
(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

630 | P a g e
www.ijacsa.thesai.org

Genetic Algorithm for Data Exchange Optimization

Medhat H A Awadalla

Dept. of Electrical and Computer Engineering, SQU, Oman

Dept. of Communications and Computers, Helwan University, Egypt

Abstract—Dynamic architectures have emerged to be a

promising implementation platform to provide flexibility, high

performance, and low power consumption for computing devices.

They can bring unique capabilities to computational tasks and

offer the performance and energy efficiency of hardware with the

flexibility of software. This paper proposes a genetic algorithm to

develop an optimum configuration that optimizes the routing

among its communicating processing nodes by minimizing the

path length and maximizing possible parallel paths. In addition,

this paper proposes forward, virtually inverse, and hybrid data

exchange approaches to generate dynamic configurations that

achieve data exchange optimization. Intensive experiments and

qualitative comparisons have been conducted to show the

effectiveness of the presented approaches. Results show

significant performance improvement in terms of total execution

time of up to 370%, 408%, 477%, and 550% when using

configurations developed based on genetic algorithm, forward,

virtually inverse, and hybrid data exchange techniques,
respectively.

Keywords—Genetic algorithm; dynamic architectures; forward

data exchange; virtually inverse data exchange; and hybrid data

exchange method

I. INTRODUCTION

In recent years [2-3], the parallel architectures have
obtained the popularity whether they are either fixed in their
topology or more flexible in the way their architectures are
constructed. These systems allow different amounts of resource
sharing among its units depending on the way the units are
interconnected. For one specific type of algorithms or
problems, the static architectures can be designed to achieve a
given requirements [4]. The arrangement of the units of the
architecture reflects the algorithm/problem sort that the system
tries to tackle. However, the dynamic architectures in the other
side accommodate modular and adaptable components that can
be controlled using automatic software to transfer the
architecture from one state to another or from one
configuration to another to fit different kinds of
algorithms/problems, and this leads to improve the
performance of the whole system. These dynamic architectures
have links (paths) to be used to interconnect the architecture
modules or resources and these links can be reconfigured under
software control [5]. Changing the paths and the assignment of
the modules and resources, the architecture can have different
configurations/states. In each configuration/state, the modules
and resources can be well selected to suit the specifications of
the algorithm/application to get the maximum system
performance [6].

The processors in the parallel architectures form a network
and this network can be characterized by its topology or

structure and it can be modelled as a graph. The nodes in this
network (graph) represent the processors, the edges represent
the links that are used to connect these nodes, and they are the
means for data exchange among these nodes.

There are large number of parallel architectures that can be
reconfigured and take different structures and topologies such
as the architecture associated with multistage interconnection
[7-8]. Even though the dynamic architectures provide
flexibility to deal with different types of problems and
contribute to the system performance improvement. However,
any reconfiguration arrangement introduces two types of
overhead, firstly, the reconfiguration hardware that needed to
perform the reconfiguration process and not to do computation,
control, or storage operations and secondly, the reconfiguration
time that required to reconfigure the architecture from one
configuration to another. It is so important in the early stages of
designing dynamic systems to work out how to minimize these
overheads.

In the literature, artificial intelligent techniques are widely
used to solve problems that do not have definite conventional
mathematical models for them. One approach of these artificial
intelligent techniques is the Genetic Algorithm (GA). Many
optimization problems have been solved using GA in different
fields of Engineering and Science [9]. GA is a heuristic
approach, which depends largely on random numbers to
determine the approximate solution of an optimization
problem. In the field of parallel and distributed systems,
genetic algorithms have been used to address different
algorithms and problems. Many authors proposed approaches
to deal with the genetic operators [10-12]. Authors in [13]
developed a genetic algorithm to reconfigure the topology and
link capacities of an operational network in response to its
operating conditions. The process of reconfiguration is very
difficult if the addressed application/problem has many
situations that can go through among them based on the
different scenarios and situations. The authors in [14] proposed
GA for autonomous architectural selection to find the best
architectural configuration for the current situation. The
assessment of their performance has been provided to illustrate
that their approach efficiently found the best configuration
[15]. The implementations of hardware genetic algorithms can
also be observed in [16-17]. The authors presented their
implementation of a genetic algorithm on FPGA that
represented the population of chromosomes as a vector of
probabilities. They tried to reduce the consumption of memory,
power and space of the resources in hardware. In addition, the
work in [18] proposed a high-speed GA implementation on
FPGA, the authors claimed that their approach is the first
implementation of GA on FPGA. They also claimed that their

(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

631 | P a g e
www.ijacsa.thesai.org

developed system outperforms any existing or proposed
solution related to their experiments.

In this paper, the capabilities of the genetic algorithm as an
optimization technique have been utilized to find the optimum
static structure to transfer data among processors connected
together in a platform of multiprocessor. The structure should
minimize the path length and maximize the possible parallel
paths to ensure minimum time taken. In addition, the paper
presents different approaches to generate dynamic
configurations that enhance the system performance.

The rest of this paper is organized as follows. Section 2
presents the proposed genetic algorithm. Section 3 presents the
generalized dynamic architecture. Section 4 shows the forward
data exchange method. Section 5 presents the virtually inverse
data exchange method. Section 6 presents the hybrid data
exchange approach. Section 7 concludes the paper.

II. PROPOSED GENETIC ALGORITHM (GA)

In this section, the main operators of the genetic algorithm
have been described. Mainly, GA starts with initial population
of chromosomes, which randomly generated and in some cases
generated based on the output of another algorithm or an
experiment. GA procedure is as follows.

1) The population should be initialized.

2) The population chromosomes should be assessed.

a) New chromosomes should be created using crossover

and mutation operators.

b) Some of the existing population members (parents)

should be deleted to give a room in the population for the new

members (children/offspring).

c) The new members should be assessed and inserted

into the population.

3) Step 2 should be repeated until termination condition is

reached.

4) The achieved best chromosome is returned as the

solution for the addressed problem.

A chromosome represents the solution of any problem
tackled by Genetic Algorithm. The permutation of processor

nodes P, P  V represents the chromosomes (V is the number
of nodes) as shown in Table 1.

GA tournament selection operator is used in this paper to
allocate the best trials to chromosomes according to the value
of their fitness. Chromosomes are selected from the initial
population to be parents for reproduction. In addition, elitism is
used to keep the important information through the process of
selection because they may not be selected through the GA
operators, crossover and mutation and they get lost. A least the
best two chromosomes are selected and placed into the mating
pool, meanwhile are added in the next generation.

TABLE I. PROCESSOR NODES CHROMOSOME REPRESENTATION

Gene 1 2 3 4 5 6 7 8

Chromosome 1 P0 P6 P2 P4 P3 P5 P1 P7

Tournament selection randomly picks a Tournament size
(Ts) of chromosomes from the tournament that is a copy of the
population (pop). The winner is best chromosome from (Ts)
that has the best fitness (fit). This winner is then inserted into
the mating pool (which is for example half of the tournament).
The tournament competition is repeated until the mating pool
for generating new offspring is filled. After that, crossover and
mutation are performed. The developed tournament method is
as shown in the following procedure.

Tournament Selection Method

tournamentselection (pop, fit, Ts);
BEGIN

1. Compute the size of the mating pool as size of
population/2;

2. Compute the best two individuals from the population
3. Add them to the mating pool and the new population

4. for j1 to Ts
5. DO compute random point as any point between 1 and

population size
6. T[j]  pop [point];

7. TF[j]  fit [point];
8. END FOR

9. Compute the best one from T according to the fitness
10. Add it to the mating pool

11. Repeat steps 4 to 10 until mating pool is full
END

A. Crossover Operator

The crossover operator generates new chromosomes called
children or offspring by combining two parent chromosomes.
Based on the crossover probability pc, these chromosomes are
exposed to single point crossover operator as shown in Fig. 1,
otherwise, these chromosomes are not changed.

As shown in Fig. 1, after performing the crossover process,
there are errors in representing the chromosomes where some
processor nodes are presented twice in one chromosome.
Chromosome 1 and chromosome 2 have duplicated the
processor nodes P4 and P3 respectively. The problem is
tackled using the following single-point crossover operator
(Fig. 2). For any two randomly selected chromosomes c1 and

c2, a cut point x is chosen randomly (1 ≤ x < V). The first
genes [1, x] of c1 and c2 are copied to the genes [1, x] of the
new children ch1 and ch2 respectively. To fill the remaining
genes [x + 1, V] of ch1 (ch2), chromosome c2 (c1) is scanned
from the first to the last gene and each processor node that is
not yet in ch1 (ch2) is added to the next empty position of ch1
(ch2) in the order that it is.

Fig. 1. Single-Point Crossover.

(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

632 | P a g e
www.ijacsa.thesai.org

B. Mutation Operator

The probability of mutation operator (pm) is much less than
that of the crossover operator. It is essentially for avoiding the
convergence of a local solution. The mutation operator can be
implemented through swapping randomly any two gens in a
chromosome as shown in Fig. 3, where P5 and P6 are
exchanged. During the simulated experiments, the population
size was 100, the maximum number of generations was 500,
the probability of the crossover was 0.7, and the probability of
the mutation was 0.02. Table 2 presents some of the initial
population chromosomes and the configurations based on the
generated chromosomes are shown in Fig. 4, where the gens
are arranged to represent the tree nodes of the top level first
from the most left side to the right and then down towards the
lower levels till reaching at the end to root node. For example,
the chromosome C1 genes P7, P4, P6, and P1 are Level 3
nodes, P1 and P5 are Level 2 nodes, P3 represents Level 1
node, and P0 is the tree root.

In this paper, the Fitness Function is used to find the
minimum total time required to exchange data among some
processors as shown in Table 3.

FF= (∑

) (1)

 (2)

Where, is the time needed for data exchange between
two communicating processor nodes.

ND: the number of words to be transferred between the
communicating processor nodes.

PL: the number of links between the communication
processor nodes, assuming that the time required to transfer
one word on one like is equal one unit of time, to make it
simple assume it equal one.

n: the number of data requests to be transferred.

All configurations have been used to address the problem
of data transfer between processors shown in Table 3 [19].

Fig. 2. The Developed Single-Point Crossover.

TABLE II. SOME OF INITIAL CHROMOSOMES

 Number of nodes

Chromosomes 1 2 3 4 5 6 7 8

C1 P7 P4 P6 P2 P1 P5 P3 P0

C2 P4 P7 P6 P2 P1 P5 P3 P0

C3 P7 P4 P2 P6 P1 P5 P3 P0

C4 P7 P4 P6 P2 P1 P5 P0 P3

C5 P6 P2 P5 P7 P4 P1 P3 P0

C6 P6 P2 P5 P4 P7 P1 P3 P0

C7 P7 P4 P6 P2 P1 P3 P5 P0

C8 P7 P4 P6 P1 P2 P5 P3 P0

C9 P1 P7 P6 P4 P2 P5 P3 P0

C10 P2 P6 P5 P7 P4 P1 P3 P0

C11 P2 P6 P7 P5 P4 P1 P3 P0

C12 P2 P6 P5 P7 P1 P4 P3 P0

C13 P7 P4 P3 P2 P1 P5 P6 P0

C14 P1 P6 P5 P7 P2 P4 P3 P0

C15 P7 P4 P6 P0 P1 P5 P3 P2

C16 P7 P0 P6 P2 P1 P5 P3 P4

C17 P7 P6 P2 P4 P1 P5 P3 P0

C18 P6 P2 P7 P5 P4 P1 P3 P0

C19 P6 P2 P5 P4 P7 P1 P3 P0

C20 P1 P2 P3 P7 P4 P6 P0 P5

(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

633 | P a g e
www.ijacsa.thesai.org

Chromosome before mutation Chromosome after mutation

Fig. 3. Mutation Operator of Chromosome C1.

Fig. 4. Some of the Achieved Tree Configurations.

TABLE III. DATA EXCHANGE PROBLEM

Request No. Source node Destination node
Number of words to be

transferred, ND

Length of minimal

communication path in

static binary tree, PL

Time of exchange in

static tree

T= ND*PL

1 3 2 50 3 150

2 7 1 100 4 400

3 6 4 20 1 20

4 5 2 100 1 100

5 4 0 50 1 50

6 6 2 30 2 60

7 3 5 100 4 400

8 1 3 100 4 400

After mating process as shown in Table 4 and other
operators such as crossover and mutation are repeated until the
end of all generations and reach to the stop criteria. In each
time iteration, the fitness function is calculated. The fitness
function for different configurations shown in Fig. 4 is
illustrated in Table 5. One of the optimum static configurations
achieved based on GA is depicted on Fig. 5, more than one
configuration has the best fitness function value. Here, a brief
explanation for determining the value of the fitness function is
demonstrated. To conduct the data transfer between the
processors shown in Table 3 on the tree configuration in Fig. 5,
data exchange requests, 7-->1, 5 -- > 2, 3 -- > 5, and 1 -- >3

can be done in parallel. The total time to transfer all these data
requests is equal the longest time of them. Since the requests
are equal in number of data to be transferred and the number of
links among them. Therefore, the total time is equal the time
required to implement one request of them which is 100. The
other requests will be transferred sequentially after the previous
data exchanges such as 3 -- > 2 that takes 100 and then 4 -- > 0
that takes 150. The time needed for these data exchange is
equal the longest of them, 150. The last two requests 6 -- > 2
and 6 -- > 4 are executed sequentially. The time required for
them are 60 and 80, respectively. Then, the total time required
to perform the whole job is equal 390, (100+150+60+80=390).

C1 P0 P1 P2 P4 P3 P6 P7 P5 C1 P0 P1 P2 P4 P3 P5 P7 P6

(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

634 | P a g e
www.ijacsa.thesai.org

TABLE IV. THE DEVELOPED MATING POOL, 10 CHROMOSOMES

Fig. 5. GA based Optimum Static Configuration.

The time to perform the same problem by the best but not
optimum tree constructed in [19] is also one of the
configurations achieved by GA, and represented in Table 5
(C20) was 1430. Hence, there is a performance improvement
of 370% using Genetic Algorithm. On the static tree shown in
Fig. 6, the data exchange requests in Table 3 have been
executed. This tree in Fig. 6 can be constructed in reality but it
cannot be proved to be the optimum configuration because it is
neither maximizing the concurrency nor minimizing the inter-
processor communication. On this tree, out of eight data
exchange requests, requests 1, 2, 3, 4, 6, and 8 are conducted
sequential and just two requests 5 and 7 are accomplished in
parallel. This is the reason behind the big amount of time
required to conduct the total requests on this configuration. On
the other side, GA has its limitations, the time for GA
processes can be not omitted to find the optimum tree
configuration even it is done offline.

Fig. 6. Best Static Configuration in [20] and C20.

TABLE V. THE ACHIEVED FITNESS FUNCTION VALUES

Chromosomes FF

C1 390

C2 390

C3 390

C4 580

C5 930

C6 1130

C7 580

C8 870

C9 640

C10 800

C11 700

C12 1160

C13 610

C14 1060

C15 620

C16 390

C17 530

C18 760

C19 1130

C20 1430

III. GENERALIZED DYNAMIC ARCHITECTURE

Even though the constructed static configuration is
considered as the optimum structure because it gives the
minimum time, the process of data exchange is accomplished
in more than one phase sequentially as shown in Fig. 7. For
large-scale problems, many data transfer will be executed
sequentially and the number of links will be big which
negatively affects the total required time for data exchange
among the processors. The main aim of using dynamic
configurations is to overcome the restrictions of the static
structure. In this case, more than one configuration will be
constructed and used to perform the data exchange to achieve a
better performance compared with the performance of the
optimum static configuration. The system develops the
configuration that contains the longest communication node
pairs are adjacent and conduct the data transfer among the
source and destination nodes. After that, the system
architecture will be reconfigured for the next longest
communicating pairs to be adjacent to achieve the best
performance; the developed algorithm is as follows:

Algorithm-1

1. Divide the requests into groups of equally number of data
words need to be transferred.

2. Sort the groups in descending order according to the

number of data.

3. For each group, if there is a destination node of any

request is a source node for another request. Then, let this

node is the intersection between these two requests.

4. Starting by top group, choose the configuration that

maximizes the number of data exchange requests and

minimizes the time needed for data exchange.

5. Assign all possible requests that can be executed

concurrently.
6. Delete the assigned requests in step 5 from the data

exchange table.

7. Repeat the previous steps until all requests will have been

finished.

(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

635 | P a g e
www.ijacsa.thesai.org

Fig. 7. The Implementation of Data Exchange on the Optimum Static

Configuration.

To implement the developed algorithm, a dynamic
architecture that can be reconfigurable is needed. Multistage
interconnection networks addressed in [20-21] have been used
due to their reconfiguration property. Such kind of an
architecture can be reconfigured through software code.
Multistage interconnection network has k stages and it can be
used to connect n nodes (n = mk), m and k are integers greater
than one as shown in Fig. 8. If m is represented as m = 2α, so
each node can be addressed by αk-bit binary number. Each
stage element is controlled by a set of control lines and all
switching elements in a certain stage receive the same control
code and hence switch to the same state. If the inputs and the
outputs of the switching elements are denoted by α-bit code as
 (), each input node will be
connected to the corresponding output node using the logic of
Exclusive-OR between the input node and the control code as
follows:

 () () (
) (3)

Where, is α-bit control code that controls
the state of each switching element. The switching states of the
first S0 is different because there are m inputs and m2 outputs.
Each input i is connected to output j as given by:

 (4)

Fig. 8. The Reconfigurable Architecture with 16 Nodes.

Where, c is the decimal equivalent of α-bit binary control
code, also there are m nodes are connected to the output of S0
and outputs of S0 are divided into m groups each m lines as a
set for each node. The nodes to be connected to the inputs of
S0 can be determined based on the following relation.

 (5)

Referring to multistage interconnection network, a distinct
tree structure with mk nodes, is defined as a tree having k+1
levels (L0, L1, …, Lk) of nodes with root L0 and leaf nodes at
Lk. Each node at a level Lx (x=1, 2… k-1) is connected to m
nodes at Lk+1. The root node is connected to m-1 nodes at L1
and has one connection with itself. The configuration control is
responsible for establishing the configurations.

For each issued αk-bit control code, a distinct tree
configuration is obtained. Each node () establishes a
connection with a node () based on the following equation.

 () (())) (6)

Where (()) is α-bit the circular shift right of ()
and B is αk-bit number represented as 1α 1α … 0α.

Equation (6) can be rewritten to determine the required
control code that if it is issued by configuration control, the tree
that contains the adjacent () and () will be obtained as
follows:

 (())) () (7)

For instance, if m=2, k=3, and C=010, the processor nodes
in the multistage interconnection network shown in Fig. 9 will
form a tree as shown in Fig. 10. Fig. 11 shows the different
configurations could be obtained from the dynamic architecture
with different 3-bit control codes.

The next step is taking the next biggest data exchange,
which is the data exchange between processor 5 and processor
2. In this case, the control code is 100 and the requests that can
be executed concurrently are shown in Table 7 on the
configuration achieved in Fig. 13.

Fig. 9. The Reconfigurable Architecture with Eight Nodes.

(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

636 | P a g e
www.ijacsa.thesai.org

TABLE VI. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

2 7 ==> 1 100

3 6 ==> 4 40

8 1 ==> 3 100

Total time 100

Fig. 10. The Formed Tree Topology m=2, k=3, c=010.

Fig. 11. Different Configurations with Different Control Codes.

Fig. 12. The Formed Topology, C=111.

Fig. 13. The Formed Topology, C=100.

The next data exchange is between processor 3 and
processor 5, for this case, the control code C is 001 is required.
In this case, there is only one data exchange path as indicated
in Table 8 and it will be accomplished through the
configuration achieved in Fig. 14.

TABLE VII. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

4 5 ==> 2 100

5 4 ==> 0 50

6 6 ==> 2 100

Total time 100

TABLE VIII. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

7 3==> 5 100

Total time 100

P6 P4 P2 P0

P3 P1

P5

P7

Fig. 14. The Formed Topology, C=001.

IV. PROPOSED FORWARD DATA EXCHANGE METHOD

Based on the developed algorithm-1 and using the dynamic
configurations that can be achieved from the dynamic
architecture through different software control codes, data
exchange problem in Table 3 can be conducted. The heaviest
communicating nodes should start communication first. If there
are more than one pair, the lowest index will be considered in
the data exchange problem in Table 3. The lowest index is
defined as the top one of the communication path number that
have the same number of words to be transferred in the table.
For the problem under consideration, the first heaviest data
exchange is between processor 7 and processor 1. Using
equations 6 and 7, the required control code is determined as:

 ()) (8)

When the configuration control unit issues this command,
the tree structure in Fig. 12 will be formed. With the data
exchange between processor 7 and processor 1, there are a
possibility for some requests to be executed concurrently such
as processor 6 and processor 4 as well as processor 1 and
processor 3 and it is indicated in Table 6.

The last data exchange is between processor 3 and
processor 2 and required control code C is 110 as shown in
Table 9 and Fig. 15.

The total execution time is calculated from the above
reconfiguration states as:

Total execution time = T (Ts1) + T (Ts2) + T (Ts3) + T
(Ts4) =100+100+100+50=350

(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

637 | P a g e
www.ijacsa.thesai.org

TABLE IX. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

1 3==> 2 50

Total time 50

Fig. 15. The Formed Topology, C=110.

Of course, there is a time waste to generate new
configurations, however for huge data to be transferred,
processed, and using nowadays very fast computers, these
factors can remarkably reduce that time. The improvement in
the performance related to the developed genetic algorithm
based static configuration is 112%. Comparing the achieved
results with [20], the performance improvement is 408%.

V. PROPOSED VIRTUALLY INVERSE DATA EXCHANGE

METHOD

It clear that, for any adjacent node pair in any given tree
configuration, there is another tree that contains the same
adjacent node pair but the difference is the instantaneous
reverse direction of the data exchange. In the forward data
exchange method, trees are built by considering that the data
exchange between each pair of nodes takes place from a source
node a destination one. In this method, trees are constructed by
considering that the data exchange will be in the opposite
direction, from a destination node to the source node.

Below is the description of reconfigurable structure of
binary tree followed by assessment of the performance
improvement that can be accomplished based on the inverse
direction of data exchange. In this case, the reconfiguration
equations take another form as:

 () (())) (9)

 (())) () (10)

Repeating of the above scenarios yields to the real
execution from processor 7 to processor 1 has to be imagined
as from processor 1 to processor 7. The deduced control code
is given by:

 ()) (11)

When the configuration control unit issues the control code,
a tree that contains the processor node 7 and processor node 1
adjacent is constructed as shown in Fig. 16. All possible data
exchange requests that can be performed concurrently with the
data exchange between processor 7 and processor 1 are
indicated in Table 10.

The next biggest data exchange is between processor node
5 and processor node 2, this is assumed to be from processor 2
to processor 5. In this case, the control code C is 101. Table 11
shows the possible requests that can be conducted on the
achieved tree shown in Fig. 17 in parallel with the data
exchange between processor 5 and processor 2.

The last heaviest data exchange is between processor 4 and
processor 0. The C is 010. Table 12 shows the data exchange
and all possibilities of data exchange that can be done in
parallel with data exchange between processor 4 and processor
0 on the tree configuration in Fig. 18.

P2 P0 P6 P4

P3 P1

P7

P5

Fig. 16. The Formed Topology, C=011.

TABLE X. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

2 7 ==> 1 100

1 3 ==> 2 50

3 6 ==> 4 40

Total time 100

TABLE XI. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

4 5 ==> 2 100

7 3 ==> 5 100

8 1 ==> 3 100

Total time 100

P6 P4 P2 P0

P7 P5

P3

P1

Fig. 17. The Formed Topology, C=101.

TABLE XII. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

5 4 ==> 0 50

6 6 ==> 2 60

Total time 60

(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

638 | P a g e
www.ijacsa.thesai.org

Fig. 18. The Formed Topology, C=010.

VI. PROPOSED HYBRID METHOD FOR DATA EXCHANGE

Although the virtual inverse method achieved an
improvement in the system performance, in this new method, it
is suggested to take the advantages of both forward and virtual
inverse methods especially the cost of reconfiguration based on
a few instructions to control the states of the switches. In order
to find the sequence of the tree structures, which are used to
conduct the data exchange, the following algorithm has been
developed:

Algorithm-2

1. Search for the request (Ns, Nd) that have the maximum

number of words to be transferred.

2. Find Ts1 and Ts2 based on the forward and virtual

inverse methods respectively.

3. Assign all possible requests that can be executed
concurrently.

4. Calculate the total number of data transferred and the

time needed to transfer them.

5. Choose the configuration that maximizes the number of

data exchange requests and minimizes the time needed for data

exchange.

6. Delete the assigned requests in step 3 from the data

exchange table.

7. Repeat the previous steps until all requests will have

been finished.

Applying the developed algorithm in this method will
develop the following configurations to conduct all data
exchange requests. The first configuration is chosen based on
the virtual inverse data exchange method. The completion of
the data exchange requests is presented in Table 13 and
Fig. 19.

The second configuration is chosen based on straight
forward method. Where the control code is 100. Again, the
completion of the data exchange requests is presented in Table
14 and Fig. 20.

The rest of data exchange requests have been executed on
the configuration generated based on virtual inverse data
exchange method. Where the control code is 101, the
implementation is carried out on the configuration shown in in
Fig. 21 and Table 15.

The total execution time to conduct all requests of data
exchange equal 300. The improvement in the performance

based on the hybrid method related to GA optimum static
configuration is 130 %, and related to straightforward method
is 117%, and the best static but not optimized structure is
477%. However, it cannot prove that it is better than virtual
inverse method. In addition to the added overhead time of
testing and comparing constructed configurations based on
both methods time to choose the best of them. Using highly-
speed processors, this method could manage to outperform the
other methods especially for larger scale problems.

TABLE XIII. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

2 7 ==> 1 100

1 3 ==> 2 50

3 6 ==> 4 40

Total time 100

P2 P0 P6 P4

P3 P1

P7

P5

Fig. 19. The Formed Topology, C=111.

TABLE XIV. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

4 5 ==> 2 100

5 4 ==> 0 50

6 6 ==> 2 60

Total time 100

P7 P5 P3 P1

P2 P0

P4

P6

Fig. 20. The formed topology, c=100

P6 P4 P2 P0

P7 P5

P3

P1

Fig. 21. The Formed Topology, c=101.

(IJACSA) International Journal of Advanced Computer Science & Applications
 Vol. 10, No. 2, 2019

639 | P a g e
www.ijacsa.thesai.org

TABLE XV. POSSIBLE CONCURRENTLY DATA CHANGE REQUESTS

Satisfied requests Data Path Execution Time

7 3==> 5 100

8 1 ==> 3 100

Total time 100

VII. CONCLUSIONS

In this paper, genetic algorithm has been proposed to
construct an optimum static configuration through which data
exchange requests can be conducted. The achieved
configuration was able to conduct many data exchanges in
parallel and minimize the number of links between the
communicated processors. However, due to the problem
nature, not all of the requests can be accomplished in one shot.
A sequence of dynamic configuration has been proposed to
overcome the problem of static configuration. Forward,
virtually inverse, and hybrid data exchange methods have been
proposed to generate dynamic configurations that achieve data
exchange optimization. The achieved results showed that there
are performance improvements in terms of the total tasks’
execution time of 370%, 408%, 477%, 550% using
configurations developed based on genetic algorithm, forward,
and virtually inverse, and hybrid data exchange techniques
respectively.

REFERENCES

[1] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, K. Olukotun. “Plasticine: A Reconfigurable

Architecture for Parallel Patterns”. ISCA ’17, June 24-28, 2017,
Toronto, Canada, pp. 1-14.

[2] M. Lorenz, L.Mengibar, E. SanMillan, L. Entrena, “ Low Power Data

Processing system With Self reconfigurable”. Journal of Systems
Architecture, 2017, 53(9), pp. 568-576.

[3] P. Khera, A. Kumar, S. Singh, and S. Semwal. “Reconfigurable

Architecture: An Approach to Design Low Power Digital Signal
Processor”. International Conference on Methods and Models in

Science and Technology (ICM2ST-10).2010, pp. 433-437.

[4] R. Tessier, K. Pocek, and A. DeHon. “Reconfigurable Computing

Architectures”. Proceedings of the IEEE | Vol. 103, No. 3, 2015, pp.
332-354.

[5] M. Gao and C. Kozyrakis. “HRL: Efficient and flexible reconfigurable

logic for near-data processing”. International Symposium on High
Performance Computer Architecture (HPCA), pp. 126–137.

[6] N. Instruments. “Understanding parallel hardware: Multiprocessors,

hyper-threading, dual-core, multicore and FPGAs”. URL:
http://www.ni.com/tutorial/6097/en/.

[7] J. Cardoso, M. Hübner. “Reconfigurable Computing: From FPGAs to

Hardware/Software Co-design”. Springer 2011 edition, November 26,
2014.

[8] Y. Arzilawati, O. Mohamed; H. Zurina Lun, K. Yeah. “Number of sage

implication towards multistage interconnection network reliability”.
Advanced Science Letters, V. 24, No. 2, February 2018, pp. 1259-1262.

[9] D. Kim and S. Park. “Dynamic Architectural Selection: A Genetic

Algorithm Based Approach”. International Symposium on Search Based
Software Engineering, 2009, pp. 59-68.

[10] F. Mengxu, T. Bin, FPGA implementation of an adaptive genetic

algorithm”. Twelvish International Conference on Service Systems and
Service Management (ICSSSM), 2015, pp. 1–5.

[11] H. Qu, K. Xing, T. Alexander. “An improved genetic algorithm with co-

evolutionary strategy for global path planning of multiple mobile
robots”. Neurocomputing 120, 2013, 509–517.

[12] L. Guo, A. I. Funie, D. B. Thomas, H. Fu, W. Luk, Parallel genetic
algorithms on multiple FPGAs, ACM SIGARCH Computer Architecture

News 43, 2016, pp. 86–93.

[13] D. Montana, T. Hussain, T. Saxena. “Adaptive reconfiguration of data
networks using genetic algorithms”. Proceedings of the Genetic and

Evolutionary Computation Conference, 2002, pp. 1141–1149, San
Francisco, CA, USA.

[14] L. M. Ionescu, A. Mazare, A. I. Lita, G. Serban. “Fully integrated

artificial intelligence solution for real time route tracking” 38th
International Spring Seminar on Electronics Technology (ISSE), 2015,

pp. 536–540.

[15] H. Qu, K. Xing, T. Alexander. “An improved genetic algorithm with co-
evolutionary strategy for global path planning of multiple mobile

robots”. Neurocomputing 120, 2013, pp. 509–517.

[16] F. Mengxu, T. Bin, FPGA implementation of an adaptive genetic
algorithm, in: 2015 12th International Conference on Service Systems

and Service Management (ICSSSM), IEEE, 2015, pp. 1–5.

[17] H. Merabti, D. Massicotte. “Hardware implementation of a real-time
genetic algorithm for adaptive filtering applications”. 27th IEEE

Canadian Conference on Electrical and Computer Engineering
(CCECE), 2014, pp. 1–5.

[18] M. Vavouras, K. Papadimitriou, I. Papaefstathiou. “High-speed FPGA-
based implementations of a genetic algorithm”. SAMOS’09. IEEE

International Symposium on Systems, Architectures, Modeling, and
Simulation, 2009, pp. 9–16.

[19] G. Racherla, S. Radhakrishnan, L. Sumners DeBrunner.

“Parameterization of efficient dynamic reconfigurable trees”. Journal of
Systems Architecture, 2000, 46(10), pp. 951-954.

[20] S. Rajkumar, N K Goya. “Review of multistage interconnection

networks reliability and fault‐tolerance”. IETE Technical Review 2015.

[21] A. O. Balkan, G. Qu, U. Vishkin. “Mesh‐of‐trees and alternative
interconnection networks for single‐chip parallelism”. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 2009.

http://www.ni.com/tutorial/6097/en/
https://www.springer.com/engineering/circuits+%26+systems/book/978-1-4614-0060-8
https://www.springer.com/engineering/circuits+%26+systems/book/978-1-4614-0060-8
https://www.ingentaconnect.com/search;jsessionid=p7dd6ndopl49.x-ic-live-02?option2=author&value2=Yunus,+Nur+Arzilawati+Md
https://www.ingentaconnect.com/search;jsessionid=p7dd6ndopl49.x-ic-live-02?option2=author&value2=Othman,+Mohamed
https://www.ingentaconnect.com/search;jsessionid=p7dd6ndopl49.x-ic-live-02?option2=author&value2=Hanapi,+Zurina+Mohd
https://www.ingentaconnect.com/search;jsessionid=p7dd6ndopl49.x-ic-live-02?option2=author&value2=Hanapi,+Zurina+Mohd
https://www.ingentaconnect.com/content/asp/asl;jsessionid=p7dd6ndopl49.x-ic-live-02
https://www.researchgate.net/scientific-contributions/29773022_Gopal_Racherla?_sg=uwFwrVqskyI7zBbbjMIlPvnnN5gExNTTvi5TSC7H0W9o5v6PFjFVLJw86I4KAlVdQYo68Hk.JWWMXJfmwDpilPJJlY0tx6ssb6XYPk7b2-EjP_Um324GUXWRZbC0SDsos5l2I2ly8tSLr1qK7vtPz-3dSJKHKQ
https://www.researchgate.net/profile/Sridhar_Radhakrishnan3?_sg=uwFwrVqskyI7zBbbjMIlPvnnN5gExNTTvi5TSC7H0W9o5v6PFjFVLJw86I4KAlVdQYo68Hk.JWWMXJfmwDpilPJJlY0tx6ssb6XYPk7b2-EjP_Um324GUXWRZbC0SDsos5l2I2ly8tSLr1qK7vtPz-3dSJKHKQ
https://www.researchgate.net/profile/Linda_Debrunner2?_sg=uwFwrVqskyI7zBbbjMIlPvnnN5gExNTTvi5TSC7H0W9o5v6PFjFVLJw86I4KAlVdQYo68Hk.JWWMXJfmwDpilPJJlY0tx6ssb6XYPk7b2-EjP_Um324GUXWRZbC0SDsos5l2I2ly8tSLr1qK7vtPz-3dSJKHKQ

