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Abstract—In this paper, the basic theory of the model 

reference adaptive control design and issues of particular 

relevance to control nonlinear dynamic plants with a relative 

degree greater than or equal to one with unknown parameters 

are detailed. The studied analysis was motivated through its 

application to a robot manipulator with six degrees of freedom. 

After linearization using the input-output feedback linearization 

and decoupling algorithm, the nonlinear Multi-input Multi-

output system was transformed into six independent single-input 

single-output linear subsystems each one has a relative degree 

equal to two, the obtained results in different simulations shows 

that the augmented reference model adaptive controller has been 

successfully implemented. 
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I. INTRODUCTION 

Nowadays, a great performance of industrial control 
systems are under adaptive control techniques [1], these 
include a high scale of tasks in aerospace, robotics, process 
control, ship steering, and automotive and biomedical plants. 

Specially, for robotic control, a control designer can be 
faced with joint flexibilities, unknown manipulator dynamic 
parameters, nonlinear joint interactions, and dynamics 
changing due to unknown and varying loads. Traditional 
robotic control algorithms have depended on specific 
knowledge of the robotic parameters and dynamic equations 
[2]. When a designer has limited knowledge of these 
parameters and interactions, it can be advantageous to exploit 
adaptive control approaches to reduce the effects of these 
problems. 

Generally, the model reference adaptive control system 
(MRAC) was initially developed to adjust the problems in 
which the performance specifications are given in terms of a 
reference model [1, 3, 4]. This model tells how the process 
output ideally should deal to the command signal. The 
structure of the control system is given in Fig. 1. 

 The controller may be thought of as composed  of two 
loops, the inner loop is an regular feedback loop consisting of 
the plant and the controller, the outer loop error, which 
determines the difference between plant output and model 
output is small [1, 5]. The MRAC was orginally introduced for 
advanced control. The crucial importance with MRAC is to 
analyse the adjustment mechanism so that a stable system 
which brings the error to zero, is obtained. 

 

Fig. 1. A Model-Reference Adaptive Control System [1]. 

The organization of this paper is as follows: It is designed 
by five parts. In Section 2, the adaptive control statement is 
presented. In Section 3, the structure of the model reference 
adaptive control system with relative degree greater than or 
equal to one is explained. In Section 4, the control approach is 
applicated to a robot manipulator with six degrees of freedom 
and the simulation results are developed. Finally, the 
conclusion was detailed in Section 5. 

II. PROBLEM STATEMENT 

The problem under consideration [5], is the control of a 
single-input single-output (SISO) discrete time linear system 
which is elaborated by the input output {V(k),Y(k)} and can be 
formulated by the transfer function of the form: 
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Where  1A q  denotes a monic polynomial with degree 

n,  1B q  represents a monic stable polynomial with degree 

m n , the term d=n-m  is designed the relative degree of the 

system and
 
K p  is called a constant gain parameter. 

A model reference is represented by the input output 

    ,Y k Y kc r  and can be described by the transfer function. 
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Where  1A q
m

  and  1B q
m

  represent respectively 

a monic stable polynomial with degrees n and m n  , K
m

 

denotes a constant gain parameter. 

Therefore as [6], the relative degree of the model is 
supposed to be greater than or equal to that of the system. 

The purpose of the MRAC design is to determine a control 
law V(k), and an adaptation law, such that [6, 7] the resulting 

model following error    Y k Y k
r

  asymptotically 

converges to zero, such that relation (3). 

     lim lim 0e k Y k Y kr
k k

  
            (3) 

III. STRUCTURE OF THE MODEL REFERENCE ADAPTIVE 

CONTROLLER 

The general structure of the model reference adaptive 
control system can be detailed as shown in Fig. 2 by the block 
diagram below. 

Two identical block for generating auxiliary filter signal 

FSA1 and FSA2 both with dimension n,
   
1

W k  and 

   
2

W k  with dimension (n-1)x1 denote the vectors of state 

variables and V(k) and Y(k) represent respectively, the inputs 
of the designed controller as detailed in Fig. 2. 

Consider the following state space representation of the 
SISO plant dynamics, together with two “signal filter 

generators” formed by a controllable pair  Λ,B  are given as. 
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Fig. 2. Block Diagram of Model Reference Adaptive Control. 
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represents the controller parameters. 

According to the block diagram of the control system, the 
control law can be put in the following form: 

           1 1
0 1 2

V k K Y k W q V k W q Y k
c
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   (7) 

The expression (7) can be formulated as follows: 

     θ
T

V k k k
             (8) 

Where 
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Finally, the calculation of the control law requires 
knowledge of the parameters of the system. However, in 
practice, these parameters are unknown and variable in time. 
So, the online estimation of the control parameters is therefore 
necessary [6, 7, 8, 9, 10]. In this case, the control law is written 
in the following form: 

     
T

V k k k 
 

As described in [8], depending on the relative degree r of 
the system and the nature of the transfer function of the 
reference model, two cases are considered: 

Case i: 1r   and the transfer function  1G q
m

   must 

be strictly positive real (SPR). 

Case ii: 1r and the transfer function  1G q
m

   must 

be non-strictly positive real (NSPR). 

A. Synthesis of the Control Law in the Case of the Relative 

Degree of the Plant 1r  and  1G q
m

  is Strictly 

Positive Real. 

In this case, we assumed that the relative degree r of the 

plant is one and the transfer function  1G q
m

  is (SPR). So, 

the MRAC system can be described as shown in Fig. 3 by the 
block diagram below. 

(9) 
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Fig. 3. A Model-Reference Adaptive Control System for Relative Degree 

1r  . 

The controller designed by (2n + 1) adjustable parameters, 

which represented the elements of the parameter vector  k  

formulated by relation (10) 

         θ 0
TT Tk K k C k kD d kc

 
            (10) 

If a vector  k  is defined as 

             1 2T T Tk Y k W k W k Y kc           (11) 

The control law is written as: 

           θ Γ
T T

V k k k k k e k   
        (12) 

where 0 and  Γ Γ
T

  is a positive definite diagonal 

matrix 

The parameters vector  T
k  can be written as follows: 

     * TT T
k k k   

          (13) 

Where    
** * * *

0 0
TT TK k C D d k

 
   

is the 

vector with optimal parameters, and  
T

k  is the vector of 

errors on control parameters. Then the expression of the 
command law is rewritten, as follows: 

             * Γ
T TTV k k k k k k e k    

 
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  (14) 

In this case,  a constant vector 
*

 exists such that if 

   *T T
k k  , then   0

T

k  . So, it can be shown 

that the transfer function of the system will be equal to that of 

the reference model, and this term      Γ
T

k k e k   is 

seen to tend to zero. 

Finally, in this condition the algorithm of adaptation 
parameters is given by the following equations: 

     e k Y k Y k
r

 
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T T
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 Synthesis of the Control Law in the Case of the Relative 

Degree 1r and  1G q
m

  is Non Strictly Positive Real. 

In this section, we discussed the MRAC approach for the 

case when the relative degree 1r and  1G q
m

  is NSPR 

as described in [8], an auxiliary signal has to be fed into the 
reference model and the corresponding structure is described in 
Fig. 4. 

In the condition of the relative degree r  is equal to one, it is 

easy to define a SPR reference model  1G q
m

 However, if 

the relative degree of the system 1r , this assumption is not 
always satisfied. In this case, we assumed that there exists a 

urwitz polynomial 
( 1)

( )L q


of degree (n-1) such that 

   1 1G q L q
m

   is SPR. 

In this case, the error e (k) denotes the tracking error 
between the output of the system Y (k) and a fictitious output 

 *
Y k

r
 which is called auxiliary error or augmented error. 

     *
e k Y k Y k

r
 

           (18) 

or 

     *
Y k Y k Y k

r r a
 

          (19) 

 Y k
a

 is the auxiliary output of the reference model given 

by the following equation: 
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where 
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           (21) 
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Finally [6, 7, 8, 9, 10], in this case the algorithm of 
adaptation of the parameters is given by the following-
equations as: 

       e k Y k Y k Y k
r a

  
          (24) 

       1 Γk k e k k    
          (25) 

       
T

V k k k Y k
c

  
          (26) 

IV. SIMULATION RESULTS 

A. Dynamic Modelling and Linearization of a Robot 

Manipulator 

In this section, a nonlinear six degrees of freedom robot 
manipulator model is employed to demonstrate the 
performance of the proposed MRAC approche, which is a 
serial open chain composed of seven rigid links connected with 
six rotoïde joints as discussed in our recent works [11, 12, 13]. 
Therefore, controlling the motion of robot is a complicated 
operation due to the wide number of degrees of freedom and 
the high nonlinearities introduce in this plant. The dynamic 
equations of motion for the manipulator can be expressed by 
the following equations: 

 Γ f q,q,q,fe
            (27) 

j
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L
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i dt qi
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
 
i, j 1, , n 

         (28) 

where  , q, q, q  depicting Torques, articular positions, 

articular velocities and articular accelerations, f
e

 represents the 

external force and L
j
 denotes the lagrangian of the j

th
 joint. 

So, we have applicated the formalism of Euler-Lagrange 
[13], such that equation (28), we obtained this relation (29): 

     Γ A q q C q,q q Q q  
          (29) 

where A(q) represents the matrix of kinetic energy (n × n); 

 ,C q q q  defines the vector of coriolis and centrifugal 

forces/torques (n ×1);  Q q  represents the vector of 

torques/forces of gravity. 

Hence, the dynamic model of the above system was 
described by n second order differential equations [12, 13]. So, 

if the inertia matrix A is invertible for 
n

q R , we can 

determine the articular accelerations vector
 
q  of each joint as 

relation (30). 

 q f q,q,Γ
            (30) 

     
1

q A q C q,q q Q q Γ
                (31) 

Where q is the angular positions vector (6x1); q is the 

angular velocities vector (6x1);  q  is the angular accelerations 

vector (6x1);   is the input torques vector (6x1). 

For the goal of linear control design, we used the input 
output feedback linearization approaches as [14, 15, 16, 17], to 
linearize the nonlinear robot dynamics model. First, we 
assumed that the state variables of the plant changed into state 
space as: 

 x q , x q , x q , x q , x q , x q
1 1 2 1 3 2 4 2 5 3 6 3
     

 

x q , x q , x q , x q , x q , x q
7 4 8 4 9 5 10 5 11 6 12 6
     

 

 According to the above, to design the affine form of model 
dynamic for the robot manipulator which represents 
multivariable and nonlinear plant, we have derived each above 
state variables as formulated by the system (32): 

         

    

p
X t f X t g X t U ti i

Y t h X ti i

i 1 2,
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, 6
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

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

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

 


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Where ,1 2
T n

X x x x Rn     defines the state 

vector; , .1 2
T p

pU u u u R      denotes the control input 

vector; .[ , ]
1

..
2

T p

pY y y y R   represents the output 

vector;  h X
i

is a scalar function;  f X  and  g X
i

 are 

n-dimensional smooth vector fields, with i=1,2...n. 

Second, for the purpose of linearizing and decoupling the 
model dynamics of the system and transforming it to six linear 
subsystem, the feedback linearization approach as [18, 19, 20, 
21] consists essentially of applied the lie derivative to each 
output until one or more inputs arise, as formulated in the 
expression (33). 
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For each joint position above, assume that the relative 

degree ir  represents the smallest integer such that fully one or 

more of the inputs appear in the new output 
( )r

j

jy , j=1...6. 

   
(r ) r (r )

j j j 1
j j j

p
y L h x L (L h x )uf g f ii

i, j 1,2, p

1i

 




 
        (33) 

Where  
i

f jL h  and 
i

g jL h  are the 
th

i Lie derivatives of 

 jh x  respectively in the direction of f and g. 

       ,
j

f j j

h hj
L h x f x L h x g x

g ix x

 
 

          (34) 

So, rewriting the expression (33) for each subsystem, we 

obtained that each one have a relative degree ir  equal to 2, are 

given by (35); 
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     

 
 
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y L h x x xf
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r
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y L h x x xf
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r
























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 



 

  

 



 

 

 

          (35) 

Finally, the nonlinear control law  iu t applied to each 

joint of the robot manipulator system is formulated as the 
relation (36): 

  
  

  

 

  1 1

1 6

r
i

r r
i i

L h x t v tf i i
u x ti

L L h x t L L h x tg f i g f i

i

 
 

 
  (36) 

  By using the input-output linearizing control law given by 
the above relation (36), the nonlinear plant dynamic system is 
transformed into six-decoupled and linear-subsystems [22, 23, 
24, 25]. Each one was discretized to facilitate the linear 
reference model adaptive controller design. 

B. Application of Control Strategy 

As the linearized plant with input output feedback 
linearisation is constructed, we designed a linear controller by 
synthesising the proposed model reference adaptive controller 

in the case of the relative degree 1r  and  1G q
m

  is 

NSPR. 

The joint1 represents a second-order and time-varying 

system, with relative degree  1 2r   as described by the 

following equation: 

               1 2 2
1 11 1 12 1 10 11

y k a k y k a k y k k k b k v k
p

      
  (37) 

 11a k ,  12a k  and  10b k  are the unknown and time-

varying parameters of model 1 that  is estimated with a 
recursive least-squares algorithm as illustrated in figure 5. 

 1cy k  denotes a reference input  for the joint 1, 

described by the following relation: 

 1 1 0cy k k  
           (38) 

The joint 2 represents a second-order and time-varying 

system, with relative degree  22r  as described by the 

following equation: 

               21 22 20
2

1 2 2
2 2 2 2py k a k y k a k y k k k b k v k      

   (39) 

 

Fig. 4. The Estimated unknown and Time-Varying Parameters of Model 1. 

 

Fig. 5. The Evolutions of the Joint 1 Output  
1y k  and Reference Model 

Output  
1y kr . 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

121 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 6. Evolutions of the Controller Parameters 1. 

 21a k ,  22a k and  20b k are the unknown and time-

varying parameters of model 2 that is estimated with a 
recursive least-squares algorithm as shown in Fig. 8. 

 2cy k is a reference input  for the joint 2, described by 

the following relation: 

 2 1 0cy k k  
           (40) 

 

Fig. 7. The Estimated unknown and Time-Varying Parameters of Model 2. 

 

Fig. 8. The Evolutions of the Joint1Output  2y k  and Reference Model 

Output  
2y kr . 

 

Fig. 9. The Adjustment Parameters of the Controller 2. 

The joint 3 represents a second-order and time-varying 

system, with relative degree  3 2r  as determined by the 

following equation: 

               3 31 3 32 3 30 3
3

1 2 2py k a k y k a k y k k k b k v k      
     (41) 

 31a k ,  32a k and  30b k are the unknown and time-

varying parameters of model 3 that is estimated with a 
recursive least-squares algorithm as shown-in Fig. 11. 

 3cy k is a reference input  for the joint 3, is given by the 

following relation: 

 3 1 0cy k k  
           (42) 

The joint 4 represents a second-order and time-varying 

system, with relative degree  4 2r   as formulated by the 

following equation (43): 

               4 41 4 42 4 40 4
4

1 2 2py k a k y k a k y k k k b k v k      
   (43) 

 41a k ,  24a k and  40b k are the unknown and time-

varying parameters of model 4 that is estimated with a 
recursive least-squares algorithm as demonstrated  in Fig. 14. 

 4cy k is a reference input  for the joint 4, was elaborated 

by the following-relation (44): 

 4 1 0cy k k  
           (44) 

The joint 5 represents a second-order and time-varying 

system, with relative degree  5 2r  as given by the following 

equation (45): 

               5 51 5 52 5 50 5
5

1 2 2py k a k y k a k y k k k b k v k      
 (45) 

 51a k ,  25a k  and  50b k  are the unknown and time-

varying parameters of model 5 that is estimated with a 
recursive least-squares algorithm as shown in Fig. 17. 

 5cy k is a reference input  for the joint 5, represented by 

the following relation (46): 
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 5 1 0cy k k  
           (46) 

The joint 6 represents a second-order and time-varying 

system, with relative degree  6 2r  as determined by the 

following equation (47): 

               6 61 6 62 6 60 6
6

1 2 2py k a k y k a k y k k k b k v k      
   (47) 

 61a k ,  26a k and  60b k  are the unknown and time-

varying parameters of model 6 that is estimated with a 
recursive least-squares algorithm as shown in Fig. 20.  

 6cy k is a reference input  for the joint 6, denoted by the 

following relation (48): 

 6 1 0cy k k  
           (48) 

 

Fig. 10. The Estimated unknown and Time-Varying Parameters of Model 3. 

 

Fig. 11. The Evolutions of the Joint1Output  3y k and Reference Model 

Output  
3y kr . 

 

Fig. 12. The Adjustment Parameters of the Controller 3. 

 

Fig. 13. The Estimated unknown and Time-Varying Parameters of Model 4. 

 

Fig. 14. The Evolutions of the Joint1Output  4y k  and Reference Model 

Output  
4y kr . 
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Fig. 15. The Adjustment Parameters of the Controller 4. 

 

Fig. 16. The Estimated unknown and Time-Varying Parameters of Model 5. 

 

Fig. 17. The Evolutions of the Joint1Output  5y k  and Reference Model 

Output  
5y kr . 

 

Fig. 18. The Adjustment Parameters of the Controller 5. 

 

Fig. 19. The Estimated unknown and Time-Varying Parameters of Model 6. 

 

Fig. 20. The Evolutions of the Joint1Output  
6y k  and Reference Model 

Output  6yr k . 
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Fig. 21. The adjustment parameters of the controller 6. 

Through the simulation results, as illustrated in figures 
6,9,12,15,18,21, each one represents  the evolution of the joint 
output and reference model  output, one notes that each joint 
output converge to the reference model output, so each 
adaptive controller designed by parameters illustrated 
respectively in figures 7,10,13,16,19,22 was demonstrated a 
satisfactory tracking performance. 

V. CONCLUSION 

In this paper, a general class of discrete-time adaptive 
control algorithms has developed and has illustrated that, under 
suitable cases, they will be convergent. This algorithm is used 
for SISO and MIMO plants. Two fundamental cases of 
controller design techniques are discussed in detail when the 
relative-degree of the system equal to one and the transfer-
function of the reference model is assumed to be strictly 
positive. Also, the condition denotes that the relative degree 
greater than one and the transfer function supposed to be non-
strictly positive real was called an augmented control 
architecture. 

The contribution of this paper consists of motivated the 
studied analysis through its appliance to a robot manipulator 
with six degrees of freedom that is represents nonlinear, 
dynamic, multivariable and decoupled system. After 
linearization using the input-output feedback linearization and 
decoupling method, the nonlinear MIMO system was 
transformed into six independent SISO linear subsystems each 
one was represented by a relative degree equal to two with 
unknown and time-varying parameters. So, each linear 
subsystem has discretized to facilitate the linear MRAC design. 
However, the unknown and time-varying parameters of each 
model are estimated with a recursive least-squares algorithm. 
Finally, the control taw of the augmented MRAC has been 
successfully implemented to each model as shown in the above 
simulation results. 

As a perspective of our work, we will extend these 
researches for the plants with disturbances. 
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