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Abstract—Reverse logistics can be defined as a set of practices 

and processes for managing returns from the consumer to the 

manufacturer, simultaneously with direct flow management. In 

this context, we have chosen to study an important variant of the 

Vehicle Routing Problem (VRP) which is the Multi-Depot 

Vehicle Routing Problem with Simultaneous Delivery and Pickup 

and Inventory Restrictions (MD-VRPSDP-IR). This problem 

involves designing routes from multiple depots that 

simultaneously satisfy delivery and pickup requests from a set of 

customers, while taking into account depot stock levels. This 

study proposes a hybrid Genetic Algorithm which incorporates 

three different procedures, including a newly developed one 

called the K- Nearest Depot heuristic, to assign customers to 

depots and also the Sweep algorithm for routes construction, and 

the Farthest Insertion heuristic to improve solutions. 

Computational results show that our methods outperform the 

previous ones for MD-VRPSDP. 

Keywords—Reverse logistic; inventory restrictions; VRPSDP; 

multi-depots version; Genetic Algorithm 

I. INTRODUCTION 

Our current production system is based on the use and 
processing of raw materials into finished products. The 
completion of this production cycle is through the final 
disposal or reuse of these products. This is how the last few 
years have seen the appearance of the emerging research 
problem: reverse logistics. Thus, issues related to efficiency 
and environmental effectiveness will have to be taken into 
consideration in the areas of business strategy, planning of the 
operation itself, as well as control of the distribution flows, in 
order to implement a reverse logistics of the product. Unlike 
the delivery of products to a customer, reverse logistics of 
returns is to manage flows from consumer to the manufacturer. 
The new challenges for researchers are to minimize 
transportation costs to make the reuse of products and materials 
more profitable than their elimination. 

Reverse logistics can be defined as a set of practices 
designed to manage the return of products from customers to 
the manufacturer for repair, recycling or disposal at the lowest 
possible cost. To do this, a simple VRP is not adequate, it must 
be adapted to situations where vehicles can deliver end 
products and pick up returns simultaneously. The variant of the 
VRP most suited to this situation is the VRPSDP (Vehicle 
Routing Problem with Simultaneous Delivery and Pickup), 

where each customer is associated with delivery and pickup 
requests that must be made simultaneously. 

In practice, applications of the VRPSDP are found 
especially within a reverse logistics context [1]. For instance, 
in the distribution system of food market chains [2], or in the 
urban public transport systems [3]. 

In this problem, each depot has a homogeneous vehicle 
fleet that must ensure the satisfaction of known delivery and 
pickup requests of a set of customers. Each customer must be 
visited once, this means that the vehicle upon arrived at the 
customer who must serve, the delivery and collection must be 
done at the same time. We assume that each depot is associated 
with a stock of products to be delivered and another for 
products collected from customers. The objective is to 
minimize the total distance traveled as well as the number of 
required vehicles while ensuring that the capacity constraints of 
vehicles and depots are not violated. 

The MD-VRPSDP-IR is a very complex problem because 
it combines both the Multi-Depot version of the VRPSDP 
which is an NP hard problem and additional constraints such as 
inventory restrictions. To our knowledge, there is not yet a 
work in the literature that is interested in the interaction 
between these constraints: multiple depots, simultaneous 
delivery and pickup and inventory restrictions. 

To avoid any confusion between certain variants of the 
VRP, we would like to clarify that the problem treated in this 
work is an extension of the VRPB (Vehicle Routing Problem 
with Backhauls), where the origin and the destination of all 
products delivered and picked up from customers are the depot. 
Unlike the VRPPD (Vehicle Routing Problem with Pickup and 
Delivery), where the interchanges of goods are made between 
customers. 

In this paper, we propose a mathematical formulation as a 
Mixed Integer Linear Program (MILP), which aims to 
minimize both total travel cost and number of required 
vehicles. We implement the model in CPLEX to solve small 
problem instances optimally. Then, we propose a Hybrid 
Genetic Algorithm in which we use three different procedures 
to assign customers to depots, and then we embed the Sweep 
algorithm to construct routes for each depot and the Farther 
Insertion heuristic to improve the solution. The proposed 
heuristics are more complicated than those used for VRP 
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involving only deliveries or pickups. The presence of 
combined delivery and pickup demands in our problem, and 
also restrictions on depot capacities mean that additional tests 
are required to preserve feasibility. The quality of our method 
is shown by tests on well-known benchmark instances of MD-
VRPSDP, which is special case of our problem and by 
comparison with optimal results, obtained by CPLEX as well 
as reported result for existing heuristics. 

In Section 2, a rich literature review is detailed. In 
Section 3, mathematical formulation and notations of MD-
VRPSDP-IR are presented. Details of the proposed GAs are 
introduced in Section 4. In Section 5, the performance of the 
proposed GAs is examined by solving Gillett and Johnson’s 
test problems and a computational example is represented with 
parameter settings. Section 6 concludes the paper with future 
works. 

II. RELATED LITERATURE REVIEW 

In this section, we propose to briefly discuss the literature 
of the VRPSDP and its Multi-Depot version, since we have not 
found a literature related to the MD-VRPSDP-IR. 

VRPSDP is firstly introduced by [4]; he developed a model 
and a Cluster First – Route Second approach for the VRPSDP, 
and applied his model and the solution he proposed on a real 
case of a public library distribution system. Author in [1] 
discussed the importance of VRPSDP in the reciprocal logistic 
activities. He developed an Insertion-Based heuristic that use 
different criteria (travel distance, residual capacity and radial 
surcharge) to solve the problem. Afterward, many authors have 
become interested in the VRPSDP and its variants, and have 
developed several heuristics and metaheuristics to solve it. We 
mention here the most recent articles dealing with these 
problems. Author in [5] introduce the notion of Handling Cost 
in the VRPSDP; the items on the vehicle obeys the last-in-first-
out policy, so handling operations are required if the delivery 
items are not the last loaded ones. They propose an Adaptive 
Large Neighborhood Search (ALNS) metaheuristic in which 
they embed the handling policies. Reference [6] deals with a 
special VRPSDP where three-dimensional loading constraints 
are assumed furthermore time windows constraints. To avoid 
any reloading effort, they consider two loading approaches of 
vehicles: loading from the backside with separation between 
delivery and pickup sections and loading at the long side. 
There method is a hybrid of an extended ALNS and 
conventional packing heuristics. Authors in [7] and [8] treat 
green VRPSDP; they propose models that minimize the cost of 
fuel consumption and pollutant emissions of vehicles. To solve 
his model, [7] uses Genetic Algorithms, which she hybrids 
with Sweep heuristic, and the Nearest Neighbor Heuristic to 
generate an initial population, and then Iterated Swap 
Procedure improves the chromosomes. Whereas, [8] applies 
the fuzzy approach when both pickup and delivery demands 
are uncertain, and they propose an ALNS heuristic. Reference 
[9] deals with a variant of the basic VRPSDP including the 
multiple trips and time windows characteristics. They propose 
a solution approach based on Tabu Search, with the sequential 
insertion algorithm to construct an initial solution. Other 
heuristics and metaheuristics have been proposed for different 

variants of VRPSDP; the most recent ones were published by 
[10]-[20]. 

Concerning the Multi-Depot version, we found in the 
literature that few studies. Starting with [21] who deal with the 
Multi-Depot case of simultaneous backhauling problems, their 
method consists of extending the classical Insertion-Based 
Heuristic to allow to the algorithm to insert more than one 
backhaul at a time. This method perform well for a small 
number of backhauls, but if this number increase, 
computational complexity increases rapidly. In [22], the author 
developed an integrated heuristic that treat linehaul and 
backhaul customers similarly. 

Author in [23] proposed four Saving Based Algorithms for 
the Multi-Depot version of VRPSDP: Partition Based 
Algorithms, Nearest Customer Algorithm and two different 
Saving Based Algorithms. Author in [24] was the first to 
develop metaheuristics for the MDVRPSDP. The algorithm 
framework used in their procedure in based on the Iterated 
Local Search (ILS) with an Adaptive Neighborhood Selection 
mechanism (ANS). At first, they assign customers to their 
nearest depot for creating an initial solution, after, they apply 
Saving Algorithm to each depot. They used different structural 
neighborhood methods for improving and perturbation steps of 
ILS. 

An Improved Genetic Algorithm (IGA) is developed in 
[25] to solve the MD-VRPSDP with Soft Time Windows. 
Firstly, customers are assigned to their nearest depot and initial 
solutions constructed by Scanning Algorithm. A greedy based 
strategy is used for cutting and merging routes. Finally, for 
optimizing and adjusting the feasible solutions, they used three 
neighborhood search methods and 3-opt local search. 

To assign customers to depots, [26] employed the 
Minimum Cost Flow problem previously solved by a graph 
algorithm. In this way, the original problem becomes a set of 
several Single-Depot problems. After this, the Weber Basis 
Saving method is developed to construct the initial solution of 
each sub-problem. Finally, improvement phase is assured by 
the Modified Tabu Search. 

At this point, we want to note that in the works cited above, 
concerning the Multi-Depot version of the VRPSDP, the 
authors assign customers to their nearest depots at first, then 
proceed to resolve each VRPSDP as a sub-problem. Our 
contribution in this paper is that we explore new ways to assign 
customers to depots while keeping a margin of randomness. 
More details are given in Section 4. 

III. PROBLEM DESCRIPTION AND FORMULATION 

The MD-VRPSDP-IR is the problem of construction routes 
for homogeneous vehicle fleets, which originate from several 
depots, visit a set of customers assigned to each depot, and 
return to the departure depot. The inventory restrictions 
constraint is reflected in the fact that each depot has two 
storage areas, one for the products that will be delivered to 
customers (SD: Stock for Deliveries), and the other for the 
products collected from customers (SP: Stock for Pickups). 
However, all goods transported must be taken from depots, and 
any collected returns must be sent to depots. The constraint 
assure that a customer can only be served if his delivery 
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request is available in SD and his collection request has enough 
space to be stored in SP. Fig. 1 exemplifies the MD-VRPSDP-
IR with 2 depots and 14 customers. The brackets above the 
customers contain delivery and pickup demands, and those 
above the depots represent depot capacities of delivery and 
pickup demands. 

Let        be a graph, where V is the vertex set and 
  {         }  is the edge set. The vertex set   is 
partitioned into two subsets    {     }  and     
{         }, which represent the set of depots and the 
set of customers, respectively. Each vertex      has a non-

negative pickup demand     , delivery demand    and a service 

time   . Furthermore, in the depot vertex     , there are no 

demands and service times           . For all      , 

a distance matrix     and a travel time matrix     are associated 

with  . A set    of identical vehicles of capacity Q is available 
at each depot      . The optimal distribution of goods 
between depots and customers depends on inventory levels in 
depots, therefore each depot   has maximum capacities     
and     for delivery and pickup requests, respectively. 

A. Notions 

1) Sets 

   : Set of all depots. 

   : Set of all customers. 

  : Set of all nodes,         

   : Set of vehicles associated with depot d. 

  : Set of all vehicles,   ⋃      

2) Indices 

D : Depot 

K : Vehicle 

I : Start node 

J : Destination node 

3) Parameters 

  : Delivery demand of customer j 

    : Pick-up demand of customer j 

    : Service time of customer j 

   : Travel time of a vehicle from node i to node j 

   : Distance between node     and     

   : Travel cost of a vehicle from node     to node     

     : Mileage cost of a vehicle. 

  : Cost of operating vehicle k. 

 : The maximum capacity of a vehicle. 

  : The maximum working time allowed for a vehicle during a 

working day. 

    : The maximum stock of delivery product in depot d. 

    : The maximum stock of picked up product in depot d. 

  : Large number. 

 

Fig. 1. Illustration of MD-VRPSDP-IR. 

4) Decision variables 

   
 :    

    when vehicle k travels directly from node     to 

node    .     
    otherwise. 

   : Load of vehicle after having serviced customer     . 

   : Variable used to prohibit sub tours; can be interpreted as 

position of node      in the route. 

    ∑ ∑       
  

                 : Load of vehicle     

when leaving the depot (Initial Load). 

    ∑ ∑       
  

       
         : Load of vehicle     

after visiting last customer (Final Load). 

B. Mixed Integer Linear Programming Model for MD-

VRPSDP-IR 

The objective of the proposed mathematical model is to 
minimize the total transportation cost   due to the weighted 
sum of the total distance traveled of all vehicles and the cost 
related to the number of required vehicles, where    and    
are the weight factors of the total distance traveled and the 
number of used vehicles, respectively, and α and β are 
conversion factors from distance to cost (unit:     ⁄ ) and 
from number of vehicles to cost (unit:          ⁄ ), 
respectively. 

Minimize total cost  : 

       ∑ ∑ ∑         
 

                ∑ ∑ ∑    
 

             (1) 

Constraints of the problem are given below: 

∑ ∑    
 

                                                   (2) 

∑    
 

    ∑    
 

                                  (3) 

∑    
 

     ∑    
 

                                   (4) 

∑ ∑    
 

    
      

                                         (5) 

∑        ∑    
 

    ∑ ∑           
 

                           (6) 
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              (  ∑    
 

   )                     (7) 

Vehicle load constraints 

              (     
  )                             (8) 

             (  ∑    
  

   )                     (9) 

                                         (10) 

                                           (11) 

Inventory restrictions constraints 

∑                                           
         (12) 

∑        
                                           (13) 

Integrality constraints 

   
  {   }                         

                              

Constraints (2) ensure that each customer is visited exactly 
once by exactly one vehicle. Flow conservation is ensured by 
constraint (3). Constraints (4) required that each vehicle starts 
and ends its route at the same depot. Constraints (5) impose 
that a vehicle cannot travel between two depots. Constraints 
(6) ensure that the total duration of each route (including travel 
time and service time) does not exceed a pre-set limit. 
Constraints (7) eliminate the sub-tours to ensure that the 
solution is connected. After visiting the first customer, the 
vehicle load is calculated by constraint (8) and after leaving 
other customers, the vehicle load is calculated by constraint 
(9). Constraints (10) and (11) ensure that the vehicle capacity is 
respected at each section of the route. Constraints (12) and (13) 
require that stock levels in each depot are not surpassed. 

A necessary but not sufficient condition to have feasible 
solutions is to ensure that all customers can be served; this is 
verified by the following constraints: 

∑   

    

 ∑    

    

     ∑   
    

 ∑    

    

 

However, it is not worth adding them to the mathematical 
model, because we can deduce them from the constraints (2), 
(12) and (13). 

IV. HYBRID GENETIC APPROACH  

The MD-VRPSDP-IR is a NP-hard problem. As the 
problem instances increase in size, the exact solution methods 
become highly time-consuming. In recent years, GA has been 
applied successfully to a wide variety of hard optimization 
problems such as the classical VRP and its multi-depot version. 
The success is mainly due to its simplicity, easy operations, 
and great flexibility. These are the major reasons why we 
selected a GA as an optimization tool in this paper. 

The problem studied in this work is an integration of two 
hard optimization problems: grouping and routing problems. A 
simple GA may not perform well in this situation. Therefore, 
the GA developed in this paper is hybridized with several 
heuristics to construct and improve the solutions. Fig. 2 shows 

the flowchart of three Hybrid Genetic Algorithms (GAs). The 
difference between them is in the assignment of customers to 
depots: GA1 attribute customers randomly to depots, GA2 use 
the K-Nearest Depot heuristic to assign customers to depots 
considering the depot-customer distances, but also a random 
selection step and GA3 assign customers to their nearest 
depots. 

A. Chromosome Representation 

The permutation representation is used for genetic 
representation of the MD-VRPSDP-IR as shown in Fig. 3. A 
chromosome is built as an array with three rows: 1) customers, 
which are listed in the order in which they are visited; 
2) depots, where customers are assigned depending on depot 
capacities; 3) vehicles required in each depot to satisfy all 
demands of customers assigned to this depot. Routes are 
determined depending on vehicles capacity. The number of 
customer nodes determines the length of the chromosome. 

In
it

ia
li

za
ti

o
n

Clustering

Input GA parameters

Evaluation:
Minimization of total distance traveled 

and the number of required vehicles 

Parent selection & Crossover
- Binary Tournament method

- 1 Point Crossover

Mutation operator
Intra-depot : Swap mutation

Random Clustering

Use Elitist replacement for 

building the next population

Stopping criteria

Max nbr of iterations

Output the best solution

Yes

No

Routing :

Sweep Algorithm

Compare Fitness of offspring 

with that of Parents

Improve

 offspring using

Farthest Insertion heuristic

Improving:

Farthest Insertion heuristic

K-Nearest Depot Algorithm Nearest Depot

GA2GA1 GA3

Or Or

 

Fig. 2. The Flowchart of Gas. 

B. Initial Population Construction 

In this work, there are three phases to generate a feasible 
initial solution (Fig. 4). The first one is to assign customers to 
depots, that is, the grouping problem, for this, we use one of 
the three procedures mentioned above. The second phase is to 
perform, for each depot, a clustering of customers assigned to 
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this depot and then determine a vehicle route for each cluster 
by using the Sweep algorithm, that is, the routing problem. The 
last phase consists of improvement of several routes already 
built, for this we use the Farthest Insertion Heuristic. 

1) Grouping: It is worth to note that the grouping problem 

and the routing problem in the "cluster first, route second" 

approach are not independent. A bad assignment solution will 

result in routes of higher total cost (distance) than with a better 

assignment. The grouping procedures described in the 

following assign customers to depots so that the capacity of 

the depots is not exceeded. 

Grouping can be done using one of the following three 
methods: 1) Attributing customers randomly to depots: we 
randomly choose a customer and then a depot, if the depot 
capacity is not yet reached, we assign this customer to this 
deposit, otherwise we choose another deposit and so on. 
2) Using the K-Nearest Depot heuristic (See next paragraph). 
3) Assigning customers to their nearest depots within the limit 
of stock availability in each depot. 

2) The k-Nearest depot heuristic: We developed this 

algorithm to assign all customer to different depots based on 

the customer-depot distance, while keeping a random side in 

the procedure, as shown in Fig. 5. For each customer, we find 

the 
 

 
 (where m is the number of depots) closest depots of this 

customer and who can serve it obviously. Then we randomly 

choose one of these depots to assign the customer. We first 

check the feasibility of this assignment, if the capacities of the 

depot allow this assignment, it is done, if not, we choose 

another deposit, and so on. 

3) Routing: the sweep algorithm: The sweep algorithm 

belongs to the Cluster First - Route Second family. It begins 

by assigning to customers angular coordinates related to 

depot, and then scanning in the direction of increasing 

coordinates. In our paper, to order customers, we do not assign 

them polar coordinates, we use the order generated in the 

grouping phase. 

Customers are added successively to a vehicle route 
following this order, and as soon as the capacity of the vehicle 
is reached, a new vehicle route is created and the process is 
repeated until all customers have been swept. Then, when all 
routes are formed, we execute the next phase. 

4) Improving: the farthest insertion heuristic: After the 

construction is finished, routing costs can be reduced using a 

route improvement algorithm. In our improvement method, 

before validating a change, we must verify that the capacity of 

the vehicles performing the tours processed is respected in all 

points and that the change brings a gain in the cost of the 

solution. 

In the FI heuristic, a route is constructed by progressively 
adding a customer one at a time until a complete route is 
formed. The part of the route that is already built remained 
unchanged during the tour construction process. The FI 
heuristic start with a route of two customers those are located 
farthest to one another. Then, an unvisited customer that is 

farthest to the route is selected. This customer is inserted 
between two consecutives customers that result in minimum 
increase of route cost. 

5 2 10 14 9 11 12 3 6 7 4 8 13 1

1 2 2 2 1 2 2 2 1 1 1 1 2 2

2 3 5 4 2 5 5 3 2 1 2 1 4 3

Customers

Depots

Vehicles
 

Fig. 3. Chromosome Representation. 

7 4 12 8 5 11 10 3 6 2 14 9 13 1

1 2 2 2 1 2 2 2 1 1 1 1 2 2

Customers

Depots

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2

Customers

Depots

2 6 14 5 9 7 8 13 10 1 4 12 3 11

1 1 1 1 1 1 2 2 2 2 2 2 2 2

Customers

Depots

1 1 1 2 2 2 3 3 4 4 4 5 5 5Vehicles

14 6 2 9 7 5 8 13 4 1 10 11 12 3

1 1 1 1 1 1 2 2 2 2 2 2 2 2

Customers

Depots

1 1 1 2 2 2 3 3 4 4 4 5 5 5Vehicles

Grouping

Routing : Sweep algorithm

Improving : Farthest Insertion Heuristic

 

Fig. 4. Initialization of Gas. 

 

Fig. 5. The K-Nearest Depots Heuristic. 

C. Fitness Function 

Fitness function represents the method for the evaluation of 
individuals. Since each generated chromosome is a feasible 
solution, and our function combines route length with other 
parameter, that is the number of required vehicles, the fitness 
value of each chromosome is then calculated with weighted 
sum of all parameters [27]. This method requires adding the 
values of fitness functions together using weighted coefficients 
for each individual objective. That is, our multi-objective MD-
VRPSDP-IR is transformed into a single-objective 
optimization problem, where the fitness function      of an 
individual   is returned as: 

     (  (       ∑  

   

        | |))

  

 

           ∑∑      
 

      

 

   and    are weight parameters associated with the total 
traveled cost of all vehicles and the number of required 
vehicles, respectively. The weight values of the parameters 
used in this function were established empirically. 
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P2
3 6 4 8 2 7 5 1

2 1 2 2 1 1 2 1

Customers

Depots

P1
7 6 1 8 5 4 2 3

1 2 2 2 1 2 2 2

Customers

Depots

7 6 1 3 4 8 2 5

1 2 2 2 1 2 1 2
Offspring

2

Routing
Improving

Offspring

7 6 1 3 4 8 2 5

1 2 2 2 1 2 1

1 1 2 1 1 1 1 2

 

Fig. 6. Example of the 1X Crossover. 

D. Parent Selection and Crossover 

Parent selection is performed through a binary tournament, 
which twice randomly chooses two individuals from the 
population, and keeps the one with the highest value of fitness. 
This process is repeated until the required number of 
individuals is obtained. 

In this paper, we use the One Point Crossover (1X). The 
crossing operator is applied just on the first two range of the 
chromosome; those of customers and depots, as shown in 
Fig. 6. Afterwards, routing and improving procedures are 
applied to the offspring to build the routes for each depot. To 
build the offspring, we first start with the row of customers; the 
first part of the first parent is copied, and then the elements of 
the second part of this parent are reordered in the order of 
appearance they have in the second parent. Afterwards, the 
allocation of customers to depots is done by respecting the 
depots capacities; for each client, we first check if it can be 
assigned to its initial depot (in the first parent), otherwise we 
choose another nearest depot, and so on. 

E. Mutation 

The mutation operator plays the role of a disruptive 
element; it explores a wider search space and allows 
maintaining the diversity of the next population, avoiding the 
algorithm to converge too quickly towards a local optimum. 
We employed the Swap mutation, which we applied as an 
intra-depot mutation that involves a single depot. Swap 
mutation is simple; it consists of randomly taking two genes (2 
customers) from the chromosome and swapping them. If the 
offspring is not feasible, it is deleted. 

V. COMPUTATIONAL RESULTS AND DISCUSSIONS 

This section describes computational experiments carried 
out to study the performance of the proposed GAs. The 
algorithm is coded in C and run on a laptop computer with an 
Intel Core i7 2.9 GHz processor with 8 GB RAM, under the 
operating system Windows

®
 7. First, we compare the 

performance of GAs, which have the best results will be used 
in the tests that follow. Then, to validate the MILP model for 
the MD-VRPSDP-IR proposed in this paper, we compare our 
GA results with those obtained by CPLEX, for a small 
instance, through an illustrative example. To assess the 
effectiveness of the best GA, it is tested on its special case 
MD-VRPSDP, since we did not find reported results for MD-

VRPSDP-IR. For this, we assume that depot capacities are 
infinite. And then we compare results obtained by the best GA 
with [21] and [23] for which there are reported results for the 
MD-VRPSDP, and are using the same data. 

A. Benchmarks 

For the numerical experiments, we adopt the data set 
provided by [21] as the tested instances. It includes 22 problem 
instances (2 to 5 depots, 50 to 249 customers) generated from 
11 benchmark problems of [28] (the first 8 ones are provided 
from [29] and the last 4 ones from [30]). The 22 problem 
instances are partitioned as sets X and Y based on the 
difference of deliveries and pickups. 

We use the method proposed by [21] and used by [23] for 
splitting the original demand into pickup and delivery 
demands. Let    and    denote the coordinates of customer , 
and let   

   
 denote the demand for customer   in the original 

problem. The distance matrix is generated using the original 
coordinates and is calculated with Euclidean distance. 

However,   
   

 is split into delivery demand    and pickup 

demand    as follows: 

        
   

                           
   

 

                (
  

  

 
  

  

) 

In this way, set X of 11 instances is generated. The other 
set Y, likewise with 11 instances, is generated by exchanging 
the pickup and delivery demands in problem instances of set X. 
The basic characteristics of instances are shown in Table 1. 

In addition to these characteristics, we will need the storage 
capacity SD of products to be delivered and the storage 
capacity SP of the collected products, for each depot and each 
instance. The SD and SP values used are created by ourselves 
and are compatible with the instance characteristics and the 
conditions of the problem. We assume that the values of SD 
and SP are equal for all the depots of the same instance. 
Depots’ information is as Table 2 shows. 

TABLE I. BASIC CHARACTERISTICS OF DATA SETS FOR THE MD-
VRPSDP 

N° Inst. n d Q Depot coordinates 

GJ1 50 4 80 (20,20) , (30,40) , (50,30) , (60,50) 

GJ2 50 4 160 (20,20) , (30,40) , (50,30) , (60,50) 

GJ3 75 5 140 (40,40) , (50,22) , (55,55) , (25,45) , (20,20) 

GJ4 100 2 100 (35,20) , (35,50) 

GJ5 100 2 200 (15,35) , (55,35) 

GJ6 100 3 100 (15,20) , (50,20) , (35,55) 

GJ7 100 4 100 (15,35) , (55,35) , (35,20) , (35,50) 

GJ8 249 2 500 (-33,33) , (33,-33) 

GJ9 249 3 500 (70,0) , (-50,60) , (-50,-60) 

GJ10 249 4 500 (75,0) , (0,75) , (-75,0) , (0,-75) 

GJ11 249 5 500 (70,0) , (40,-80) , (40,80) , (-60,20) , (-60,-20) 

n: number of customers, d: number of depots, Q: vehicle capacity 
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TABLE II. DEPOT’S INFORMATION 

N° Inst. SD SP N° Inst. SD SP 

GJ1X 120 85 GJ1Y 85 120 

GJ2X 120 85 GJ2Y 85 120 

GJ3X 170 120 GJ3Y 120 170 

GJ4X 440 320 GJ4Y 320 440 

GJ5X 440 320 GJ5Y 320 440 

GJ6X 290 215 GJ6Y 215 290 

GJ7X 215 160 GJ7Y 160 215 

GJ8X 3050 3100 GJ8Y 3100 3050 

GJ9X 2040 2070 GJ9Y 2070 2040 

GJ10X 1530 1550 GJ10Y 1550 1530 

GJ11X 1220 1240 GJ11Y 1240 1220 

B. Parameter Settings 

First, we employ GJ1X instance to determine the 
appropriate number of iterations (Nbr_Iter) and population size 
(Pop_Size) for GAs, we test combinations: 

         {              } 

           {                 } 

Results of several iterations are summarized in Table 3. For 
each combination, we run the program 30 times, the best 
objective function value and the average of all objective 
function values are summarized in column I and II, 
respectively. The computation time is given as average CPU 
times (s). 

From these results, considering objective function values, 
the best solutions are given by the combination 500-5000 
(Pop_Size-Nbr_Iter) as well as by the combination 200-300. 
However, combination 200-300 is preferable when considering 
also CPU time; it has a much less important CPU time than the 
combination 500-5000. Therefore, we use the combination 
200-300 for Instances GJ1 to GJ7 and the combination 500-
5000 for instances GJ8 to GJ11. 

The other parameters used in GAs are crossover rate 
       and mutation rate        . To obtain these values, 
we proceeded in the same way as for the population size and 
the number of iterations; we test combinations of    
{               }  and     {             } , the same 
instance GJ1X is employed to test them by changing the value 
of one parameter while keeping the other fixed. These values 
are then used in all other tests. 

C. Experiments and Results 

1) Comparison of GAs performances: A computational 

study is carried out to compare GA1 with random assignment 

of customers to depots, GA2 using the K-ND heuristic and 

GA3 which assign customers to the nearest depot. Table 4 

reports the best solutions for the MD-VRPSPD-IR. To obtain 

the routing cost (Routing $) without taking into account the 

cost of using vehicles, we set the conversion factors at α=1 

and β=0. After, we calculate the total transportation cost 

(Trans $) considering the number of used vehicles using the 

conversion factors α=1 and β=100, as follows: 

                                           

By comparing the routing costs, we find that the results 
given by GA1 are very high, and therefore are not competitive 
with those of GA2 and GA3. As for CPU time, it undergoes an 
insignificant change. GA2 gives better results than GA3 (in 
most cases). GA2 is also preferable when considering the 
number of required vehicles; it is usually smaller for GA2 than 
for GA3. We opted for a weighted sum of the routing cost and 
the number of used vehicles to compare the performance of 
GAs. It is found that the performance of GA2 is superior to that 
of GA3 in terms of total cost of transportation within nearly 
equal average computational time. The best solutions generated 
by GA2 are much better than those generated by GA3, this is 
due to the fact that GA2 incorporates the K-ND heuristic, 
which affects customers to depots taking into account the 
depot-customer distances, but also leaves a side of random. If 
we assign customers to the nearest depot, the assignments will 
always be the same for a given instance, and this will decrease 
the performance of the algorithm because it prevents it from 
exploring more, and thus excludes much solutions. 

TABLE III. COMPUTATIONAL RESULTS FOR COMBINATIONS OF 

POPULATION SIZE AND NUMBER OF ITERATIONS. 

Pop_Size Nbr_Iter I II CPU 

50 300 382 419 0,12 

100 300 386 407 0,13 

150 300 377 399 0,13 

200 300 355 388 0,16 

50 500 396 414 0,17 

100 500 373 410 0,18 

150 500 383 400 0,16 

200 500 382 398 0,20 

50 1000 393 410 0,23 

100 1000 389 408 0,24 

150 1000 370 395 0,26 

200 1000 364 397 0,31 

50 5000 391 418 0,75 

100 5000 376 401 0,86 

150 5000 371 393 0,98 

200 5000 352 383 1,52 
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TABLE IV. COMPARISON OF GAS PERFORMANCES FOR MD-VRPSDP-IR 

Instance 
GA1 GA2  GA3 

Total $ Routing $ Nbr_Veh CPU Total $ Routing $ Nbr_Veh CPU  Total $ Routing $ Nbr_Veh CPU  

GJ1X 1309 509 8 0,35 1079 279 8 0,35  1189 389 8 0,45 

GJ2X 721 321 4 0,37 565 165 4 0,28  605 205 4 0,41 

GJ3X 1336 536 8 0,38 1020 220 8 0,32  1337 437 9 0,35 

GJ4X 2839 1639 12 0,44 2494 1294 12 0,36  2520 1320 12 0,41 

GJ5X 1539 939 6 0,53 1308 708 6 0,42  1334 734 6 0,42 

GJ6X 2623 1423 12 0,44 1974 874 11 0,41  2223 1023 12 0,49 

GJ7X 2559 1359 12 0,45 1981 781 12 0,38  2156 956 12 0,41 

GJ8X 6487 4587 19 3,04 5417 3517 19 3,15  5374 3474 19 3,19 

GJ9X 6327 4427 19 3,06 4895 3195 17 2,85  5295 3395 19 3,06 

GJ10X 6258 4358 19 3,01 4905 3005 19 3,28  5282 3382 19 3,17 

GJ11X 6059 4159 19 2,93 4707 2907 18 3,11  5199 3299 19 3,38 

Average 3460 2205 12,5 1,36 2759 1540 12,2 1,36  2956 1692 12,6 1,43 

GJ1Y 1346 546 8 0,42 1083 283 8 0,37  1105 405 7 0,39 

GJ2Y 734 334 4 0,35 548 148 4 0,29  613 213 4 0,36 

GJ3Y 1354 554 8 0,35 1039 239 8 0,45  1367 467 9 0,37 

GJ4Y 2858 1658 12 0,37 2486 1286 12 0,38  2528 1328 12 0,39 

GJ5Y 1587 987 6 0,43 1302 702 6 0,33  1341 741 6 0,42 

GJ6Y 2695 1495 12 0,39 1935 835 11 0,41  2217 1017 12 0,46 

GJ7Y 2472 1272 12 0,41 1993 793 12 0,42  2176 976 12 0,63 

GJ8Y 6451 4551 19 2,91 5389 3489 19 2,89  5388 3488 19 3,37 

GJ9Y 6389 4489 19 2,92 4878 3178 17 2,97  5355 3355 20 3,43 

GJ10Y 6312 4412 19 3,04 4860 2960 19 3,24  5287 3387 19 2,96 

GJ11Y 6204 4304 19 2,97 4711 2911 18 3,19  5186 3286 19 3,42 

Average 3491 2237 12,5 1,32 2748 1529 12,2 1,36  2960 1697 12,6 1,47 

It is very important to note that the value assigned to the 
conversion factor β is set arbitrarily to 100 (a small value) just 
to show that the number of required vehicles in each solution is 
as important as the routing cost, and may even be larger when 
the value of β increases, which is the case in reality. That said, 
when the value of β increases, it directly and significantly 
affects the total cost of transportation. You can easily notice 
that if we increase the value of the conversion factor β, the 
results will switch quickly to a much higher performance for 
GA2 than for GA3, because in most instances, GA2 uses fewer 
vehicles than GA3, which proves the efficiency and strength of 
the developed K-ND heuristic. 

2) Comparison with CPLEX: We use an illustrative 

example, with 2 depots and 12 customers, to compare the 

results obtained by CPLEX with those of GA2. Location of 

depots and customers and delivery and pick-up demands of 

customers are shown in Figs. 7 and 8, respectively. 

Vehicle capacity is set at 80 and depot capacities are set at 
SD_1= SD_2=100 and SP_1=SP_2=50. To obtain the routing 
cost, conversion factors are set at α=1 and β=0. Results are 
summarized in Table V and illustrated in Fig. 9.  Four vehicles 
served 12 customers, 2 for each depot. 

We can easily notice that the results obtained by the 
algorithm developed in this paper are very close to the optimal 
value obtained by CPLEX solver, which uses branch and 
bound algorithm for solving MILP models. In addition, the 
proposed algorithm gives better solutions within significantly 
shorter time frame. 

 

Fig. 7. Locations of Depots and Customers. 

 

Fig. 8. Delivery and Pickup Demands of Customers. 
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Routes for solution obtained by CPLEX    Routes for solution obtained by GA 

Fig. 9. Illustration of Results for Instance with 2 Depots and 12 Customers. 

TABLE V. COMPARISON OF RESULTS OF CPLEX AND GA 

 
Routes Routing $ CPU  

CPLEX 
{D1 - C4 - C12 - C11 - C5 - C10 - D1} 

221 24min 15s 
{D2 - C9 - C2 - C3 - C1 - C8 - C7 - C6 - D2} 

GA2 
{D1 - C4 - C6 - C7 - C8 - C11 - C12 - D1} 

222,3 0,09 s 
{D2 - C1 - C3 - C2 - C9 - C10 - C5 - D2} 

3) Computational results and performance analysis: The 

objective is to minimize the weighted sum of the travel 

distances and the number of required vehicles. We assume that 

depot capacities are infinite. To calculate the total 

transportation cost, we set conversion factors α equal to 1 and 

β equal to 100. Results are reported in Table 6. 

Unlike the results obtained for the MD-VRPSDP-IR, and 
by comparing the routing costs, we find that GA3 gives better 
results than GA2 (in most cases). However, GA2 is preferable 
when considering the number of required vehicles. 
Consequently, the performance of GA2 remains higher to that 
of GA3 in terms of total cost of transportation, even though its 
routing cost is slightly worse than that of GA3. 

TABLE VI. GA2 AND GA3 PERFORMANCES FOR MD-VRPSDP 

Instance 
GA2  GA3 

Total $ Routing $ Nbr_Veh CPU  Total $ Routing $ Nbr_Veh CPU 

GJ1X 1206 406 8 0,36  1273 373 9 0,39 

GJ2X 531 131 4 0,36  625 125 5 0,31 

GJ3X 1254 454 8 0,38  1446 446 10 0,41 

GJ4X 2054 854 12 0,41  2102 902 12 0,47 

GJ5X 1315 715 6 0,42  1427 727 7 0,36 

GJ6X 2398 1098 13 0,39  2475 1175 13 0,42 

GJ7X 2092 892 12 0,43  2331 1031 13 0,43 

GJ8X 5406 3506 19 2,76  5451 3451 20 2,82 

GJ9X 5332 3332 20 2,79  5216 3216 20 2,87 

GJ10X 4778 2878 19 2,77  4861 2861 20 3,2 

GJ11X 4221 2321 19 2,85  4272 2272 20 3,82 

Average 2781 1508 12,7 1,27  2862 1507 13,5 1,41 

GJ1Y 1052 352 7 0,37  1309 409 9 0,36 

GJ2Y 539 139 4 0,34  629 129 5 0,37 

GJ3Y 1219 419 8 0,45  1457 457 10 0,37 

GJ4Y 2032 832 12 0,38  2325 1125 12 0,42 

GJ5Y 1338 738 6 0,42  1415 715 7 0,38 

GJ6Y 2197 997 12 0,38  2251 951 13 0,38 

GJ7Y 2025 825 12 0,45  2319 1019 13 0,39 

GJ8Y 5417 3517 19 2,82  5471 3471 20 2,87 

GJ9Y 5395 3395 20 2,95  5316 3316 20 2,73 

GJ10Y 4883 2983 19 2,92  4881 2881 20 3,95 

GJ11Y 4377 2477 19 3,59  4412 2412 20 3,05 

Average 2770 1516 12,5 1,37  2890 1535 13,5 1,39 
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TABLE VII. COMPARISON OF THE AVERAGE RESULTS FOR THE MD-VRPSDP 

Instances 
Salhi and Nagy (1999)  Gajpal and Abad (2009)  GA2 

Total $ Routing $ Nbr_Veh CPU  Total $ Routing $ Nbr_Veh CPU  Total $ Routing $ Nbr_Veh CPU 

GJ1X 2074 674 14 0,2  - 541 - 0,08  1206 406 8 0,36 

GJ2X 1196 596 6 2,3  - 492 - 0,08  531 131 4 0,36 

GJ3X 2034 734 13 1,5  - 638 - 0,26  1254 454 8 0,38 

GJ4X 2993 1193 18 1,6  - 932 - 0,61  2054 854 12 0,41 

GJ5X 1909 909 10 26,5  - 751 - 0,62  1315 715 6 0,42 

GJ6X 2854 954 19 0,7  - 886 - 0,6  2398 1098 13 0,39 

GJ7X 2573 973 16 1,5  - 878 - 0,6  2092 892 12 0,43 

GJ8X 8326 5326 30 52,2  - 3751 - 9,56  5406 3506 19 2,76 

GJ9X 7026 4426 26 150  - 3398 - 9,47  5332 3332 20 2,79 

GJ10X 7546 4446 31 157  - 3311 - 6,5  4778 2878 19 2,77 

GJ11X 7423 4323 31 40,5  - 3263 - 9,42  4221 2321 19 2,85 

Average 4178 2232 19,5 39,5   1713  3,4  2781 1508 12,7 1,27 

           (33.4%)a (12.0%)b (34.9%) c  

GJ1Y 1814 614 12 0,2  - 541 - 0,08  1052 352 7 0,37 

GJ2Y 1019 519 5 0,3  - 492 - 0,08  539 139 4 0,34 

GJ3Y 2137 737 14 1,4  - 638 - 0,26  1219 419 8 0,45 

GJ4Y 2962 1162 18 1,7  - 932 - 0,63  2032 832 12 0,38 

GJ5Y 1712 912 8 26,5  - 751 - 0,36  1338 738 6 0,42 

GJ6Y 2603 1003 16 3,1  - 886 - 0,61  2197 997 12 0,38 

GJ7Y 2573 973 16 1,5  - 878 - 0,61  2025 825 12 0,45 

GJ8Y 5504 4804 7 24,7  - 3751 - 9,6  5417 3517 19 2,82 

GJ9Y 7601 4501 31 27,8  - 3398 - 6,54  5395 3395 20 2,95 

GJ10Y 7083 4183 29 35,9  - 3311 - 9,6  4883 3983 19 2,92 

GJ11Y 7457 4357 31 40,5  - 3263 - 6,57  4377 2477 19 3,59 

Average 3860 2160 17,0 14,9   1713  3,2  2770 1516 12,5 1,37 

           (28.2%)a (11,5%)b (26.5%) c  
a The total transportation cost obtained from Salhi and Nagy (1999) improved by GA2 
b The routing cost obtained from Gajpal and Abad (2009) improved by GA2. 
c The number of required vehicles from Salhi and Nagy (1999) improved by GA2. 

 

Table 7 reports the results obtained by existing heuristics 
and GA2 for MD-VRPSDP. In the previous results, those of 
Gajpal and Abad (2009) are better. 

The results show that the performance of the algorithm 
developed in this paper is better than the performance of 
previous algorithms. For the instances X, Table 7 shows that 
our proposed algorithm improves the average value of Gajpal 
and Abad (2009) by 12% and for the instances Y, the 
improvement is 11.5%. And the results, of the number of 
required vehicles, obtained by GA2 further improve the 
average values of Salhi and Nagy (1999) by 34.9% and 26.5% 
for instances X and Y, respectively. It should be noted in 
particular that the CPU time is considerably much less 
compared to existing heuristics; an improvement of more than 
85% is observed. Considering these results and CPU times, it 
can be stated that, the proposed hybrid GA perform well and 
find good solutions very efficiently. Finding adequate (good 
enough) solutions in a short time frame is the ultimate goal of 
GAs, even when the problem size is growing. 

VI. CONCLUSION 

MD-VRPSDP-IR is important and practical given the need 
for integrating forward and reverse flows of material. It is an 
extension of the VRPSDP which is not yet addressed in the 

literature. It is a more complicated problem, considering that it 
needs to tackle multiple depots, inventory restrictions and the 
VRPSDP problem simultaneously. The considered objective is 
to minimize the total transportation cost due to the weighted 
sum of the total distance traveled and the cost related to the 
number of required vehicles, as mentioned in Section 3 after 
introducing MD-VRPSPD-IR and its mathematical 
formulation. 

This study contributes to the VRPSDP field by providing 
an efficient hybrid GA that provides good solutions in a short 
time frame for MD-VRPSDP-IR. Our contribution in this 
paper is that we developed a new method, the K-ND heuristic, 
to assign customers to depots, and we compare its 
performances with those obtained by the random assignment as 
well as by the assigning customers to the nearest depot. The 
proposed algorithm embeds, for each depot as a sub-problem, 
the Sweep algorithm to construct routes and the Farther 
Insertion heuristic to improve the solution. Details of the 
integrity of the proposed method were given in Section 4. 

The efficiency of our newly developed heuristic is attested 
by performance evaluation of the proposed algorithm with 
computational experiments for MD-VRPSDP-IR and MD-
VRPSDP. Moreover, according to the results obtained by 
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CPLEX, for a small instance, it can be concluded that the 
proposed Hybrid GA both performs well and is efficient, and 
gives good and feasible solutions. 

Further studies may explore more procedures for assigning 
customers to depots such as assignment through urgencies 
which assigns the customers with highest urgency first, that is a 
way to define a precedence relationship between customers. 
This work has also to continue testing and comparing other 
construction and improvement heuristics such as Petal method. 
Other topics for future work are to include a new crossover and 
mutation operators, with flexible rates, that will fit more with 
the nature of the studied problem. Additionally, the proposed 
method may be applied to a real world routing problems with 
simultaneous pick-up and deliveries with inventory restrictions. 
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