of objects around
the person and prevent collisions or falls. Alarms are generated
using different types of sensors like sound and vibration.
Because most of these solutions have been for totally blind
people, only a few of them use visual alarms.

In 1979, Netravali et al. [20] presented a recursive algo-
rithm that minimised the prediction error of the moving object
displacement estimation process for a television scene. Later
in 1990, Brandt et al. [21] modelled the camera ego-motion for
motion estimation and compensation. The proposed approach
tracked moving objects with a moving camera by integrating
background estimation techniques, Kalman filtering, autore-
gressive parameter estimation, and local image matching.

Moving objects in videos captured by a moving camera
were positioned and tracked using a technique that applies
an active contour model (ACM) with colour segmentation
methods [22]. The authors used a matching approach based
on an object’s area such that the target feature points are
tracked over time. The proposed system was tested by several
experiments while mounting the video system on a helicopter
or a moving car, and promising results were reported.

Vavilin and his colleagues [23] proposed an approach that
tracks local image regions over time to detect moving objects
and camera motion estimation. A triangular grid of feature
points was composed and optimised from the first frame in the
video sequence to reflect those regions with more details. Then
to extract a tracking feature vector in the next frame, a colour
distribution model was generated based on the neighbourhood
feature points, and the grid was used to initiate the process at
the new frame. A motion field, representing the camera motion
parameters, was then formed based on the motion estimation
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from the grids of both frames.

Camera motion estimation methods have been used for ve-
hicle tracking with moving cameras [24]. The authors proposed
a background suppression algorithm to minimise the effect of
strong wind and vibrations of the high pillars that mount the
camera systems.

A homography transformation-based motion compensation
method has been used for a moving camera background
subtraction [25]. The authors calculated the movement optical-
flow based on grid key-points and achieved a fast processing
speed. They worked in real time with 56 frames/second
with three components of background segmentation: candidate
background model, candidate age, and the background model.

A new approach reported the use of the Color Difference
Histogram (CDH) in the background subtraction algorithm
[26]. This method compares colour variations between a pixel
and its local neighbours, reducing the number of false detec-
tions. Then, a Gaussian membership function was used for
fuzzification of the calculated difference, and a fuzzy CDH
based on fuzzy c-means (FCM) clustering was implemented.
The tested algorithm provided an enhanced detection perfor-
mance of 0.894 Matthew’s correlation coefficient (MCC) and
99.08% percentage of correct classification (PCC).

Background subtraction with an adaptive threshold value
was proposed to detect moving objects on a conveyor belt[27].
The authors proposed a combined frame difference and back-
ground subtraction method with an adaptive threshold that
was calculated using the Otsu method and the detection
performance was improved reaching 99.6% accuracy compared
with the fixed threshold methods.

A literature review for the detection of moving objects
in surveillance systems considering some technical challenges
such as shadows, the variation of illumination, dynamic back-
grounds, and camouflage was presented [28]. An extended
survey for well-known detectors and trackers of moving ob-
jects has been provided in work done by Karasulu et al. [29]
covering the main ideas reported in the literature for detection
and tracking in videos, background subtraction, clustering and
image segmentation, and the optical flow method and its
applications.

A novel navigation assistant system for blind people was
implemented in work proposed by Tapu et al. [30]. The
proposed system (denoted DEEP-SEE) detects both moving
and stationary objects using the YOLO object recognition
method [31]. Based on two convolutional networks, their
system tracks the detected objects in real-time and solves the
occlusion problem. The system then classifies the object based
on its location, type, and distance.

III. PROPOSED SYSTEM

This work is part of a bigger project to develop a wearable
assistive technology to help people peripheral vision loss in
their indoor and outdoor navigation [32], [33].

The primary goal of the proposed system is to generate a
meaningful notification that is reliable and in the best visual
position for the individual. Working with Epson’s smart glasses
(Moverio BT-200), the system processes the captured video in
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real-time to generate suitable output warnings based on the
object’s extracted features and predefined rules. Smart glasses
contain a video camera located in the right corner of the frame.
The display units are integrated into the transparent lenses
making the glasses capable of presenting the output without
blocking the person’s normal vision.

Since the users of the system are people with peripheral
vision loss, their central vision is still healthy, and they can
see through it. The system will superimpose their visual field
with the final (most dangerous) outputs after the classification
phase in order not to overwhelm them with too many alarms.
Stationary obstacles located in the user’s pathway are ignored
because they are already evident for peripheral vision loss
people. Instead, our goal is to identify and track moving objects
in the user’s peripheral area to generate (as early as possible) a
visual notification if this object is a candidate hazard in future.

Real-time processing involves defining head motion type
(static, moving or rotating) and then detect, track and classify
the hazards around the person. Fig. 3 shows the main phases
in this work from capturing real-time video to producing
machine-learning based warnings in the person’s healthy vi-
sion.

Hazard detection Notification output

User display units

Real-time video stream input

Scene captured by
smart glasses with
video camera

Object detection

Head motion
detection

Object tracking

Hazard classification

Fig. 3. Block diagram for the proposed system

The first step is to extract frames and prepare them to be
used in the head motion detection phase (HMD). This step is to
define the type of head (camera) motion to (1) determine the
best motion compensation technique before object detection
and (2) reduce the number of false alarms due to sudden head
movement. Since we have a wearable camera in this system,
camera motion is often synonymous with head motion. This
movement affects the whole processing phase directly from
object detection to notification generation. More detail will be
discussed in the following subsections.

In the object detection phase, all moving objects were
detected to determine their location. Object features can’t be
defined directly using a single frame/image. Therefore, an
object tracker is desired in this stage to build the features
over time. The final phase is to decide the level of danger/risk
based on the extracted features and predefined rules that will
produce proper notification for each level and display them in
the person’s healthy visual field.

Finally, after getting the notification, its colour will vary
based on the object’s speed with three levels of danger:

1)  H: dangerous high level (red notification).
2)  M: dangerous medium level (orange notification).
3) L: dangerous low level (green notification).
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Fig. 4. Degrees of freedom for wearable camera

A. Head Motion Detection and Optical Flow

The head motion detection phase is essential to decide if
the camera is moving or not (stationary) and to detect the
motion type. The output of this phase is needed to determine
the best scenario for the object detection phase. In the case of
a wearable camera, six degrees of freedom are expected based
on head movements as shown in Fig. 4.

The head can move in a forward/backward, left/right
and up/down translation. In terms of rotation, pitch motion
represents the rotation around the x-axis, yaw rotation is a
movement around the y-axis, and finally, a roll is a rotation
around the z-axis. In this work, we will cover all translation
motion types (left/right, up/down and forward/backwards).
Pitch rotation is considered to be similar to the up/down type,
while yaw rotation is deemed to be the same as the left/right
motion. The mentioned motion types can be summarised as
follows:

1)  Stationary camera (S): static background, moving
objects.

2)  Translation/Rotation Right (TRR), Moving Trans-
lation/Rotation Left (TRL): background change in
horizontal direction.

3) Translation/Rotation Up (TRU), Moving Transla-
tion/Rotation Down (TRD): background change in
vertical direction.

4)  Moving Forward (MF) or Moving Backward (MB):
fast changes in the background and foreground.

In the case of a stationary camera, moving objects can be
detected using traditional foreground segmentation methods.
In the case of moving camera, motion compensation step is
needed before background subtraction to distinguish between
real and artificial movement. Finally, the forward/backwards
moving camera case requires advanced motion estimation and
compensation algorithms before the object detection phase
which will be covered in our future work.

Optical flow methods are used to calculate motion vectors
(velocity and direction) for some predefined key-points. The
algorithm determines the head case every half a second to
be used in the second half for the detection and tracking
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processes. A Neural Networks classifier has been used for
camera motion type classification using the calculated average
velocity and direction. Each frame has been divided into
nine subregions. The main aims of segmenting frames into
nine subregions are to simplify the motion flow calculations,
to reduce the effect of moving objects, and to provide a
better representation for the camera motion using more key-
points that are widely spanning all subregions. The NN model
uses eighteen inputs (nine speed - direction pairs for the
corresponding sub-regions) and six targets (static, left, right,
up, down and forward). Several experiments were carried out
to find the optimum NN configuration, and the six head motion
cases were detected with 95% average accuracy.

B. Motion Detection using Stationary Camera

Object detection phase is where all critical objects are
defined by their location to be tracked and classified later. This
step needs the output from the previous phase (Head motion
detection) to determine the best technique for moving object
detection. Background subtraction method was used in the case
of a stationary camera to model the static background and
segment the foreground.

The Gaussian mixture-based background/foreground seg-
mentation algorithm [34] was used to model the background
and detect the moving objects. After applying the foreground
mask on each input frame, moving objects were displayed as
white blobs in the foreground image. Useful features (centre,
size, location) were extracted after contouring the detected
objects to be used in the tracking process. Fig. 5 shows the
mentioned steps.

;
! Thresholding :
—_—
! and contouring;‘

Background / |

1 foreground
| segmentation |
| \

Fig. 5. Foreground detection using Mixture of Gaussians Segmentation.

C. Motion Compensation for Moving Camera

In the moving camera rotation scenario, motion compen-
sation step was performed before detecting the moving object.
The motion caused by the camera was compensated using a
homography matrix (H) that aligns the previous frame with
the current one. The first step is to define key-points in the
current frame ([;—1) to track their corresponding location in
the next frame (I;). Shi and Tomasi corner detection algorithm
[35] was used to find the most prominent points in each frame.
Point quality measure is calculated at every source frame pixel
using the cornerMinEigenVal. The corresponding location for
the detected points was calculated using Lucas-Kanade optical
flow in pyramids [36].

After defining the new location for each point in the frame
(I3—1), a perspective transformation between the two frames
was calculated to determine the homography matrix (). This
matrix was used to compensate the camera motion by aligning
the first frame to the second frame using the flowing equation:

I, 1 =HI,_, (1)
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The result of (1) is shown in Fig. 6 (c). Black sides (right
and top) represent the translation that occurred due to camera
motion. The new images were almost identical and the frame
subtraction method will detect moving object clearly as shown
in Fig. 6 (e).

Fig. 6. Moving object detection after motion compensation. (a) frame (/¢—1)
(b) frame (/) (c) the warped frame using the homography matrix H calculated
based on the optical flow from the two consecutive frames (d) the thresholding
result for frame subtraction (¢ — b) (e) the final output where moving object
with maximum area is detected, red arrows show the optical flow results for
the detected points.

It is worth mentioning that multiple noise results were
expected because of the accuracy of the homography matrix
used for translation. This accuracy has a strong correlation
with the number of the key points used to compute the optical
flow which is a trade-off between accuracy and computation
load. Additional threshold based on blob’s area was applied to
extract the significant objects only.

D. Motion Tracking and Classification

In this part, the goal is to track the detected objects
and extract motion features. Moving objects in the first and
second camera motion scenarios (stationary and rotation) were
tracked. Since the system had recognised the moving objects in
the previous phases, the approximate location for each object
is known.

For each tracked object in each frame, the position, age (the
appearance time in terms of the number of frames), current
location, velocity (magnitude (V') and direction (¢), and the
change of area have been defined.

1) Object tracking and feature extraction: For all objects
detected in each frame, the new positions were compared with
the old ones for both directions (x and y) to decide if the new
object is a new one or an old object with different location.
Consider the object P; ; where ¢ is the object number or ID and
t is the time or frame number. If you have the following objects
in the first frame P; 1, P21, P31, and P, and the objects
Pi2,P59,P32,P,2, and P5 in the second frame, then to
check the tracking possibility for object I3 2, you compare its
position over the horizontal dimension Ps () and the vertical
dimension P; 5(y) to that of all objects in the previous frame
within assumed windows w, and w,, respectively. So, for any
object P, in frame ¢ to be a tracked version of the object
Py ¢—1 in frame ¢ — 1 you should have:
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|Pot(2) =Py p—1(2)[<we AND [Py i(y)—Poi—1(y)|< wy

2
Otherwise, the object will be considered as a new object and
stored to be tracked in the following frames.

Since not every moving object is considered as a hazard, it
is important to check the motion model of the moving object
before tracking it. To test if the object is moving towards the
centre of view (approaching) or away from the centre of view
(receding), the average rate of change of the tracked object’s
area has been defined as:

(A(Py,¢) — A(Pb,t;)) + AA(Py 1) 3)

where AA(P, ;) is the area of the object Py, A(Pp ;1) is the
area of the same object in the previous frame and AA(P, ;_1)
is the latest update for the object area difference compared
to the last frame. When the object is detected for the first
time, AA(P, ;) will be zero and then this value is sequentially
updated in a cumulative manner.

AA(Py,) =

Fig. 7 shows an example of a series of sequential frames
selected from a public dataset [37]. The top table shows the
extracted features for the tracked objects, while the bottom
pictures show the tracking output.

In this example, a moving object has been seen from
frame 90-94. For each tracked object, its age, location, speed,
direction, and area are updated as long as it is detected from the
previous phase. No tracking output generated before frame 91
because the age of the object is 1, meaning that this is the first
time for the object to appear. It is important to mention that
the object was moving very fast in this example. This explains
the big bounding box around the detected object that refers to
a significant difference between the consecutive frames.

To find the direction of movement for each object, the
motion angle was calculated using the changes in the x and
y axis. After this step, the direction of interest (DOI) has
been defined based on the object’s current location and object
direction over time. Since not all moving objects have the
same priority, only objects approaching the user had been
considered. Fig. 8 shows the DOI in each quadrant. Red arrows
represent the high priority direction, while orange arrows
represent low priority direction.

2) Hazard classification rules: Our main aim of this work
is to enhance the quality of life for people with peripheral
vision loss. Therefore, it is necessary to classify the moving
objects that were detected and tracked before displaying the
notification for the user. For a moving object to be classified
as a hazard, the following rules are applied:

1)  The object should be in the user’s visual field for
sufficient time (Object’s age >1).

2)  The object should move at a significant speed (Ob-
ject’s speed > predefined threshold).

3)  The object should move towards the user ( Object has
a DOI).

4)  The object is approaching the user (Object’s change
of area >0).

Vol. 10, No. 2, 2019

Object change of area

Frame ObjectID ObjectAge  Object current . .
Number (frames) location + .ob'|ect.|s apprgachmg
l ¢ l i - object is receding

Fi ID Age Location Speed [Direction] AA
90 0 2 [252 134] | 846.936 | -157.073 | 0.796773
91 0 3 [203 137] | 1471.91 | -177.085 | 1.27666
92 0 4 [142 150] | 1859.64 | -167.426 | 0.441651
93 0 5 [12 177] | 2245.45 | -159.269 | 0.508205

Frame 90 Frame 91

Frame 92 Frame 93

Fig. 7. Tracking example. Top table is the tracking extracted features. bottom
images show the tracking output

IV. EXPERIMENTAL RESULTS AND EVALUATION
A. Motion Compensation and Object Detection Evaluation

Since the purpose of this system is to detect moving objects
for people with vision impairment using smart glasses, the
performance of the proposed system should be tested on a
moving camera video. To test the effectiveness of the motion
compensation method, we applied it on a video [38] con-
taining scenes from a continually moving camera that rotates
horizontally and vertically on the side of a street. Different
types of moving objects appeared in this video such as cars,
pedestrians, bikes and others. A total of 3650 frames (30
frames/second) were used to evaluate moving object detection
with and without motion compensation. Detection after post-
processing (performing some morphological transformations to
filter out small noises) was considered to optimise the detection
process. Moving object detection with rotating camera using
the motion compensation method has provided good results.
Around 48% of the detected objects have been filtered out
without affecting the detection accuracy.
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Fig. 8. Direction of interest example
TABLE 1. PERFORMANCE COMPARISON FOR MOVING OBJECT
DETECTION ALGORITHMS

Algorithm name Recall Specificity FPR FNR F score
St-Charles et al. [39] 0.698 0.991 0.009 | 0.302 0.462
Maddalena et al. [40] 0.856 0.680 0.320 | 0.144 0.037
Allebosch et al. [41] 0.918 0.922 0.078 | 0.082 0.584
Sajid et al. [42] 0.577 0.995 0.006 | 0.423 0.512
Chen et al. [43] 0.797 0.979 0.021 | 0.203 0.386
Charle et al. [44] 0.831 0.963 0.037 | 0.169 0.348
Gregorio et al. [45] 0.336 0.998 0.002 | 0.664 0.322
Varadarajan et al. [46] 0.641 0.928 0.072 | 0.359 0.247
Kurnianggoro et al. [47] 0.713 0.983 0.017 0.287 0.329
Our work 0.928 0.978 0.022 | 0.072 0.629

Public available dataset from changeDetectionl [37] was
used to evaluate object detection after motion compensation.
For this purpose, the sequence (continuousPan) was used
under the category PTZ. This sequence was chosen because
it contains scenes from a continuously moving camera. The
camera is panning horizontally at slow speed. Moving objects
(such as cars and trucks) were seen moving fast. The sequence
contains 1700 frame (480 x 704) and a detection rate of 93%
has been achieved. Performance comparison also provided in
Table 1. The used performance metrics are Recall, Specificity,
False positive rate, False negative rate, F-score, and Precision.
The results show that this method is very competitive and
highly sensitive. The rate of relevant detection overall detection
is the best compared with other algorithms. It is important
to mention that in this project, the accuracy of the detection
location is not very sensitive. It is important to detect an
approximate location which is as close as possible to the real
moving object. This explains the high recall rate for this test
comparing to other work.

B. Motion Tracking and Classification Evaluation

Initial evaluation experiments were carried out to test
the motion tracking method using a moving camera. The
same dataset was used in previous phases [37] to check the
performance of the motion tracking and hazard classification.
The video contains 1700 frames (704 x 480) taken by a rotating
camera to the side of a road. The speed of moving objects was
significantly high.
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A total of 204 moving objects were detected. The tracking
method tracked 162 objects correctly with a tracking accuracy
of 79%.

Object change of area

Frame  Object ID Object Age + : object is approaching

Number (frames)

Object current
location

\l, - : object is receding
F# ID Age Location Speed |Direction| AA
987 0 2 [40 219] 712561 | 9.69548 | 2.96818
988 0 3 [87 216] 1399.63 | 3.0718 | 0.850618

~
0
=)
o
€
o
[

Frame 988

A. object detection B. object tracking C. notification output

Fig. 9. Notification output example based on a predefined hazard classification
rules

In Fig. 9, an example of a notification output generated
based on the predefined rules mentioned in sub-section 2.4.
The left images show the motion detection output (red rect-
angle) with a car moving towards the centre. The purple
rectangles in the middle images refer to the tracking outputs.
Finally, the right images show an example of a tunnel vision
visual field ( when a person loses vision in the peripheral visual
fields while retaining vision in the central regions only).

Using a 300 x 300 frame size, the first output appeared as
a green circle in the bottom left part of the oval shows that
there is a hazard to the bottom left location of the person’s
visual field. In the following frame (988), the age and speed
of the danger increased. Thus, the size and colour of the output
were updated to reflect these changes. The top tables show the
extracted features for the tracked object.

V. CONCLUSION

In this work, a novel, wearable hazard warning system to
help people with peripheral vision loss who are unable to see
using their peripheral vision is presented. The proposed system
implements real-time computer vision techniques to detect,
track and classify moving objects in the peripheral area with
different scenarios for different camera motion states. Head
motion detection was used to decide if the camera is stationary
or moving (forward, rotation up, down, right, or left). The
output from this step was used to select the suitable motion
compensation method for the moving objects detection phase.

Moving hazard detection with rotating camera using the
motion compensation method has provided good results. Mo-
tion compensation is a necessary step for the moving camera
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scenario to distinguish between real and artificial motion
caused by the camera movement. This difference was used
to track real moving objects and reduce false detection due to
camera motion. Moving object detection rate of 93% has been
achieved.

The detected moving objects were tracked and their motion
features were extracted. Tracking accuracy of 79% was ob-
tained. The extracted features are object age, location, speed,
direction, and area change rate. To minimise the number of
notifications displayed in the user’s visual field, the extracted
features were used to classify the objects based on predefined
rules and then, notifications are displayed based on the clas-
sification result. The work is tested on smart glasses (Epson
Moverio BT-200). The initial experiments showed relatively
slow performance, but we are in the process of testing our
system on the latest smart glasses available in the market.

In this work, we choose to use smart glasses because we
believe that including the video capturing unit, the processing
unit and the display unit in one wearable platform will help
the user to navigate easily. Furthermore, because people with
peripheral vision loss retain healthy vision in their central
visual field, it is essential to keep the existing visual case and
add to it the needed information. This work will be developed
further in our future work to provide a wide range of warnings
and notifications for visually impaired people using more
extracted features and machine-learning classification methods.
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