
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Design and Analysis of DNA Encryption and
Decryption Technique based on Asymmetric

Cryptography System

Hassan Al-Mahdi1
Computer Science & Information Dept.,

College of Science and Arts,
Jouf University, KSA

Meshrif Alruily2

Department of Computer Science,
College of Computer and

Information Sciences,
Jouf University, KSA

Osama R.Shahin∗†3, Khalid Alkhaldi∗4
∗†Computer Science & Information Dept.,

College of Science and Arts,
Jouf University, KSA

†Physics and Mathematics Dept,
Faculty of Engineering,

Helwan University, Egypt

Abstract—Security of sensitive information at the time of
transmission over public channels is one of the critical issues in
digital society. The DNA-based cryptography technique is a new
paradigm in the cryptography field that is used to protect data
during transmission. In this paper we introduce the asymmetric
DNA cryptography technique for encrypting and decrypting
plain-texts. This technique is based on the concept of data
dependency, dynamic encoding and asymmetric cryptosystem (i.e.
RSA algorithm). The asymmetric cryptosystem is used solely
to initiate the encryption and decryption processes that are
completely conducted using DNA computing. The basic idea
is to create a dynamic DNA table based on the plaintext,
using multi-level security, data dependency and generating 14
dynamic round keys. The proposed technique is implemented
using the JAVA platform and its efficiency is examined in terms
of avalanche property. The evaluation process proves that the
proposed technique outperforms the RSA algorithm in terms of
avalanche property.

Keywords—DNA cryptography; asymmetric encryption; block
cipher; data dependency; dynamic encoding

I. INTRODUCTION

Information is a treasured commodity in today’s societies.
As the world becomes ever more connected, the need for ef-
fective and intensive information security grows exponentially
and is essential for protecting information against unauthorized
access and for preserving information privacy. Moreover, the
number of intruders is said to be directly proportional to the
advances in information technology [1], [2]. The most common
techniques used in computer security fields are steganography
and cryptography [3], [4]. The primary task of these techniques
is to maintain the security and confidentiality of information
[5].

Cryptography is a method of encrypting and decrypting text
by blocking confidential data in an incomprehensible way to
the intruder [6], [7], [8]. Different cryptography procedures [7]
have been created, such as the substitution algorithm, which
depends on supplanting one letter with another, and can be
generally classified according to the type of encryption key into
symmetric and asymmetric encryption. The RSA algorithm is
considered a strong asymmetric encryption algorithm.

Fig. 1. General Construction of Symmetric and Asymmetric Encryption
Algorithms.

In symmetric encryption, the same key is used for both
encryption and decryption. Therefore, it is important to identify
a safe way to transfer the key between the sender and recipient.
Asymmetric encryption uses the key pair concept; it uses a
different key for encryption and decryption. The key usually
specifies the private key and the other key, known as the public
key. The private key is kept private by the owner and the public
key is shared between the approved recipients or is made avail-
able to everyone. Encrypted data can only be encrypted with
the recipient’s public key using the corresponding private key
[9], [10]. The general construction of the encryption algorithms
is illustrated below in Fig. 1. For maximum protection and
robust security with high capacity, new methods of hiding data
were suggested by the researchers based on DNA [11], [12].

Recently, research has been carried out on DNA-based
data hiding schemes. Most use biological properties of DNA
sequences. First, however, some basic knowledge should be
introduced [13], [14]. DNA is a nucleic acid consisting of
genetic information that is used in the development and work
of living creatures and some viruses. It consists of the most
complex organic molecules. DNA stores genetic information
as a symbol of four chemical bases: adenine (A), guanine (G),
cytosine (C) and thymine (T). The information required to
build and maintain a living organism is determined by the
sequence of the rules above. However, like every data storage
device, DNA requires protection through a secure algorithm.
This has led to the field of new research based on DNA

www.ijacsa.thesai.org 499 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

computing.

Leier et al. [15] proposed a robust scheme using a special
key sequence, known as a primer, to decode sequential DNA.
In addition, the generic DNA sequence is used as a reference,
which defines the receiver. Thus, a specific primer and an
encrypted sequence are sent to the receiver. Without specific
prefixes and sequences, binary data cannot be decrypted cor-
rectly. In [11], Peterson proposed a method to hide data in
DNA sequences by replacing three consecutive DNA bases as
one letter. For example, ”B” = AAC”, ”E = CCG”, etc. There
are 64 symbols that can be encoded. However, the repetitions
of the letters ”E” and ”I” that appear in English text are very
high. Therefore, an attacker could use this property to break
the encrypted message.

The proposed DNA coding technique in [16] is based on
a symmetric key where key sequences are attained from the
genetic database and left as they are on both ends: sender
and recipient. The plain text is firstly converted to binary
format and then to DNA format using the DNA substitution.
In [17], three test techniques based on DNA were proposed.
These methods are: insertion method, complementary pair
method and replacement method. For these three methods, a
DNA reference sequence is chosen and the secret message is
incorporated into it to obtain a pseudo DNA sequence that is
sent to the receiver ...

The system presented in [18] proposes a key block encod-
ing inspired by three-phase DNA. These are: initial, repetition
and final stages. It includes a step that mimics the idea of the
original biological molecules of transcription, i.e. transfer from
DNA to messenger RNA, which then translates from mRNA to
amino acids. During design, it follows expert recommendations
in coding and focuses on ”confusion” and ”propagation”,
which are basic properties of encoded text.

Another data hiding technique [19] was developed mainly
through two phases. In the first phase, plain text is encrypted
using the RSA encryption algorithm whereas, in the second
phase, the encrypted message is encrypted using the comple-
mentary characters while preserving the index of each hidden
letter of the message in the DNA sequence. The strength of this
algorithm is the use of the RSA algorithm, which is considered
one of the most powerful asymmetric encryption techniques.

A new way of data hiding is suggested in [20] based
on the replacement of the repeated characters of the DNA
reference sequence by placing an injection scheme between
a complementary base and two secret bits in the message.
This algorithm reduces the rate of modification by substituting
only consecutive DNA characters by expanding zero. However,
the modification rate can be very high if the DNA sequence
contains many repetitive characters.

Tushar and Vijay [7] designed 4*4 DNA encryption tech-
nologies to manipulate matrices using a main generation
system, making data extremely secure. Apart from features
that provide a good security layer, restrictions include large
encrypted text along with security that only depends on the
key.

The proposed technology in [21] relies on the DNA and
RSA encryption system, and is able to provide an architectural
framework for encrypting and generating digital signatures for

all characters, simple text data, and text files. Here, the whole
process consists of four steps. These are: main generation, data
processing before and after, DNA and signature generation.

The technique proposed in [22] is the concept of a dynamic
DNA sequence table that assigns random ASCII characters
in the DNA sequence at the beginning. It then applies a
limited number of duplicates to dynamically change the ASCII
position in the sequence table based on a mathematical string.
However, use of the one-time pad (OTP) board makes the
technology more efficient because the normal OTP plaintext
and the key must be equal in size so the safe transfer of the
key is more difficult.

A new hybrid method combining cryptography and
steganography is proposed in [23]. This achieves multi-layer
security of the system based on DNA encryption. The methods
of concealment adopted here do not expand the reference DNA
sequence, and the embedded data can be extracted without
the need for a real DNA reference sequence. Recently, Hassan
Mahdi et al. [24] provided a symmetric binary DNA encryption
algorithm to encrypt and decrypt plain text information. The
contribution of this paper is twofold: firstly, we provide a
mathematical algorithm to generate a strong secret key of the
DNA of multiple living organisms. Secondly, encryption is
performed using 16 other keys randomly generated from the
secret key.

The contributions of this paper are as follows: most of
the DNA algorithms that are introduced in the literature are
symmetric, which send a secret key over a secure channel. In
this paper asymmetric algorithms are introduced with public
and private keys. The proposed algorithm is better suited to the
plaintext data. In addition, the encryption process is conducted
using multi-level security via generating a dynamic coding
table, data dependency and multiple dynamic round keys. The
remainder of this paper is organized as follows: Section 1 con-
tains an introduction and related works. Section 2 introduces
the proposed asymmetric cryptography technique in detail. The
performance of the proposed algorithm is introduced in Section
3. Finally, the conclusion is drawn in Section 4.

II. PROPOSED ALGORITHM

The introduced asymmetric cryptography technique con-
structs the public key pubKey = (n,e,PST) for encryption
and the private key privKey = (n,d,PST) for decryption. The
parameters e,d and n are generated using the well known RSA
cryptography algorithm. Anyone can use the public key to
encrypt the plaintext (PT) while the parameter e is kept secret.
The parameter PST , denoting the public DNA Sequence Table,
consists of 24*4 size matrix, as used in [25], [22]. This table
fulfills all the alphabet characters: uppercase, lowercase, num-
bers, and special characters. The encryption of PT and decryp-
tion of cipher text (CT) processes are given, respectively, as
CT = Encrypt (PT, pubKey) and PT = Decrypt (CT, privKey).
The proposed asymmetric cryptography technique consists of
the following five stages:

1) Construction of DNA public and private keys.
2) Construction of a dynamic DNA sequence table.
3) Generating 14 round keys.
4) Encryption process.
5) Decryption process.

www.ijacsa.thesai.org 500 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 2. Block diagram of the RSA helper function.

The encryption process at the sender consists of 14 security
levels. On the other hand, the RSA cryptography system is
not used to encrypt a PT; rather, it is used as a helper function
to generate the DNA Dynamic Sequence Table (DDST), the
round keys RKi, i = 1,2,3, . . . ,14, and the Start Decryption
Key (SDK) during the encryption process, as shown in Fig.
2. The SDK is combined with the CT and is used to initiate
the decryption process.

A. Public and Private Keys Generation

In this paper, a receiver constructs the PST by generating a
long single-stranded DNA string S which is chosen randomly
from the DNA of different living creatures. The string S is
divided into chunks with 4 DNA bases. Each chunk is ran-
domly assigned to an alphabet character with no duplication.
The PST table is generated with each session and, hence, the
DNA sequences and the assignment of alphabets are different
from session to session. Table I illustrates the PST for a
certain session. On the other hand, the values of e,d and n are
generated using asymmetric cryptosystem RSA with a 1024 bit
key. The value of e is kept secret at the receiver. For simplicity,
in this paper we will use 64 bit RSA cryptography for all
further examples.

B. Dynamic DNA Sequence Table

The first step of the encryption process is to generate
the DDST table. The generation process of the DDST table
depends on the plaintext, the public DNA sequence table and
the RSA public keys, which are denoted by the quadruplets:
(PT,PST,e,n). The concept of data dependent is introduced
here through using the parameter PT which increases the
unpredictability of DDST table. For all subsequent processes,
we use PST defined in table I, e = ”1393980256209590861”
and n = ”8076924410049049481”. As shown in Fig. 3, the
steps of creating the DDST table are as follows:

1) Divide the PT into a number of chunks of equal
size of 8 characters. For example, the PT ”Computer
Organization” is divided into chunk1=”Computer”,
chunk2=”Organiz” and chunk3=”ation”.

TABLE I. PUBLIC DNA SEQUENCES TABLE.

space → CCAG ! → CACT ”→ TCGA # → GTAC
$ → CACA % → GATG &→ TTGC ′→ ACAT
(→ GCTG)→ CGTG ∗→ ATGG +→ TGTA
, → AAAT - → GGCC . → TGGG / → TCCT
0 → CGCT 1 → TCAC 2 → GAGG 3 → CTAC
4 → CCTC 5 → CCTT 6 → AAAG 7 → GGGT
8 → TTGT 9 → TAAT : → AGGG ; → GTTT
¡ → GTGT = → CAAG ¿ → AACA ? → CTTG

@ → CAAA A → TGTT B → CAAC C → TTAA
D → GAAA E → CCTG F → TGAG G → ACCC
H → CCCC I → GGAT J → TGGT K → CAGA
L → CTTC M → ATAC N → CCAA O → GGCA
P → TGAA Q → CTGG R → GGGC S → GCTA
T → CCCG U → GGAA V → AGAC W → ACTG
X → GCAT Y → ACCT Z → TCTT [→ CGTT
\ → TGGC] → CTAT ˆ → AGGA → AGAA
‘ → ACGG a → CTCT b → GGTG c → GGAG
d → TAAA e → GCCA f → GACC g → GTGA
h → TGCT i → ATAT j → GAGA k → CAGT
l → AATT m → TTGG n → GTAG o → TCTC
p → TTTG q → TTCC r → GTCT s → AGTT
t → ACAC u → GCAA v → TTCT w → TCAA
x → GGTC y → TCTG z → AAGA { → GCTT
|→ GTGC } → CCCA ˜ → ATGT

Fig. 3. Block Diagram of Generating the Dynamic DNA Sequence Table.

2) Traverse each chunk and replace each character by
its ASCII code, which gives chunk1 = ”67 111 109
112 117 116 101 114”, chunk2 = ”32 79 114 103 97
110 105 122” and chunk3 = ”97 116 105 111 110”.

3) For each chunk, convert each ASCII code number to
binary format and combine all binary values as one
binary string as follows:

chunk1 = 10000111101111110110111100001110
101111010011001011110010
chunk2=100000100111111100101100111110000
1110111011010011111010
chunk3=110000111101001101001110111111011
10

4) Convert each chunk to its corresponding
decimal value: chunk1=38209605565494002,
chunk2=18365789048124666 and
chunk3=26283243502.

www.ijacsa.thesai.org 501 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

5) Set N = chunk1 + chunk2 + chunk3 =
3578783238063992861.

6) Encrypt the value of N using the 64 bit RSA cryp-
tography algorithm with the public keys e and n to
give the value E1 = 484564171844271401. Actually,
using the RSA cryptography system with 1024 bit
will generate huge numbers. Thus, for simplicity, we
use RSA with 64 bit in this example.

7) Use algorithm 1 to generate Fibonacci
series with input E1 to get S =
{48,45,93,138,231,369,600, . . . ,580804687053}.
In fact, changing one bit in a PT will cause large
changes on the elements of a Fibonacci series even
if the values e and n of are fixed.

8) Traverse the PST from the first element to the last
and concatenate all their corresponding 4 DNA bases
into one string ST R.

9) Convert the DNA sequence ST R into binary format
using substitutions A = 00, C = 01, G = 10 and T=
11. Set ST R1 = ST R and ST R2 = ST R.

10) For each element di ∈ S, rotate ST R1 right di times
if di is even or left if di is odd.

11) For each element di ∈ S, rotate ST R2 left di times if
di is even or right if di is odd.

12) Reconstruct ST R as ST R1+ST R2.
13) Convert each element in S into binary string using

algorithm 2 and then combine all binary strings as
ST R3.

14) Set ST R = ST R⊕ST R3, where ⊕ denoting the XOR
operation.

15) Convert ST R to DNA sequence using substitutions 00
= A, 01 = C, 10 = G and 11 = T.

16) Divide ST R into chunks with size 4 bases each and
remove duplication (if any).

17) Pick the first four DNA bases form ST R, i.e. GATC,
and assign it to the first alphabet character in the
PST. Pick the second four DNA bases, i.e. ATAA, and
assign it to the second alphabet character in the PST
(i.e., $=ATAA). The substitution process continues
until it reaches the last alphabet character in the PST.
By the end of the substitution process, the DDST
table is constructed, as shown in Table II. The DDST
table is created during the encryption process and is
deleted when the encryption process is completed.

Algorithm 1 Generating Fibonacci Series
1: Input: Big integer number Ψ with digits d1d2d3 . . .dw, w≥

5.
2: Traverse Ψ from left to right.
3: Set n1 = d1d2.
4: Set n2 = d3d4.
5: Set S[0] = n1, S[1] = n2
6: Set L = ∑

w
i=5 di.

7: for j = 2 to L do
8: Set n3 = n1 +n2
9: Set S[j] = n3

10: Set n1 = n2, n2 = n3
11: end for
12: Output: Fibonacci series S.

TABLE II. DYNAMIC DNA SEQUENCE TABLE.

→ GATC ! → ATAA ” → ATAT # → CTCG
$ → CACA % → GGAT & → GCGA ’ → CTAA
(→ CATG) → TCGC * → GGTG + → CTCT
, → TAAC - → GGCA . → GAAG / → AAGA
0 → GATG 1 → TCTA 2 → CGCG 3 → ACTC
4 → ACAA 5 → TATC 6 → AAGG 7 → TGCC
8 → TTGT 9 → GGGT : → GACG ; → GCAT
¡ → TACG = → ACAC ¿ → TAGA ? → AGTA

@ → CGAA A → GTGA B → AACT C → TTCG
D → AGCG E → CCTT F → ACTT G → AACA
H → CTGA I → CGTC J → TGTC K → AGAT
L → CTGT M → GTCG N → CACC O → AGGG
P → GGTA Q → ATAC R → CTCC S → CTTA
T → CGAC U → CCCG V → ACGA W → TTAT
X → AGGT Y → GGTC Z → AGGA [→ GACA
\ → TGAT] → GTTA ˆ → GAGT → CCTC
‘ → AGAA a → GTGC b → AAAC c → CAAT
d → CGCC e → CGGC f → CACG g → GCAA
h → AGCA i → AATC j → CGTA k → GTAG
l → TTTC m → CTGC n → GGCT o → GGGG
p → TGGC q → TGGG r → ACCG s → ATGT
t → GGGC u → GCCG v → CCAG w → CTGG
x → ATAG y → GAGA z → TGCT { → CTCA
|→ TGAC } → TCAT ˜ → CCGA

Algorithm 2 Generating Binary String
1: Input: Set of integer number S = [d1,d2,d3, . . . ,dw].
2: For all di ∈ S, convert di to binary bits bi.
3: Set string STR=b1 +b2 +b3 + . . .+bw
4: Output: Binary string STR.

C. Generating Round Keys

As shown in Fig. 4, the round keys RKi, i = 1,2,3, . . . ,14
are generated using the DDST table. The round keys must be
generated in ascending order starting from RK1 to RK14. For
RKi, to generate the round key RKi, perform the following
steps:

1) Traverse the DDST table from the first element to the
last and concatenate all their corresponding 4 DNA
bases into one string ST R.

2) Convert the DNA sequence ST R into binary format
using substitutions A = 00, C = 01, G = 10 and T=
11. Set ST R1 = ST R and ST R2 = ST R.

3) Encrypt the value of Ei using RSA cryptography
algorithm to get Ei+1

4) Use algorithm 1 to generate Fibonacci series S with
input Ei+1.

5) For each element d j ∈ S, rotate ST R1 right di times
if d j is even or left if d j is odd, where j =
1,2,3, . . . ,S.length.

6) For each element d j ∈ S, rotate ST R2 left di times if
d j is even or right if d j is odd.

7) Reconstruct ST R as ST R1+ST R2.
8) Convert each element in S into binary string using

algorithm 2 and then combine all binary strings as
ST R3.

9) Set ST R = ST R⊕ST R3.
10) Set RKi = ST R. Use the value of Ei+1 as input to the

next round key i+1 generation process.

D. The Encryption Process

The receiver constructs the public keys (i.e., e, n, PST) and
sends these keys on a public channel keeping the private key

www.ijacsa.thesai.org 502 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

(i.e., d) secret. Any sender can use the public keys to encrypt
its PT. To clarify the encryption process, we assume that
PT=”Computer Organization”. The encryption process passes
through the following steps:

1) Read the PT file and divide it into blocks with size 16
alphabet characters each. These blocks are as follows:
Block1 = ”Computer Organiz” and Block2 = ”ation”.
The length of the last block may be less than 16
alphabet characters.

2) Generate the DDST table as described in section II-B.
3) Convert each block to DNA sequence by substituting

each character with its corresponding DNA base
sequence from the DDST table. The DNA sequences
are given as Block1 = ”TTCGGGGGCTGCTG-
GCGCCGGGGCCGGCACCGGATCAGGGACCG-
GCAAGTGCGGCTAATCTGCT” and Block2 =
”GTGCGGGCAATCGGGGGGCT”.

4) Convert the DNA sequence of Block1 and Block2 to
2-bit binary format (A = 00, T = 01, C = 10, G =
11) as follows:
Block1 = 11110110101010100111100111101001
1001011010101001011010010001011010001101
0010101000010110100100001011100110100111
0000110111100111
Block2 = 10111001101010010000110110101010
10100111

5) User E1 as input and generate the round key RK1 as
described in section II-C.

6) Divide RK1 into a number of chunks C1,C2, . . .CL of
equal size 64 bits, where L denotes the number of
chunks.

7) For all j = 1,2,3, . . . ,L, set Block1 = Block1⊕C j as
follows:

Block1 = Block1⊕C1

Block1 = Block1⊕C2

Block1 = Block1⊕C3
...

Block1 = Block1⊕CL

8) Repeat step 7 to perform the XOR operation on
Block2 and chunks C1,C2, . . .CL.

9) For the remaining round keys RKi, i = 2,3, . . . ,14,
repeat steps 5 to 8 to get:
Block1 = 01011001011011100010000110001110
0110100110100101011110101010110110001101
0010101000010110100100001011100110100111
0000110111100111
Block2 = 00010110011011010101010111001101
01011000

10) Convert both Block1 and Block2 to DNA sequence
using substitutions 00 = A, 01 = C, 10 = G, 11 = T.

11) Set DSK=E16. The value of E16 is obtained during
the generation process of the round key RK14.

12) Convert the numeric value of SDK to binary format.
if the number of bits in SDK is odd, attach ”0” to
the left.

13) Convert SDK to DNA sequence using substitutions
00 = A, 01 = C, 10 = G, 11 = T.

Fig. 4. Block Diagram of Generating Round key RKi.

14) Set X to the length of SDK and convert it to 16 bits
binary format.

15) Convert X to DNA sequence using substitutions 00
= A, 01 = C, 10 = G, 11 = T.

16) Finally, set Block1 followed by Block 2 as a sandwich
between X and DSK which represents the final CT
as follows:
ciphertext = AAAAACTTCCGCCGTGAGACG
ATGCGGCGGCCCTGGGGTCGATCAGGGAC
CGGCAAGTGCGGCTAATCTGCTACCGCGT
CCCCCTATCCCGATTCAGAGAGATAATTA
CCGATTCACACCGGA

17) The sender sends the CT to the receiver over a public
communication channel.

E. Decryption Process

As illustrated in Fig. 5 below, the decryption process
includes the following steps for decrypting the received CT
to PT. In fact, the process of executing the encryption steps in
reverse order represents the decryption process.

1) Read a CT file as DNA string sequence str.
2) Convert the DNA sequence of CT into its equivalent

binary form using substitutions A=00, C=01, G=10
and T=1.

3) Take the first 16 bits of str as str1 and the remaining
bits as str2.

4) Convert str1 to its corresponding decimal value X .
5) Starting from the right of str2, take X bits as str3

and the remaining bits as str4.
6) Convert str3 to its corresponding decimal value. This

decimal value represents the start decryption key
SDK.

7) Set E16 =DSK.
8) For i = 14,13,12 . . . ,1, follow the steps below:

a) Decrypt Ei+2 using RSA with secret key e to
get the number Ei+1.

www.ijacsa.thesai.org 503 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 5. Block Diagram of Decryption Process.

b) Generate the round key RKi as described in
section II-C.

c) Divide RKi into chunks C1,C2, . . .CL of equal
size 64 bits, where L denotes the number of
chunks.

d) For all j = L,L−1,L−2, . . . ,1, set Block1 =
Block1⊕C j as follows:

Block1 = Block1⊕CL

Block1 = Block1⊕CL−1

Block1 = Block1⊕CL−2
...

Block1 = Block1⊕C1

e) Repeat step (d) to perform the XOR opera-
tion on Block2 and chunks C1,C2, . . .CL.

9) Decrypt E2 using RSA with secret key e to get the
number E1.

10) Use E1 to generate the DDST table as illustrated in
section II-B.

11) Starting from left to right, replace each four DNA
bases in str4 with its corresponding alphabet charac-
ter from the DDST table.

12) The resulting string represents the PT.

III. PERFORMANCE EVALUATION

The proposed asymmetric DNA encryption algorithm based
on the RSA cryptography system is conducted in JAVA plat-
form. The public DNA sequence table PST is generated using
the European Nucleotide Archive which provides a very large
collection of nucleotide sequences. The proposed technique is

evaluated in terms of avalanche test, execution time and plain
text size.

A. Randomization of the DDST Table

The proposed technique maximizes the secrecy of CT
through generating a DDST table and 14 round keys based on
public key and PT. If a DDST table can be detected from the
PST table, it has poor randomization. This may be sufficient
for making predictions about the input. However, it is very
difficult to predict the input from the DDST table if it has high
randomization. The DDST table has very high randomization
if there is no alphabet character has the 4 DNA bases value
in both DDAT and PST. Table III shows that the DDST table
exhibits a high degree of randomization at different plaintexts.
At first,is assumed that the plain text is given as PT=”Computer
Organization”. The value of the public keys e and n are given
as: ”1393980256209590861” and ”8076924410049049481”,
respectively. On the other hand, the public DNA sequence
table is given in Table I. Table IV shows the DDST table
randomization degree when encrypting the same PT many
times with flipping a single bit every time.

TABLE III. THE DDST TABLE RANDOMIZATION COMPARED TO THE
PST.

Plaintext No. of Matched Randomization Degree
Computer Organization 2 98%

Multiprogramming 0 100%
5555333388887777 0 100%

AA112233445566FE 1 99%
Aljouf university 0 100%

TABLE IV. THE DDST TABLE RANDOMIZATION WITH ONE BIT
DIFFERENCE.

Bit PT changes No. of unchanged Randomization
index 4 DNA values Degree

3 computer Organization 0 100%
13 CoEputer Organization 0 100%
27 CompUter Organization 0 100%
35 CompuVer Organization 1 98.94%
47 Computmr Organization 0 100%
53 Computer OrganizAtion 0 100%
99 Computer Organizatyon 1 98.94%

156 computer OrganizatioN 0 100%

B. Avalanche Property

Avalanche property quantifies the effect on a CT when
input PT is changed slightly (for example, flipping a single
bit) [26], [24]. TThis change must cause a significant change
in the CT (e.g., 50% of output bits flip). If the number of bits
is changed in a cipher text, due to changing one bit is Bchanged
and the total number of bits in the cipher text is Btotal . In such
cases, the Aavalanche Eeffect (AE) is given as [26], [27]:

AE =
Bchanged

Btotal
×100%

Firstly, Table V shows the avalanche effect of the 14
round keys, which are generated during encrypting the two
plaintexts PT1=”Computer Organization” and PT2=”Computer
OrgQnization” with one bit difference. On average, the
avalanche effect on round keys is 50.81%.

Secondly, we investigated the avalanche effect on the cipher
text CT when changing one bit in the input plaintext PT.

www.ijacsa.thesai.org 504 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 6. Comparison of Avalanche Test For the Proposed Technique and RSA
Algorithm

TABLE V. ROUND KEYS AVALANCHE EFFECT.

Round key index No. of bits changed Avalanche test
1 390.0 51.32%
2 383.0 50.4%
3 388.0 51.21%
4 391.0 51.45%
5 389.0 51.19%
6 387.0 50.93%
7 390.0 51.32%
8 379.0 49.87%
9 379.0 49.87%

10 395.0 51.98%
11 386.0 50.79%
12 393.0 51.72%
13 384.0 50.53%
14 373.0 50.21%

TABLE VI. COMPARISON OF THE NUMBER OF BITS CHANGED.

Encryption Algorithm Average No. of bits
Proposed Technique 64.895

RSA Algorithm 36.212

Since the proposed technique is asymmetric cryptography, the
obtained results will be compared with the RSA cryptography
system. In such cases, we set PT=”AA112233445566FE”,
e = ”3199192709” and N = ”8076924410049049481”; PST is
given in Table I. Firstly, a CT is generated from PT using the
proposed technique and RSA algorithm. Secondly, the first bit
in PT is flipped to get the new PT=”AA112233445566FD” and
a new CT is generated, where flipping E (01000101) yields D
(01000100). Thirdly, the third bit in PT is flipped to get the
new PT=”AA112233445566FA” and a new CT is generated.
These processes are repeated until the bit number 125 in PT is
flipped to get the new PT=”QA112233445566FE” and a new
CT is generated. Every time the avalanche effect on the CT is
calculated. After 48 rounds of executing the two algorithms,
there are 48-bits flipped. Table VI shows the average number
of bits changed when flipping one bit from the plaintext PT.
From the obtained results, we note that the proposed technique
outperforms the RSA algorithm in term of the number of bit
changed.

Fig. 6, below illustrates the avalanche effect on the cipher
text versus the index of the bit flipped in the PT. The figure
shows that the proposed algorithm exhibits strong avalanche
property compared to the RSA algorithm. From this figure we
note that the proposed algorithm has high avalanche test at all
indices of the flipped bits with an average of 52.6% compared
to the RAS algorithm with an average of 23.8%.

IV. CONCLUSION

In this paper, the asymmetric DNA cryptography technique
based on data dependency, dynamic encoding table, dynamic
round keys and the help of asymmetric cryptosystems, is in-
troduced. The performance of this technique is tested in terms
of the avalanche effect. Although the proposed encryption
technique is not superior to the popular asymmetric algorithms
in terms of execution time, it has strong avalanche property.
Since the proposed technique generates the dynamic DNA
sequence table and round keys based on the plaintext, it is
impossible for attackers to detect the plaintext from the cipher
text. The experiment test shows that the proposed encryption
algorithm has very good avalanche property.

ACKNOWLEDGMENT

This research was supported by Research Deanship, Jouf
University, KSA, on grant number 242/39.

REFERENCES

[1] P. Langley et al., “Selection of relevant features in machine learning,” in
Proceedings of the AAAI Fall symposium on relevance, vol. 184, 1994,
pp. 245–271.

[2] K. Javed, S. Maruf, and H. A. Babri, “A two-stage markov blanket based
feature selection algorithm for text classification,” Neurocomputing, vol.
157, pp. 91–104, 2015.

[3] N. Azizi, N. Farah, M. T. Khadir, and M. Sellami, “Arabic handwrit-
ten word recognition using classifiers selection and features extrac-
tion/selection,” Recent Advances in Intelligent Information Systems, pp.
735–742, 2009.

[4] N. Azizi, Y. Tlili-Guiassa, and N. Zemmal, “A computer-aided diagnosis
system for breast cancer combining features complementarily and new
scheme of svm classifiers fusion,” International Journal Of Multimedia
and Ubiquitous Engineering, vol. 8, no. 4, pp. 45–58, 2013.

[5] L. Zhang, F. Xiang, J. Pu, and Z. Zhang, “Application of improved hu
moments in object recognition,” in IEEE International Conference on
Automation and Logistics. IEEE, 2012, pp. 554–558.

[6] S. Das, S. Das, B. Bandyopadhyay, and S. Sanyal, “Steganography and
steganalysis: different approaches,” arXiv preprint arXiv:1111.3758,
2011.

[7] T. Mandge and V. Choudhary, “A dna encryption technique based on
matrix manipulation and secure key generation scheme,” in Information
Communication and Embedded Systems (ICICES), 2013 International
Conference on. IEEE, 2013, pp. 47–52.

[8] F. Roli, G. Giacinto, and G. Vernazza, “Methods for designing multiple
classifier systems,” in International Workshop on Multiple Classifier
Systems. Springer, 2001, pp. 78–87.

[9] P. Mahajan and A. Sachdeva, “A study of encryption algorithms aes,
des and rsa for security,” Global Journal of Computer Science and
Technology, 2013.

[10] J. Zhang, D. Fang, and H. Ren, “Image encryption algorithm based on
dna encoding and chaotic maps,” Mathematical Problems in Engineer-
ing, vol. 2014, 2014.

[11] I. Peterson, “Hiding in dna,” Proceedings of Muse, vol. 22, 2001.
[12] J. D. Watson et al., “Molecular biology of the gene.” Molecular biology

of the gene., no. 2nd edn, 1970.

www.ijacsa.thesai.org 505 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

[13] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson, “En-
ergieumwandlung: Mitochondrien und choroplasten,” Molekularbiolo-
gie der Zelle (Original: Molecular biology ofthe cell, Third edition).
Jaenicke, L.(ed.). Weinheim: VCH Ver-lagsgesellschaft mbH, pp. 771–
851, 1995.

[14] D. Nelson and M. Cox, “Lehninger principles of biochemistry, (worth,
new york, 2000),” Google Scholar.

[15] A. Leier, C. Richter, W. Banzhaf, and H. Rauhe, “Cryptography with
dna binary strands,” Biosystems, vol. 57, no. 1, pp. 13–22, 2000.

[16] S. T. Amin, M. Saeb, and S. El-Gindi, “A dna-based implementation
of yaea encryption algorithm.” in Computational Intelligence, 2006, pp.
120–125.

[17] H. Shiu, K.-L. Ng, J.-F. Fang, R. C. Lee, and C.-H. Huang, “Data
hiding methods based upon dna sequences,” Information Sciences, vol.
180, no. 11, pp. 2196–2208, 2010.

[18] S. Sadeg, M. Gougache, N. Mansouri, and H. Drias, “An encryption al-
gorithm inspired from dna,” in Machine and Web Intelligence (ICMWI),
2010 International Conference on. IEEE, 2010, pp. 344–349.

[19] B. A. Mitras and A. Abo, “Proposed steganography approach using
dna properties,” international journal of information technology and
business management, vol. 14, no. 1, pp. 96–102, 2013.

[20] C. Guo, C.-C. Chang, and Z.-H. Wang, “A new data hiding scheme
based on dna sequence,” Int. J. Innov. Comput. Inf. Control, vol. 8,
no. 1, pp. 139–149, 2012.

[21] D. S. Chouhan and R. Mahajan, “An architectural framework for
encryption & generation of digital signature using dna cryptography,”
in International Conference on Computing for Sustainable Global
Development (INDIACom). IEEE, 2014, pp. 743–748.

[22] E. M. S. Hossain, K. M. R. Alam, M. R. Biswas, and Y. Morimoto, “A
dna cryptographic technique based on dynamic dna sequence table,” in
Computer and Information Technology (ICCIT), 2016 19th International
Conference on. IEEE, 2016, pp. 270–275.

[23] K. Sajisha and S. Mathew, “An encryption based on dna cryptography
and steganography,” in Electronics, Communication and Aerospace
Technology (ICECA), 2017 International conference of, vol. 2. IEEE,
2017, pp. 162–167.

[24] H. Al-Mahdi, O. Shahin, Y. Fouad, and K. Alkhaldi, “Design and anal-
ysis of dna binary cryptography algorithm for plaintext,” International
Journal of Engineering and Technology, vol. 10, pp. 699–706, 2018.

[25] N. H. UbaidurRahman, C. Balamurugan, and R. Mariappan, “A novel
dna computing based encryption and decryption algorithm,” Procedia
Computer Science, vol. 46, pp. 463–475, 2015.

[26] F. H. Nejad, S. Sabah, and A. J. Jam, “Analysis of avalanche effect on
advance encryption standard by using dynamic s-box depends on rounds
keys,” in 2014 International Conference on Computational Science and
Technology (ICCST), Aug 2014, pp. 1–5.

[27] S. Ramanujam and M. Karuppiah, “Designing an algorithm with high
avalanche effect,” IJCSNS International Journal of Computer Science
and Network Security, vol. 11, no. 1, pp. 106–111, 2011.

www.ijacsa.thesai.org 506 | P a g e

