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Abstract—Dynamic architectures have emerged to be a 

promising implementation platform to provide flexibility, high 

performance, and low power consumption for computing devices. 

They can bring unique capabilities to computational tasks and 

offer the performance and energy efficiency of hardware with the 

flexibility of software. This paper proposes a genetic algorithm to 

develop an optimum configuration that optimizes the routing 

among its communicating processing nodes by minimizing the 

path length and maximizing possible parallel paths. In addition, 

this paper proposes forward, virtually inverse, and hybrid data 

exchange approaches to generate dynamic configurations that 

achieve data exchange optimization. Intensive experiments and 

qualitative comparisons have been conducted to show the 

effectiveness of the presented approaches. Results show 

significant performance improvement in terms of total execution 

time of up to 370%, 408%, 477%, and 550% when using 

configurations developed based on genetic algorithm, forward, 

virtually inverse, and hybrid data exchange techniques, 
respectively. 

Keywords—Genetic algorithm; dynamic architectures; forward 

data exchange; virtually inverse data exchange; and hybrid data 

exchange method 

I. INTRODUCTION 

In recent years [2-3], the parallel architectures have 
obtained the popularity whether they are either fixed in their 
topology or more flexible in the way their architectures are 
constructed. These systems allow different amounts of resource 
sharing among its units depending on the way the units are 
interconnected. For one specific type of algorithms or 
problems, the static architectures can be designed to achieve a 
given requirements [4]. The arrangement of the units of the 
architecture reflects the algorithm/problem sort that the system 
tries to tackle. However, the dynamic architectures in the other 
side accommodate modular and adaptable components that can 
be controlled using automatic software to transfer the 
architecture from one state to another or from one 
configuration to another to fit different kinds of 
algorithms/problems, and this leads to improve the 
performance of the whole system. These dynamic architectures 
have links (paths) to be used to interconnect the architecture 
modules or resources and these links can be reconfigured under 
software control [5]. Changing the paths and the assignment of 
the modules and resources, the architecture can have different 
configurations/states. In each configuration/state, the modules 
and resources can be well selected to suit the specifications of 
the algorithm/application to get the maximum system 
performance [6]. 

The processors in the parallel architectures form a network 
and this network can be characterized by its topology or 

structure and it can be modelled as a graph. The nodes in this 
network (graph) represent the processors, the edges represent 
the links that are used to connect these nodes, and they are the 
means for data exchange among these nodes. 

There are large number of parallel architectures that can be 
reconfigured and take different structures and topologies such 
as the architecture associated with multistage interconnection 
[7-8]. Even though the dynamic architectures provide 
flexibility to deal with different types of problems and 
contribute to the system performance improvement. However, 
any reconfiguration arrangement introduces two types of 
overhead, firstly, the reconfiguration hardware that needed to 
perform the reconfiguration process and not to do computation, 
control, or storage operations and secondly, the reconfiguration 
time that required to reconfigure the architecture from one 
configuration to another. It is so important in the early stages of 
designing dynamic systems to work out how to minimize these 
overheads. 

In the literature, artificial intelligent techniques are widely 
used to solve problems that do not have definite conventional 
mathematical models for them. One approach of these artificial 
intelligent techniques is the Genetic Algorithm (GA). Many 
optimization problems have been solved using GA in different 
fields of Engineering and Science [9]. GA is a heuristic 
approach, which depends largely on random numbers to 
determine the approximate solution of an optimization 
problem. In the field of parallel and distributed systems, 
genetic algorithms have been used to address different 
algorithms and problems. Many authors proposed approaches 
to deal with the genetic operators [10-12]. Authors in [13] 
developed a genetic algorithm to reconfigure the topology and 
link capacities of an operational network in response to its 
operating conditions. The process of reconfiguration is very 
difficult if the addressed application/problem has many 
situations that can go through among them based on the 
different scenarios and situations. The authors in [14] proposed 
GA for autonomous architectural selection to find the best 
architectural configuration for the current situation. The 
assessment of their performance has been provided to illustrate 
that their approach efficiently found the best configuration 
[15]. The implementations of hardware genetic algorithms can 
also be observed in [16-17]. The authors presented their 
implementation of a genetic algorithm on FPGA that 
represented the population of chromosomes as a vector of 
probabilities. They tried to reduce the consumption of memory, 
power and space of the resources in hardware. In addition, the 
work in [18] proposed a high-speed GA implementation on 
FPGA, the authors claimed that their approach is the first 
implementation of GA on FPGA. They also claimed that their 
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developed system outperforms any existing or proposed 
solution related to their experiments. 

In this paper, the capabilities of the genetic algorithm as an 
optimization technique have been utilized to find the optimum 
static structure to transfer data among processors connected 
together in a platform of multiprocessor. The structure should 
minimize the path length and maximize the possible parallel 
paths to ensure minimum time taken. In addition, the paper 
presents different approaches to generate dynamic 
configurations that enhance the system performance. 

The rest of this paper is organized as follows. Section 2 
presents the proposed genetic algorithm. Section 3 presents the 
generalized dynamic architecture. Section 4 shows the forward 
data exchange method. Section 5 presents the virtually inverse 
data exchange method. Section 6 presents the hybrid data 
exchange approach. Section 7 concludes the paper. 

II. PROPOSED GENETIC ALGORITHM (GA) 

In this section, the main operators of the genetic algorithm 
have been described. Mainly, GA starts with initial population 
of chromosomes, which randomly generated and in some cases 
generated based on the output of another algorithm or an 
experiment. GA procedure is as follows. 

1) The population should be initialized. 

2) The population chromosomes should be assessed. 

a) New chromosomes should be created using crossover 

and mutation operators. 

b) Some of the existing population members (parents) 

should be deleted to give a room in the population for the new 

members (children/offspring). 

c) The new members should be assessed and inserted 

into the population. 

3) Step 2 should be repeated until termination condition is 

reached. 

4) The achieved best chromosome is returned as the 

solution for the addressed problem. 

A chromosome represents the solution of any problem 
tackled by Genetic Algorithm. The permutation of processor 

nodes P, P  V represents the chromosomes (V is the number 
of nodes) as shown in Table 1. 

GA tournament selection operator is used in this paper to 
allocate the best trials to chromosomes according to the value 
of their fitness. Chromosomes are selected from the initial 
population to be parents for reproduction. In addition, elitism is 
used to keep the important information through the process of 
selection because they may not be selected through the GA 
operators, crossover and mutation and they get lost. A least the 
best two chromosomes are selected and placed into the mating 
pool, meanwhile are added in the next generation. 

TABLE I. PROCESSOR NODES CHROMOSOME REPRESENTATION 

Gene  1 2 3 4 5 6 7 8 

Chromosome 1 P0  P6 P2 P4 P3 P5 P1 P7 

Tournament selection randomly picks a Tournament size 
(Ts) of chromosomes from the tournament that is a copy of the 
population (pop). The winner is best chromosome from (Ts) 
that has the best fitness (fit). This winner is then inserted into 
the mating pool (which is for example half of the tournament). 
The tournament competition is repeated until the mating pool 
for generating new offspring is filled. After that, crossover and 
mutation are performed. The developed tournament method is 
as shown in the following procedure. 

Tournament Selection Method 

tournamentselection (pop, fit, Ts); 
BEGIN 

1. Compute the size of the mating pool as size of 
population/2; 

2. Compute the best two individuals from the population 
3. Add them to the mating pool and the new population 

4. for j1 to Ts 
5. DO compute random point as any point between 1 and 

population size 
6. T[j]  pop [point]; 

7. TF[j]  fit [point]; 
8. END FOR 

9. Compute the best one from T according to the fitness 
10. Add it to the mating pool  

11. Repeat steps 4 to 10 until mating pool is full 
END 

A. Crossover Operator 

The crossover operator generates new chromosomes called 
children or offspring by combining two parent chromosomes. 
Based on the crossover probability pc, these chromosomes are 
exposed to single point crossover operator as shown in Fig. 1, 
otherwise, these chromosomes are not changed. 

As shown in Fig. 1, after performing the crossover process, 
there are errors in representing the chromosomes where some 
processor nodes are presented twice in one chromosome. 
Chromosome 1 and chromosome 2 have duplicated the 
processor nodes P4 and P3 respectively. The problem is 
tackled using the following single-point crossover operator 
(Fig. 2). For any two randomly selected chromosomes c1 and 

c2, a cut point x is chosen randomly (1 ≤ x < V). The first 
genes [1, x] of c1 and c2 are copied to the genes [1, x] of the 
new children ch1 and ch2 respectively. To fill the remaining 
genes [x + 1, V] of ch1 (ch2), chromosome c2 (c1) is scanned 
from the first to the last gene and each processor node that is 
not yet in ch1 (ch2) is added to the next empty position of ch1 
(ch2) in the order that it is. 

 

Fig. 1. Single-Point Crossover. 
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B. Mutation Operator 

The probability of mutation operator (pm) is much less than 
that of the crossover operator. It is essentially for avoiding the 
convergence of a local solution. The mutation operator can be 
implemented through swapping randomly any two gens in a 
chromosome as shown in Fig. 3, where P5 and P6 are 
exchanged. During the simulated experiments, the population 
size was 100, the maximum number of generations was 500, 
the probability of the crossover was 0.7, and the probability of 
the mutation was 0.02. Table 2 presents some of the initial 
population chromosomes and the configurations based on the 
generated chromosomes are shown in Fig. 4, where the gens 
are arranged to represent the tree nodes of the top level first 
from the most left side to the right and then down towards the 
lower levels till reaching at the end to root node. For example, 
the chromosome C1 genes P7, P4, P6, and P1 are Level 3 
nodes, P1 and P5 are Level 2 nodes, P3 represents Level 1 
node, and P0 is the tree root. 

In this paper, the Fitness Function is used to find the 
minimum total time required to exchange data among some 
processors as shown in Table 3. 

FF=     (∑    
 
   )             (1) 

                         (2) 

Where,     is the time needed for data exchange between 
two communicating processor nodes. 

ND:  the number of words to be transferred between the 
communicating processor nodes. 

PL: the number of links between the communication 
processor nodes, assuming that the time required to transfer 
one word on one like is equal one unit of time, to make it 
simple assume it equal one. 

n: the number of data requests to be transferred. 

All configurations have been used to address the problem 
of data transfer between processors shown in Table 3 [19]. 

 

Fig. 2. The Developed Single-Point Crossover. 

TABLE II. SOME OF INITIAL CHROMOSOMES 

 Number of nodes 

Chromosomes 1 2 3 4 5 6 7 8 

C1 P7 P4 P6 P2 P1 P5 P3 P0 

C2 P4 P7 P6 P2 P1 P5 P3 P0 

C3 P7 P4 P2 P6 P1 P5 P3 P0 

C4 P7 P4 P6 P2 P1 P5 P0 P3 

C5 P6 P2 P5 P7 P4 P1 P3 P0 

C6 P6 P2 P5 P4 P7 P1 P3 P0 

C7 P7 P4 P6 P2 P1 P3 P5 P0 

C8 P7 P4 P6 P1 P2 P5 P3 P0 

C9 P1 P7 P6 P4 P2 P5 P3 P0 

C10 P2 P6 P5 P7 P4 P1 P3 P0 

C11 P2 P6 P7 P5 P4 P1 P3 P0 

C12 P2 P6 P5 P7 P1 P4 P3 P0 

C13 P7 P4 P3 P2 P1 P5 P6 P0 

C14 P1 P6 P5 P7 P2 P4 P3 P0 

C15 P7 P4 P6 P0 P1 P5 P3 P2 

C16 P7 P0 P6 P2 P1 P5 P3 P4 

C17 P7 P6 P2 P4 P1 P5 P3 P0 

C18 P6 P2 P7 P5 P4 P1 P3 P0 

C19 P6 P2 P5 P4 P7 P1 P3 P0 

C20 P1 P2 P3 P7 P4 P6 P0 P5 
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Chromosome before mutation      Chromosome after mutation 

Fig. 3. Mutation Operator of Chromosome C1. 

 

Fig. 4. Some of the Achieved Tree Configurations. 

TABLE III. DATA EXCHANGE PROBLEM 

Request No. Source node Destination node 
Number of words to be 

transferred, ND 

Length of minimal 

communication path in 

static binary tree, PL 

Time of exchange in 

static tree 

T= ND*PL 

1 3 2 50 3 150 

2 7 1 100 4 400 

3 6 4 20 1 20 

4 5 2 100 1 100 

5 4 0 50 1 50 

6 6 2 30 2 60 

7 3 5 100 4 400 

8 1 3 100 4 400 
 

After mating process as shown in Table 4 and other 
operators such as crossover and mutation are repeated until the 
end of all generations and reach to the stop criteria. In each 
time iteration, the fitness function is calculated. The fitness 
function for different configurations shown in Fig. 4 is 
illustrated in Table 5. One of the optimum static configurations 
achieved based on GA is depicted on Fig. 5, more than one 
configuration has the best fitness function value. Here, a brief 
explanation for determining the value of the fitness function is 
demonstrated. To conduct the data transfer between the 
processors shown in Table 3 on the tree configuration in Fig. 5, 
data exchange requests, 7-->1, 5 -- > 2, 3 -- > 5, and 1 -- >3 

can be done in parallel. The total time to transfer all these data 
requests is equal the longest time of them. Since the requests 
are equal in number of data to be transferred and the number of 
links among them. Therefore, the total time is equal the time 
required to implement one request of them which is 100. The 
other requests will be transferred sequentially after the previous 
data exchanges such as 3 -- > 2 that takes 100 and then 4 -- > 0 
that takes 150. The time needed for these data exchange is 
equal the longest of them, 150. The last two requests 6 -- > 2 
and 6 -- > 4 are executed sequentially. The time required for 
them are 60 and 80, respectively. Then, the total time required 
to perform the whole job is equal 390, (100+150+60+80=390). 

C1 P0 P1 P2 P4 P3 P6 P7 P5 C1 P0 P1 P2 P4 P3 P5 P7 P6 
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TABLE IV. THE DEVELOPED MATING POOL, 10 CHROMOSOMES 

 

 

Fig. 5. GA based Optimum Static Configuration. 

The time to perform the same problem by the best but not 
optimum tree constructed in [19] is also one of the 
configurations achieved by GA, and represented in Table 5 
(C20) was 1430. Hence, there is a performance improvement 
of 370% using Genetic Algorithm.  On the static tree shown in 
Fig. 6, the data exchange requests in Table 3 have been 
executed. This tree in Fig. 6 can be constructed in reality but it 
cannot be proved to be the optimum configuration because it is 
neither maximizing the concurrency nor minimizing the inter-
processor communication.  On this tree, out of eight data 
exchange requests, requests 1, 2, 3, 4, 6, and 8 are conducted 
sequential and just two requests 5 and 7 are accomplished in 
parallel. This is the reason behind the big amount of time 
required to conduct the total requests on this configuration. On 
the other side, GA has its limitations, the time for GA 
processes can be not omitted to find the optimum tree 
configuration even it is done offline. 

 

Fig. 6. Best Static Configuration in [20] and C20. 

TABLE V. THE ACHIEVED FITNESS FUNCTION VALUES 

Chromosomes FF 

C1 390 

C2 390 

C3 390 

C4 580 

C5 930 

C6 1130 

C7 580 

C8 870 

C9 640 

C10 800 

C11 700 

C12 1160 

C13 610 

C14 1060 

C15 620 

C16 390 

C17 530 

C18 760 

C19 1130 

C20 1430 

III. GENERALIZED DYNAMIC ARCHITECTURE 

Even though the constructed static configuration is 
considered as the optimum structure because it gives the 
minimum time, the process of data exchange is accomplished 
in more than one phase sequentially as shown in Fig. 7. For 
large-scale problems, many data transfer will be executed 
sequentially and the number of links will be big which 
negatively affects the total required time for data exchange 
among the processors. The main aim of using dynamic 
configurations is to overcome the restrictions of the static 
structure.  In this case, more than one configuration will be 
constructed and used to perform the data exchange to achieve a 
better performance compared with the performance of the 
optimum static configuration. The system develops the 
configuration that contains the longest communication node 
pairs are adjacent and conduct the data transfer among the 
source and destination nodes. After that, the system 
architecture will be reconfigured for the next longest 
communicating pairs to be adjacent to achieve the best 
performance; the developed algorithm is as follows: 

Algorithm-1 

1. Divide the requests into groups of equally number of data 
words need to be transferred. 

2. Sort the groups in descending order according to the 

number of data. 

3. For each group, if there is a destination node of any 

request is a source node for another request. Then, let this 

node is the intersection between these two requests. 

4. Starting by top group, choose the configuration that 

maximizes the number of data exchange requests and 

minimizes the time needed for data exchange. 

5. Assign all possible requests that can be executed 

concurrently. 
6. Delete the assigned requests in step 5 from the data 

exchange table. 

7. Repeat the previous steps until all requests will have been 

finished. 
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Fig. 7. The Implementation of Data Exchange on the Optimum Static 

Configuration. 

To implement the developed algorithm, a dynamic 
architecture that can be reconfigurable is needed. Multistage 
interconnection networks addressed in [20-21] have been used 
due to their reconfiguration property. Such kind of an 
architecture can be reconfigured through software code. 
Multistage interconnection network has k stages and it can be 
used to connect n nodes (n = mk), m and k are integers greater 
than one as shown in Fig. 8. If m is represented as m = 2α, so 
each node can be addressed by αk-bit binary number. Each 
stage element is controlled by a set of control lines and all 
switching elements in a certain stage receive the same control 
code and hence switch to the same state. If the inputs and the 
outputs of the switching elements are denoted by α-bit code as 
                (                 ), each input node will be 
connected to the corresponding output node using the logic of 
Exclusive-OR between the input node and the control code as 
follows: 

                 (          )  (           ) (   
   )                (3) 

Where,                 is α-bit control code that controls 
the state of each switching element. The switching states of the 
first S0 is different because there are m inputs and m2 outputs. 
Each input i is connected to output j as given by: 

                     (4) 

 

Fig. 8. The Reconfigurable Architecture with 16 Nodes. 

Where, c is the decimal equivalent of α-bit binary control 
code, also there are m nodes are connected to the output of S0 
and outputs of S0 are divided into m groups each m lines as a 
set for each node. The nodes to be connected to the inputs of 
S0 can be determined based on the following relation. 

                                             (5) 

Referring to multistage interconnection network, a distinct 
tree structure with mk nodes, is defined as a tree having k+1 
levels (L0, L1, …, Lk) of nodes with root L0 and leaf nodes at 
Lk. Each node at a level Lx (x=1, 2… k-1) is connected to m 
nodes at Lk+1. The root node is connected to m-1 nodes at L1 
and has one connection with itself. The configuration control is 
responsible for establishing the configurations. 

For each issued αk-bit control code, a distinct tree 
configuration is obtained. Each node  ( )  establishes a 
connection with a node  ( ) based on the following equation. 

 ( )      ( ( ))   )              (6) 

Where     ( ( )) is α-bit the circular shift right of  ( ) 
and B is αk-bit number represented as 1α 1α … 0α. 

Equation (6) can be rewritten to determine the required 
control code that if it is issued by configuration control, the tree 
that contains the adjacent  ( )  and  ( ) will be obtained as 
follows: 

      ( ( ))   )  ( )            (7) 

For instance, if m=2, k=3, and C=010, the processor nodes 
in the multistage interconnection network shown in Fig. 9 will 
form a tree as shown in Fig. 10. Fig. 11 shows the different 
configurations could be obtained from the dynamic architecture 
with different 3-bit control codes. 

The next step is taking the next biggest data exchange, 
which is the data exchange between processor 5 and processor 
2. In this case, the control code is 100 and the requests that can 
be executed concurrently are shown in Table 7 on the 
configuration achieved in Fig. 13. 

 

Fig. 9. The Reconfigurable Architecture with Eight Nodes. 
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TABLE VI. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

2 7 ==> 1 100  

3 6 ==> 4 40  

8 1 ==> 3 100 

Total time  100 

 

Fig. 10. The Formed Tree Topology m=2, k=3, c=010. 

 

 

Fig. 11. Different Configurations with Different Control Codes. 

 

Fig. 12. The Formed Topology, C=111. 

 

Fig. 13. The Formed Topology, C=100. 

The next data exchange is between processor 3 and 
processor 5, for this case, the control code C is 001 is required. 
In this case, there is only one data exchange path as indicated 
in Table 8 and it will be accomplished through the 
configuration achieved in Fig. 14. 

TABLE VII. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

4 5 ==> 2 100  

5 4 ==> 0 50  

6 6 ==> 2 100 

Total time  100 

TABLE VIII. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

7 3==> 5 100  

Total time  100 

P6 P4 P2 P0

P3 P1

P5

P7
 

Fig. 14. The Formed Topology, C=001. 

IV. PROPOSED FORWARD DATA EXCHANGE METHOD 

Based on the developed algorithm-1 and using the dynamic 
configurations that can be achieved from the dynamic 
architecture through different software control codes, data 
exchange problem in Table 3 can be conducted. The heaviest 
communicating nodes should start communication first. If there 
are more than one pair, the lowest index will be considered in 
the data exchange problem in Table 3. The lowest index is 
defined as the top one of the communication path number that 
have the same number of words to be transferred in the table. 
For the problem under consideration, the first heaviest data 
exchange is between processor 7 and processor 1. Using 
equations 6 and 7, the required control code is determined as: 

      (   )      )                   (8) 

When the configuration control unit issues this command, 
the tree structure in Fig. 12 will be formed.  With the data 
exchange between processor 7 and processor 1, there are a 
possibility for some requests to be executed concurrently such 
as processor 6 and processor 4 as well as processor 1 and 
processor 3 and it is indicated in Table 6. 

The last data exchange is between processor 3 and 
processor 2 and required control code C is 110 as shown in 
Table 9 and Fig. 15. 

The total execution time is calculated from the above 
reconfiguration states as: 

Total execution time = T (Ts1) + T (Ts2) + T (Ts3) + T 
(Ts4) =100+100+100+50=350 
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TABLE IX. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

1 3==> 2 50  

Total time  50 

 

Fig. 15. The Formed Topology, C=110. 

Of course, there is a time waste to generate new 
configurations, however for huge data to be transferred, 
processed, and using nowadays very fast computers, these 
factors can remarkably reduce that time. The improvement in 
the performance related to the developed genetic algorithm 
based static configuration is 112%. Comparing the achieved 
results with [20], the performance improvement is 408%. 

V. PROPOSED VIRTUALLY INVERSE DATA EXCHANGE 

METHOD 

It clear that, for any adjacent node pair in any given tree 
configuration, there is another tree that contains the same 
adjacent node pair but the difference is the instantaneous 
reverse direction of the data exchange. In the forward data 
exchange method, trees are built by considering that the data 
exchange between each pair of nodes takes place from a source 
node a destination one. In this method, trees are constructed by 
considering that the data exchange will be in the opposite 
direction, from a destination node to the source node. 

Below is the description of reconfigurable structure of 
binary tree followed by assessment of the performance 
improvement that can be accomplished based on the inverse 
direction of data exchange. In this case, the reconfiguration 
equations take another form as: 

 ( )      ( ( ))   )                 (9) 

      ( ( ))   )  ( )          (10) 

Repeating of the above scenarios yields to the real 
execution from processor 7 to processor 1 has to be imagined 
as from processor 1 to processor 7. The deduced control code 
is given by: 

      (   )      )                 (11) 

When the configuration control unit issues the control code, 
a tree that contains the processor node 7 and processor node 1 
adjacent is constructed as shown in Fig. 16. All possible data 
exchange requests that can be performed concurrently with the 
data exchange between processor 7 and processor 1 are 
indicated in Table 10. 

The next biggest data exchange is between processor node 
5 and processor node 2, this is assumed to be from processor 2 
to processor 5. In this case, the control code C is 101. Table 11 
shows the possible requests that can be conducted on the 
achieved tree shown in Fig. 17 in parallel with the data 
exchange between processor 5 and processor 2. 

The last heaviest data exchange is between processor 4 and 
processor 0. The C is 010. Table 12 shows the data exchange 
and all possibilities of data exchange that can be done in 
parallel with data exchange between processor 4 and processor 
0 on the tree configuration in Fig. 18. 

P2 P0 P6 P4

P3 P1

P7

P5
 

Fig. 16. The Formed Topology, C=011. 

TABLE X. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

2 7 ==> 1 100  

1 3 ==> 2 50  

3 6 ==> 4 40 

Total time  100 

TABLE XI. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

4 5 ==> 2 100  

7 3 ==> 5 100  

8 1 ==> 3 100 

Total time  100 

P6 P4 P2 P0

P7 P5

P3

P1
 

Fig. 17. The Formed Topology, C=101. 

TABLE XII. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

5 4 ==> 0 50  

6 6 ==> 2 60  

Total time  60 
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Fig. 18. The Formed Topology, C=010. 

VI. PROPOSED HYBRID METHOD FOR DATA EXCHANGE 

Although the virtual inverse method achieved an 
improvement in the system performance, in this new method, it 
is suggested to take the advantages of both forward and virtual 
inverse methods especially the cost of reconfiguration based on 
a few instructions to control the states of the switches. In order 
to find the sequence of the tree structures, which are used to 
conduct the data exchange, the following algorithm has been 
developed: 

Algorithm-2 

1. Search for the request (Ns, Nd) that have the maximum 

number of words to be transferred. 

2. Find Ts1 and Ts2 based on the forward and virtual 

inverse methods respectively. 

3. Assign all possible requests that can be executed 
concurrently. 

4. Calculate the total number of data transferred and the 

time needed to transfer them. 

5. Choose the configuration that maximizes the number of 

data exchange requests and minimizes the time needed for data 

exchange. 

6. Delete the assigned requests in step 3 from the data 

exchange table. 

7. Repeat the previous steps until all requests will have 

been finished. 

Applying the developed algorithm in this method will 
develop the following configurations to conduct all data 
exchange requests. The first configuration is chosen based on 
the virtual inverse data exchange method. The completion of 
the data exchange requests is presented in Table 13 and 
Fig. 19. 

The second configuration is chosen based on straight 
forward method. Where the control code is 100. Again, the 
completion of the data exchange requests is presented in Table 
14 and Fig. 20. 

The rest of data exchange requests have been executed on 
the configuration generated based on virtual inverse data 
exchange method. Where the control code is 101, the 
implementation is carried out on the configuration shown in in 
Fig. 21 and Table 15. 

The total execution time to conduct all requests of data 
exchange equal 300. The improvement in the performance 

based on the hybrid method related to GA optimum static 
configuration is 130 %, and related to straightforward method 
is 117%, and the best static but not optimized structure is 
477%. However, it cannot prove that it is better than virtual 
inverse method. In addition to the added overhead time of 
testing and comparing constructed configurations based on 
both methods time to choose the best of them. Using highly-
speed processors, this method could manage to outperform the 
other methods especially for larger scale problems. 

TABLE XIII. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

2 7 ==> 1 100  

1 3 ==> 2 50  

3 6 ==> 4 40 

Total time  100 

P2 P0 P6 P4

P3 P1

P7

P5
 

Fig. 19. The Formed Topology, C=111. 

TABLE XIV. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

4 5 ==> 2 100  

5 4 ==> 0 50  

6 6 ==> 2 60 

Total time  100 

P7 P5 P3 P1

P2 P0

P4

P6
 

Fig. 20. The formed topology, c=100 

P6 P4 P2 P0

P7 P5

P3

P1
 

Fig. 21. The Formed Topology, c=101. 
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TABLE XV. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS 

Satisfied  requests Data Path Execution Time 

7 3==> 5 100  

8 1 ==> 3 100  

Total time  100 

VII. CONCLUSIONS 

In this paper, genetic algorithm has been proposed to 
construct an optimum static configuration through which data 
exchange requests can be conducted. The achieved 
configuration was able to conduct many data exchanges in 
parallel and minimize the number of links between the 
communicated processors. However, due to the problem 
nature, not all of the requests can be accomplished in one shot. 
A sequence of dynamic configuration has been proposed to 
overcome the problem of static configuration. Forward, 
virtually inverse, and hybrid data exchange methods have been 
proposed to generate dynamic configurations that achieve data 
exchange optimization. The achieved results showed that there 
are performance improvements in terms of the total tasks’ 
execution time of 370%, 408%, 477%, 550% using 
configurations developed based on genetic algorithm, forward, 
and virtually inverse, and hybrid data exchange techniques 
respectively. 
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