
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

339 | P a g e

www.ijacsa.thesai.org

JWOLF: Java Free French Wordnet Library

Morad HAJJI
1
, Mohammed QBADOU

2
, Khalifa MANSOURI

3

Laboratory SSDIA, ENSET Mohammedia

Hassan II University of Casablanca Mohammedia, Morocco

Abstract—The electronic lexical databases WordNets have

become essential for many computer applications, especially in

linguistic research. Free French WordNet is an XML lexical

database for French language based on Princeton WordNet for

the English language and other multilingual resources. So far,

research on Free French WordNet has focused on the

construction and relevance of lexico-semantic information.

However, no effort is made to facilitate the exploitation of this

database under the Java language. In this context, this paper

proposes our approach for the development of a new Java API

based on Java Architecture for XML Binding. This Java API will

make it easier for developers to exploit and use Free French

WordNet to create applications for natural language processing.

In order to assess the usefulness of our API, The API

performance has been evaluated in the context of a Browser that

we developed to extract semantic and lexical relations connecting

synsets contained in this database, such as: the tree of

hypernymy, the tree of hyponymy, synonyms, etc. The results

showed that our API perfectly meets the needs of

programmatically exploitation, exploration and consultation of

this database in a Java application.

Keywords—JAVA; API; WordNet; WOLF; JAXB; natural

language processing

I. INTRODUCTION

The modern era is characterized by the importance of
information to such an extent that we call it the information
age. Indeed, we are witnessing the third industrial revolution:
the digital revolution. This revolution radically transforms all
areas. No one can deny the changes brought by this revolution
to today's society. These changes affect every aspect of our
lives to such an extent that it is difficult to identify an area
where IT does not make its mark. The transformation is seen in
the fields of economy, production, distribution, management,
finance, marketing, consumption, health, agriculture,
multimedia, education, etc.

In particular, the field of natural language processing is
experiencing a rapid rise. This is due, on the one hand, to the
technological evolution accomplished in the field of
computers, on the other hand, to the progress made in the
information processing models such as the electronic lexical
databases (WordNets) and Artificial Intelligence.

Indeed, the field of electronic lexical databases (Wordnets)
building has recently attracted increasing interest, because of
their many applications in linguistic, psycholinguistic and
computer research. Princeton University pioneered this field by
developing the world's first WordNet namely Princeton
WordNet (PWN) [2] for English. Over time, this lexical
database has become unavoidable, the most developed and the
most notorious. Indeed, the utility of this resource is confirmed

in several areas, in this case the natural language processing,
the extraction of information, the automatic construction of
ontologies, the automatic translation, etc. Moreover, this base
is embedded in the process of building the lexical databases of
other languages by acting as a reference base. These WordNets
have multiplied rapidly, the Global WordNet Association [6]
lists more than 70 WordNets.

To our knowledge, research on French WordNet Free
(WOLF) [7] has focused until now on the construction and
relevance of the lexico-semantic information. Consequently, no
effort is made to facilitate the programmatically use of this
database under the Java language.

To overcome this problem, we propose through this paper a
new approach for the development of JWOLF a Java API for
access and exploitation of WOLF in order to facilitate the use
of this database in programs developed with the Java language.

In addition, this article is part of our research work for the
implementation of the systemic model that we have proposed
in order to produce decision-making indicators from a corpus
based on advances made in the of Semantic Web and Business
Intelligence fields [1]. In particular, it is part of the
"Construction of Ontology" phase of the proposed model in
[1].

II. PRINCETON WORDNET

Princeton WordNet is a project created and maintained by
Princeton University [2]. It is an electronic lexical database for
English Language. WordNet has the features of dictionaries
and thesaurus. This base is built on the notion of 'concept'. In
fact, words only serve to express messages conveying ideas
composed of the senses. It is a semantic dictionary that lists
words grouped by concepts related to each other. A group of
words is called 'Synset' for 'Synonym Set' in English
representing a given concept and connected to other groups of
words. Hence, WordNet is more than just a thesaurus. Several
semantic and lexical relations connect the synsets, among
others are hyperonymy, hyponymy, meronymy, etc.

On the other hand, WordNet is a dictionary which the
majority of synsets contain a definition of the concept they
represent, in addition to simple examples of use in sentences.
As part of WordNet, if a synset contains a definition, it is
called 'gloss'. Therefore, WordNet is an electronic lexical
semantic database for English. The WordNet database consists
of several files listed by syntactic categories (grammatical
classes). Typically, the data source files of this lexical database
are divided into four syntactic categories, namely noun.dat,
verb.dat, adj.dat and adv.dat. In fact, all synsets of the same
syntactic category are listed in the same data file. Thus, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

340 | P a g e

www.ijacsa.thesai.org

noun.dat file contains all the synsets representing the synonyms
of the nouns, the verb.dat file contains all synsets representing
the synonyms of the verbs, the adj.dat file contains all synsets
representing the synonyms of the adjectives and finally the file
adv.dat contains all synsets representing synonyms of adverbs.

Each synset includes an identifier, synonym words,
relational pointers, a definition (gloss), and example for usage
sentences.

A word is represented in WordNet either in its orthographic
form as individual word or in the form of a sequence of
individual words linked by underscores. So, natural_object is a
composed word that represents a unique concept.

The relationships between the synsets are encoded as
relational pointers. Several relationships are defined within
WordNet, among others are Antonym, Hyponym, Hypernym,
Meronym, etc. Some of these relations are reflexive insofar as
the existence of a relation between a synset X and another Y
implies the existence of the inverse relation between Y and X.
Indeed, if a synset X contains a relational pointer to another
synset Y it implies that the synset Y contains the relational
pointer opposite to X.

Synonymy is an implicit relation that links the words of the
same synset since a synset is comprised of synonyms.

For each syntactic category, relational pointer types are
represented by symbols. Indeed, for nouns, Antonymy is
represented by the symbol '!', Hyponym is represented by the
symbol '~', Hypernym is represented by the symbol '@ etc. In
Fig. 1 we show the first synset belonging to the syntactic
category representing nouns.

In addition, the WordNet database contains other files such
as files with the extension .exc for exceptions, files with the
extension .idx for indexes, and so on.

Fig. 1. WordNet 2.0 Noun.Dat File.

III. FREE FRENCH WORDNET

The Free French WordNet (WOLF) is in XML (Extensible
Markup Language) format used by the DebVisDic in the
BalkaNet project. This format uses a scheme of document type
definition (DTD). The graphical representation of this DTD is
depicted in Fig. 2 as a hierarchical graph. This figure represents
the hierarchy describing the structure of the debvisdic-strict.dtd
file available on paper [3] converted to XML Schema.

However, the WOLF scheme is limited to the WN,
SYNSET, ID, POS, SYNONYM, ILR, BCS, DEF and USAGE
elements. The structure of WOLF is illustrated in Fig. 3.

Thus, WOLF is composed of a set of one or more
SYNSETS. Each SYNSET includes an ID element, a
SYNONYM element, and a DEF element. In addition, it can
contain zero or more ILR elements, zero or one BCS element,
zero or more USAGE elements. In Table 1, we give the
meaning and use of the elements constituting the schema of the
WOLF structure.

Fig. 2. Debvisdic-Strict Structure.

Fig. 3. WOLF Structure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

341 | P a g e

www.ijacsa.thesai.org

TABLE I. WOLF ELEMENTS

Element Usage

WN The root node representing the WordNet database itself.

SYNSET Represents a set of synonyms.

ID
Represents the identifier of a SYNSET identical to that in
Princeton's WordNet.

POS
Part of Speach (POS): Represents the grammatical nature of
the synset words (syntactic category). Takes values N for

noun, V for verb, A for adjective and b for adverb.

SYNONYM
Contains a list of synonyms words representing the same

meaning.

ILR

Internal Language Relations (ILR): Includes a list of

semantic links to other synsets. The links are based on the

identifiers of the synsets. This tag has a 'type' attribute
specifying the nature of the link between two synsets. See

Fig. 4.

BCS
Basic Concept Sets (BCS): Sets of Basic Concepts that

represents the importance of a synset.

DEF
Definition: Includes a small definition of the meaning that a
synset represents.

USAGE
Includes a usage examples of the meaning that a synset

represents.

The notion of pointers is adopted by WOLF and
represented by relational links. While in the case of Princeton
WordNet, the pointers are represented by symbols, within the
context of the WOLF the relational links are filled via the ILR
tag. Technically, the type of a relational link is indicated in the
'type' attribute of this tag in the form of a string. The value of
this string gives the ID of the synset pointed to by this relation
with the synset which contains this ILR tag. Fig. 4 depicts all
types of relational links implemented by WOLF while Table 2
represents their meanings.

The WOLF lexical database relates the synsets according to
relationships listed by syntactic categories in Table 3.

Fig. 4. ILR Types List.

TABLE II. ILR TYPE SIGNIFICATION

ILR Type Signification

verb_group Verbs are grouped according to their meanings.

usage_domain
A relation between two concepts X and Y,

insofar as Y represents the domain of use of X.

holo_part
A relation between two concepts X and Y as far

as X is a part of Y.

also_see also, a reference of weak meaning

instance_hypernym

A relation between two concepts X and Y with:

Y is a type of X and Y is a root node of the

hierarchy.

category_domain Indicates the category of this word.

be_in_state
A relation between two concepts X and Y insofar

as the concept X is qualified by the concept Y.

region_domain

A relation between two concepts X and Y to the

extent where Y is a geographical or cultural
domain of the concept X.

participle

A relation between an adjective X and a verb Y

to the extent that X is the participle form of the

verb Y.

near_antonym
A relation that links two concepts X and Y to the
extent that X is the oposed of Y.

causes
A relation that links two verbs X and Y in which

Y derives from X (causal relation).

hypernym
A relation between two concepts X and Y in

which X is a type of Y. X is kind of Y.

eng_derivative A word is derived from English.

similar_to
A relation between two synsets X and Y having
the same meaning. As X is similar to Y.

subevent
A relation between two concepts X and Y in
which X induces Y.

holo_member
A relationship between two concepts X and Y in

which X is an element of Y.

derived
A relationship between two words X and Y in

which X is derived from Y.

holo_portion
A relation between two concepts X and Y in
which Y represents a portion of X.

TABLE III. RELATIONS PER SYNTACTIC CATEGORY

Syntactic category Relations

Noms (Nouns)

holo_part, usage_domain, instance_hypernym,

category_domain, near_antonym, be_in_state,
hypernym, eng_derivative, holo_member,

region_domain, holo_portion,

Verbes (Verbs)

verb_group, usage_domain, also_see,

category_domain, near_antonym, causes, hypernym,
eng_derivative, subevent, region_domain.

Adjectifs (Adjectifs)

usage_domain, also_see, participle,

category_domain, near_antonym, be_in_state,

eng_derivative, similar_to, region_domain, derived.

Adverbes (Adverbes)
usage_domain, category_domain, near_antonym,
eng_derivative, region_domain, derived.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

342 | P a g e

www.ijacsa.thesai.org

TABLE IV. SYNTACTIC CATEGORIES PER RELATIONSHIP

Relationship Syntactic Categories

verb_group Verb.

usage_domain Noun, Verb, Adjective, Adverb.

holo_part Noun

also_see Verb, Adjective

instance_hypernym Noun

category_domain Noun, Verb, Adjective, Adverb.

be_in_state Noun, Adjective

region_domain Noun, Verb, Adjective, Adverb.

participle Adjective,.

near_antonym Noun,Verb, Adjective, Adverb.

causes Verb

hypernym Noun, Verb.

eng_derivative Noun, Verb, Adjective, Adverb.

similar_to Adjective.

subevent Verb.

holo_member Noun

derived Adjective, Adverb.

holo_portion Noun

The exploitation of these relations between the synsets
makes it possible to construct tree structures. For example, the
tree structure of hypernymy linking a word to these ancestors
or categories according to all the senses that it has and all the
syntactic categories to which it belongs. As WordNet, WOLF
can be seen as a huge semantic network whose basic unit is
synsets linked by lexical and semantic relations. Table 4 lists
the syntactic categories by relationship. Thus the relationship
'hypernym' concerns only the category of nouns and the
category of verbs.

IV. JAVA ARCHITECTURE FOR XML BINDING

Data binding refers to the mapping between classes of a
program and data in an XML document. Just like object-
relational mapping (ORM) solutions that perform the mapping
between classes of a program and tables within a relational
database, JAXB is a Java API that interfaces with an
application program and an XML file to simulate the data
contained in this file at the Java object-oriented level. It defines
mappings between an XML schema or a DTD and classes in a
Java program. JAXB is an abstraction layer between the object
model and the XML model. JAXB provides a transparent way
to link XML schemas with classes in Java programs that make
it easy to manipulate and process XML data with Java. As
illustrated in Fig. 5.

The binding process is based on two notions of marshalling
and unmarshalling. The unmarshalling operation matches the
contents of an XML file with the contents of a Java tree. While
the marshalling operation is the reverse operation and it
matches the contents of a Java tree with the contents of an
XML file. As shown in Fig. 5. The linking process typically
consists of seven steps: Class Generation, Class Compilation,
Unmarshal, Generate Content Tree, Validate (Optional),
Content Processing, and Marshal.

Fig. 5. JAXB Architectural Overview [5].

JavaBeans are generated with the XJC command (Xml-
Java Compiler) shown in Fig. 5 by 'Portable JAXB-annotated'
classes. In what follows, we present a part of the generated
code relating to the class 'SYNSET'.

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "", propOrder = {
 "id",
 "pos",
 "synonym",
 "ilr",
 "bcs",
 "def",
 "usage"
})
@XmlRootElement(name = "SYNSET")
public class SYNSET {

 @XmlElement(name = "ID", required = true)
 protected String id;
 @XmlElement(name = "POS", required = true)
 protected String pos;
 @XmlElement(name = "SYNONYM", required = true)
 protected SYNONYM synonym;
 @XmlElement(name = "ILR")
 protected List<ILR> ilr;
 @XmlElement(name = "BCS")
 protected String bcs;
 @XmlElement(name = "DEF")
 protected String def;
 @XmlElement(name = "USAGE")
 protected List<USAGE> usage;

 /**
 * Gets the value of the id property.
 *
 * @return
 * possible object is
 * {@link String }
 *
 */
 public String getID() {
 return id;
 }
 …… // other methodes
}

The JAXB API entry point is materialized by the main
JAXBContext class that provides transparent access to manage
and manipulate unmarshal, marshal, and validate XML (which
refers to Java binding operations).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

343 | P a g e

www.ijacsa.thesai.org

public WOLF getWolfFromXml() {
 try {
 JAXBContext jc = JAXBContext.newInstance("org.hajji.jwolf.model");
 Unmarshaller unmarshaller = jc.createUnmarshaller();
 System.setProperty("javax.xml.accessExternalDTD", "all");
 WOLF wolf = (WOLF) unmarshaller.unmarshal(new File("wolf-
1.0b4.xml"));
 return wolf;
 } catch (JAXBException e) {
 e.printStackTrace();
 return null;
 }
}

V. JWOLF

The goal of JWOL is to simplify and accelerate the
common tasks of language processing. It provides application
support for seamless access to WOLF data. In fact, the
understanding and perception of the WOLF structure and the
notions that it is built up is the most important task.

A set of classes making up the library by providing a set of
functions to access WOLF data and explore lexical and
semantic relationships. During the development of this API we
were inspired by JWNL [4] a Java API to access Princeton
WordNet.

We have adopted the layered development model to benefit
from the advantages it provides, namely the isolation of
technical and business concerns, the substitution between layer
implementations, the promotion of dependency management,
etc. In Fig. 6, we illustrate the architectural hierarchy of
JWOLF layers. Each layer uses and exploits the services
offered by the layer that lie below it.

The JWOLF layer offers an abstraction of the notion of
electronic lexical database whose class diagram of its model is
illustrated in Fig. 7.

While developing the architecture of this API, we have
targeted the following general design goals:

 Simplify the configuration and use of the API by
requiring as little code as possible. One of the basic
concepts of our approach is to make a self-configuration
of this API via a property file written in XML.

 Provide transparent access to WOLF data by adopting
an abstraction layer.

In Fig. 8, we show the representative classes of the JWOLF
layered model.

Fig. 6. JWOLF Architecture.

Fig. 7. JWOLF Model Class Diagram.

Fig. 8. Simplified Class Diagram of the JWOLF Layered Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

344 | P a g e

www.ijacsa.thesai.org

The class 'WN' represents the notion of data binding
provided by the API JAXB. The class 'Dictionary' represents
an abstraction of the notion of the dictionary as much as the
class 'MapBackedDictionary' constitutes the concretization and
the implementation of this notion. The conceptual aspects of
this API have evolved as it has been implemented. However,
some basic principles persist inevitably. These can be
summarized as follows:

 Interfaces providing read-only access to WOLF data.

 Offer an abstraction layer of the manipulation of these
data

 Offer special features, such as searching for the
meanings of a word, syntactic categories of a word, etc.

 Provide to the programmers, the access to networks of
lexical and semantic relations of a word.

Since we aim to explore WOLF, the JWOLF API model
provides access to this database through a number of read-only
interfaces and class definitions. As a result, it does not provide
functionality for changing WOLF data.

VI. WOLF BROWSER

In order to evaluate the elaborated JWOLF API and give an
overview of the features it offers, we have developed a WOLF
Browser, a tool for WOLF exploration. In fact, this tool
constitutes the 'Presentation' layer according to the
decomposition of a system according to a five-layer model
whose architecture is presented in Fig. 9.

The search for the synonyms of a word using WOLF
Browser is carried out via a graphical explorer interface
designed specifically for this purpose. Using this explorer,

users can access the sense trees represented by words in the
form of synsets, the trees of lexical relations and the trees of
semantic relations linking words with each other’s according to
their syntactic categories.

We show in Fig. 10 the use of this tool to extract the
hypernymy tree for the word 'Reporter' as part of the syntactic
category of nouns. In fact, this word belongs to two syntactic
categories namely 'noun' and 'verb'. This word is a homograph
to the extent that it has different meanings while having the
same graphic form.

WOLF can be used for the development of natural
language processing (NLP) applications. Thus, JWOLF as Java
API will allow developers to more easily use Java to create
NLP applications. In fact, JWOLF provides other features such
as relationship discovery and morphological processing. It can
be used for searching the synonyms of a given word, the
extraction of the relations of a given type linking a given word
to the synsets contained in WOLF (for example, obtain the tree
of hypernymy of a given word).

Fig. 9. Layered Model.

Fig. 10. WOLF Browser.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

345 | P a g e

www.ijacsa.thesai.org

VII. CONCLUSION

This research paper provided an approach for the
development of JWOLF; a Java API to improve and facilitate
access and exploration of the data listed in WOLF.

The proposed approach consisted of identifying the
structural features of Princeton WordNet and that of WOLF.
The study of all the architectural constituents of WOLF
highlighted the compositional specificities of this linguistic
base. Hence, a presentation of the data binding approach
offered by the JAXB Java API for manipulating data in XML
files with the Java programming language has been elaborated.

The research methodology adopted in this paper was
concretized by the implementation of the JWOLF to explore
the WOLF data, extract lexical relations and semantic relations
between the synsets it contains.

In order to assess the usefulness and the benefits offered by
our API, we developed WOLF Browser, a tool allowing to
access the linguistic data contained in WOLF and to explore
relational trees that this API allows to extract.

The results of this work showed that our API represents a
significant improvement in the exploration manner of the
WOLF and a considerable optimization of using this database
programmatically. It can be seen as a brick that can be added to
the extraordinary building of Java libraries. It has been

developed to provide a higher level of abstraction, reducing the
effort for using WOLF in a Java programming environment.

In future works, we will utilize this API in the ontology
extraction process from a corpus.

REFERENCES

[1] M. HAJJI, M. QBADOU, K. MANSOURI, "Proposal for a new
Systemic Approach of Analitical Processing of Specific Ontology to
Documentary resources: Case of Educational Documents", Journal of
Theoretical and Applied Information Technology, July 2016, Vol.89,
No.2, pp. 481-51.

[2] Fellbaum, C., WordNet. An Electronic Lexical Database. MIT Press.
1998.

[3] “InriaForge : Wordnet Libre du Français : Liste de fichiers du projet
Wordnet Libre du Français.” [Online]. Available:
https://gforge.inria.fr/frs/?group_id=1177&release_id=7690. [Accessed:
31-Jan-2019].

[4] B. Walenz and J. Didion, “JWNL (Java WordNet Library),”
SourceForge. [Online]. Available:
https://sourceforge.net/projects/jwordnet/. [Accessed: 31-Jan-2019].

[5] “Chapter 17 Binding between XML Schema and Java Classes (The Java
EE 5 Tutorial),” Oracle. [Online]. Available:
https://docs.oracle.com/cd/E19316-01/819-3669/bnazf/index.html.
[Accessed: 31-Jan-2019].

[6] “The Global WordNet Association,” The Global WordNet Association.
[Online]. Available: http://globalwordnet.org/. [Accessed: 31-Jan-2019].

[7] B. Sagot, D. Fiser, "Building a free French wordnet from multilingual
resources", OntoLex. Marrakech Morocco, 2008.

https://gforge.inria.fr/frs/?group_id=1177&release_id=7690
https://sourceforge.net/projects/jwordnet/
https://docs.oracle.com/cd/E19316-01/819-3669/bnazf/index.html
http://globalwordnet.org/

