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Abstract—In this paper, we describe a simulation system of 

myopathicsurface electromyography (sEMG) signals. The 

architecture of the proposed system consists of two cascading 

modules. SEMG signals of three pathological skeletal muscles 

(Biceps Brachii, InterosseursDorsalis, TibalisAnterior) were 

generated. Root Mean Square (RMS Envelope) and Power 

Spectral Density (PSD) were used to validate our system. 
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I. INTRODUCTION 

Electromyography covers the study of muscle function 
through electrical signals. This medical examination collects 
measures and records the electrical signal that propagates in the 
nerves or in the muscle fibers (Action Potential). It consists of 
plotting the variations of the muscular membrane on the 
display screen; this diagnostic procedure is performed either in 
a non-invasive manner using skin contact electrodes (surface 
electromyography) or in an invasive manner using needle 
electrodes (invasive electromyography). These detection 
processes are often used in several fields such as: 
neuromuscular clinical diagnostics, rehabilitation, prosthesis 
control, muscle fatigue studies and gait analysis [1-4]. 

The mathematical modeling of surface electromyography 
(sEMG) is a method which allows to synchronize physiological 
parameters (e.g. recruitment frequency, conduction rate...) with 
simulated results in order to analyze their influences and to test 
the validity of the algorithms used to process this kind of 
signals [5-7]. Recently, research studies have focused on 
different approaches to modeling and to simulating sEMG 
signals, which are based on phenomenological as well as 
physiological aspect [8-10]. In [1] and [6], the authors propose 
an in-depth recapitulative study of these approaches. 

Myopathic diseases are disorders in which skeletal muscle 
is mainly involved. Several factors can cause myopathies 
including inherited genetic defects (e. g. muscular dystrophies), 
endocrine, inflammatory or metabolic abnormalities. The 
different myopathies lead weakness and atrophy of skeletal 
muscles. Other symptoms of myopathy include fatigue, 
stiffness, and muscle cramps [11]. 

Some myopathies, such as muscular dystrophies, develop 
very early, while others develop later in patient life. Some of 
them gradually worsen over time and do not respond well to 

treatment, while others appear treatable and often remain stable 
for long periods of time [1]. 

There are no several studies interested to model this kind of 
signals. However, their generation provides a significant 
contribution in several areas. For example, for classification 
purposes, a clinical study is required to build a classification 
model that is costly in terms of time and resources. In the 
interest of processing these signals, we propose a model that 
can be used to generate myopathic signals for different types of 
skeletal muscles. 

The paper will be organized as follows: Section 2 presents 
the components of the myopathicsEMG signal generation 
system. Section 3 illustrates the experimental results of the 
proposed simulation model. Finally, in Section 4 we close with 
a brief conclusion. 

II. MATERIALS AND METHODS 

The physiological and anatomy studies of striated skeletal 
muscles reveal their composition in motor units (MU), which 
are composed of motoneurons and muscle fibers. In this 
section, we present a mathematical-based model which 
generates the electrical activity of myopathic muscular 
pathologies. The below diagrams (Fig. 1 and Fig. 2) represent 
the different components of our generation model. 

A. Intracellular Action Potential Generation 

The generation of the intracellular action potential (IAP) 
produces a transmembrane ionic current Im(t) that propagates 
along the outer membrane of muscle fiber (sarcolemma). 
Moreover, the fiber is considered as a propagation tube for 
axially circulating current [9]. We use the following formula to 
generate the aforementioned current [17]: 

  ( )  
    (  )  (      ) (                  )             (1) 

With: 

 A, C: constants affecting the amplitude of Im 

  : Scale factor for adapting the model to the real 
observations 

 v: speed of current propagation along the fibers 

Consequently, myopathic IAPs characterizing by a short 
duration and low amplitude are produced after a values 
modification in the responsible parameters of this phenomenon 

(A, ). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

384 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. Simulation Process of Myopathic SEMG. 

 

Fig. 2. Generation Process of MUAPi. 

B. Maintaining the Integrity of the Specifications 

When the action potential (AP) propagates along the 
muscle fiber, it is automatically attenuated. In this subsection, 
we develop the process used to generate the appropriate 
attenuation function (AF) for myopathic signals. The 
mitigation equation is as follows [18]: 

  
 

     

 

√(    )    ((    )
  (    ) )

           (2) 

Such as:  

 (x,y,z) the origin coordinates 

 (x1,y1,z1) electrode coordinates 

  e: media conductivity 

Y1 represents the distance between the muscle fiber and the 
detection electrode. Typically, it’s a random value between 

33.10
-03

 and 37.10
-03

.  e represents the conductivity value of 

the medium. In the case of myopathic patient, the extracellular 
medium is characterized by a high conductivity compared to 
the normal one. For this purpose, we multiply the value of ∂e by 
five. 

C. Generation of Pulse Intervals 

The MU discharge phenomenon is an essential process to 
generate SEMG signals. It depends on the inter-pulse interval 
(IPI) which represents the time interval between two 
successive pulses. Furthermore, this process is activated by 
exciting the motor unit MUi at the randomly defined moment 
t(i). 

We suppose both the last excitation moment ti(j-1) and the 
firing rate (FR) of MUi are known, we can then calculate the 
next excitation moment tij. 

In order to simulate this process, we assume that firing rates 
follow a random truncated Poisson distribution between 8 and 
42Hz. 

 

AF Generation 
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Then, the excitation moment tij is determined using the 
following equation: 

      (   )                   (3) 

Where:      
 

   
 

D. Structures Generation of Myopathic Motor units 

Skeletal muscles, commonly composed of n motor units 
(MU) having different mechanical as well as electrical 
characteristics that vary according to their size. Whereas, the 
MU size is measured terms of the number of muscle fibers it 
contains. 

In myopathic cases, the number of UMs composing the 
muscle remains unchanged; however, a reduction in their sizes 
is identified according to an affectation percentage. 

In order to generate the structure of Myopathic UM, we use 
the following random process: 

            (           )           (4) 

Such as: kmi presents a random uniform distribution of 
number of fibers in normal UMi and I =[1...n]. 

E. Generation of SEMG 

As we know, this step takes into consideration the muscle 
physiology, the conductor volume and the detection system.  
Whereas, SEMG signal recorded using a single monopolar 
electrode may be considered as a superposition of M motor 
unit action potentials located at different depths under the 
human skin and activated in semi-random manner. 

    (    )  ∑      ( )
 
               (5) 

When the detection system is bipolar, resulting signal is 
obtained using the difference between the SEMG recorded by 
two monopolar electrodes located in positions ZA and ZB. 

    ( )      (    )      (    )           (6) 

III. RESULTS 

Using the simulation model presented in the previous 
section, we simulate normal and myopathic signals. We 
assume that the used detection system is differential with two 
parallel placed electrodes. The following figure (Fig. 3) shows 
two illustration examples (normal and myopathic with a loss 
percentage equal to 50%). We can observe that signal relating 
to the muscle with anomaly presents a decrease in the 
amplitude and the duration of the MUAP. 

Then, we focused on generating myopathic signals of three 
different skeletal muscles: 

 Biceps brachii 

 Interosseurs dorsalis 

 Tibalisanterior 

The composition of each muscle is described in Table I 
[12-14]. The obtained result is shown in Fig. 4. 

For comparison purposes, we investigated the RMS factor 
(Fig. 5) as well as the PSD variation (Fig. 7-9) of the 
previously simulated signals [15, 16]. 

For each simulated signal, the RMS value where calculated. 
Given the SEMG signal S(j), the RMS value is defined as: 

    √
 

 
∑  ( )  
                (7) 

With N represents the number of samples. 

We performed a boxplot to analyze the RMS values 
obtained from the simulated signals of the different muscles. 
Fig. 6 shows the aforementioned boxplot; it represents six 
analyzed signals corresponding to three normal muscles and 
three myopathic muscles. 

As we can see, there are significant differences between the 
mean values of RMS for the three simulated signals, 
corresponding to the normal muscles. Moreover, the RMS of 
myopathic muscles are substantially different from the normal 
one. 

The result showed significant decrease in mean RMS from 
146.10 -4 to 3,6. 10 -4, from 5. 10 -5 to 112,5.10-5 and from 
9,25. 10 -5 to 327. 10 -5 at the biceps brachii, the interosseous 
dorsalis and the tibialis anterior, respectively muscles. 

 

Fig. 3. Healthy and Myopathic SEMG Simulation Results. 

TABLE I. SKELETAL MUSCLES COMPOSITION 

Type of muscle MU number 
Number of 
fibers /UM 

Biceps brachii (BB)  774 750 ±50 

Interosseousdorsalis (IDA) 119 340 ±50 

Tibialis anterior (TA) 445 270 ±50 

 

Normal 

Normal 

Myopathy (50% loss) Myopathy (50% loss) Myopathy (50% loss) Myopathy (50% loss) 

Myopathy (50% loss) 
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Fig. 4. Myopathic SEMG for different Muscles. 

 

Fig. 5. RMS Envelope Results. 
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Fig. 6. Box Plot of RMS.

In order to evaluate the electrical activity of the obtained 
signal we calculate their peak frequency using the above 
equation: 

        (    )             (8) 

Where PSDi denote the SEMG power spectrum at 
frequency bin i and i =1…N. 

The boxplots in Fig. 10 illustrates the variation in the 
values of the PKF of different simulated signals. Based on the 
obtained results, we remark that all PKF of myopathic muscles 
is lower than those of normal muscles. 

The peak frequency of myopathic patients’ SEMG signals 
was significantly lower in tibialis than in other muscles (9.9 
10-7 (TA) vs. 1.25 10-7 (IDA) and 1.9 10-5 (BB)). 

As shown in Fig. 6-8, the simulated myopathic SEMG of 
biceps and interosseous muscles showed quite uniform 
frequencies, while tibialis’s SEMG presented a more scattered 
frequency distribution. Therefore, the peak frequency was 
rather regular in biceps and interosseous myopathic SEMG 
signals, but variable in tibialis’s SEMG, as exemplified in 
Fig. 9. 

 

Fig. 7. PSD of Biceps SEMG Simulated Signal. 
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Fig. 8. PSD of Interosseus SEMG Simulated Signal. 

 

Fig. 9. PSD of Tibialis SEMG Simulated Signal. 

 

Fig. 10. Box plot of RMS.
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IV. CONCLUSIONS 

In this work, we presented a framework for simulating 
myopathic SEMG signals. It is composed of two main 
modules, the first one generates the MUAPs of each UM and 
the second one performs the spatiotemporally summing of the 
different MUAPs obtained from the first module. The obtained 
results allowed us to study the appearance and the 
characteristics of myopathic SEMG signals of different skeletal 
muscles such as: Biceps Brachii, Interosseurs Dorsalis and 
Tibalis Anterior. After the simulation of this kind of 
pathological signals, we conducted a comparative study of the 
synthetically recorded myopathic dataset with those normal. 
RMS and peak frequency of PSD where used to compare the 
synthetic results generated by our framework. 

In our future work, different validation algorithms can be 
used to improve the performance of our framework and other 
type of disorder (like neurological disorder) can be integrated. 
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